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Abstract

The evaluation of the Bayesian formula that is used as a
basis of many machine learning systems is studied in de-
tail. It is shown that, when used naively (i.e. assuming
the independence of attributes), its classification accu-
racy heavily depends on the method for estimating con-
d’ ‘nal probabilities that are required by the formula.
A new method for estimating conditional probabilities
with a firm theoretical background, that substantially
improves the classification accuracy of the formula (as
shown by experimental results on four real world medical
domains), is presented.

1 Introduction

Several machine learning systems, such as ID3 [Quinlan,
1986], CART [Breiman et al, 1984], ASSISTANT [Bratko
& Kononenko, 1986; Cestnik et al, 1987], CN2 [Clark &
Niblett, 1987], etc., were shown to be able to induce com-
pact and accurate knowledge bases in many real world do-
mains. However, in almost any domain the classification
accuracy obtained by the naive Bayesian formula (with
attributes’ independence assumption) was reported to be

“shtly better than the one by the system itself. Still,
expressing knowledge in an explicit symbolic form and
explaining the decisions were the properties that made
the above-mentioned systems successful in practice.

In the last two years several new systems like GI-
NESYS [Gams, 1989] and LogArt [Cestnik & Bratko,
1988|, that achieved slightly better classification accu-
racy in real world domains than the naive Bayesian for-
mula, emerged. The common idea in these systems is
the use of multiple knowledge. Instead of relying on a
few of the most important attributes, such systems addi-
tionally take into account the remaining (less important)
attributes to improve their decisions. The basic argu-
ments explaining why such an inductive learning system
performs better than the Bayesian classifier were as fol-
lows:
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e the Bayesian classifier was implemented under the
independence assumption that is often unrealistic,

e inductive learning systems have special mechanisms
for handling noise in the learning data,

e inductive learning systems use multiple (although
redundant) knowledge to improve performance.

At the same time, the Bayesian formula was further
studied in [Gams & Drobni&, 1988], [Michie & Al Attar,
1989] and [Kononenko, 1989b]. One possible way of in-
terpreting the naive Bayesian classification was shown by
Kononenko [1989a]. He reported that the experts in test-
ing domains accepted and understood the explanation.
Moreover, some of them found its line of reasoning very
similar to the one that they are using in practice.

In this article it is shown that the evaluation of naive
Bayesian formula is very sensitive to the estimation of
conditional probabilities. If the estimations are performed
correctly, its classification accuracy increases substan-
tially. The independence assumption is often unrealistic
but there is a trade-off between not making this assump-
tion and the quality of probabilities estimations; with-
out the independence assumption conditional probabili-
ties are estimated from smaller samples. So, especially
in domains with relatively small number of examples it
might be wise to adopt such an assumption. It is also
shown that the mechanisms to combat noise in the learn-
ing data can as well be incorporated in the probability
estimation function. And last but not least, the Bayesian
classifier considers all available attributes in the classifi-
cation. This is exactly what some inductive learning sys-
tems are trying to do by utilizing multiple knowledge in
terms of confirmation rules [Gams, 1989] or redundant
rules [Cestnik & Bratko, 1988].

2 The Bayesian formula

The learning problem addressed in this paper can be de-
fined as follows:



Given: A set of objects for learning, described with at-
tributes and their values. Every object belongs to one
class.
Find: A classification rule that fits the learning set and
can be used for classifying new objects into classes.

Let A;,¢ = L.n, be a set of attributes each having
a certain number of possible values 7;. Let an event of
attribute A; having a value j be denoted by A’ or shortly
V;. Let C denote a class.

The Bayesian formula is used to compute the con-
ditional probability of a class C given the evidence of
attributes V7,V;, V3, .-+ :

p(CViVaVs--)

6= PAEVaVavs )
p(VivaVs--+)

p(C|lViVaVs:--) =
p(ClW1)
»(C)

If the independence of the attributes V1,V2,V3,--- is
assumed, (1) can be further simplified to obtain:

p(C[Va) p(C|V2) p(C|Vs)
p(C) »(C) p(C)

So, the formula (2) can be interpreted as follows: take
the apriori probability of C and multiply it by a factor
h(s) for every attribute to obtain the final aposteriori
probability, where h(r) has a form:

p(CViVa) p(CiVaVs)
p(CIV1) p(CV1Va)

=p(C)

6 =p(C) (2)

o= p(CV3)
="

3 Problems with the evaluation of
the Bayesian formula

Let n(V;) denote the number of examples where V; is ob-
served, and n(CV;) the number of examples where both
V; and C are observed. First, let us consider the approx-
imation of probabilities with relative frequencies:

n(CVi)
n(Vi)

Problems arise when n(V;) = 0 and/or n(CV;) = 0.
In case that n(V;) = 0 (division by 0) A(y) is usually set
to 1 (it is assumed that V; has no influence to the final
probability ). If n(V;) > 0 and n(CV;) = 0 then h(3)
becomes 0, and 8 becomes 0, even if n(V;) is effectively
small, meaning that the estimation is not reliable.

According to our knowledge, the naive Bayesian for-
mula that is referred to in section 1 (when compared with

p(CIVi) =
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other inductive learning systems) was evaluated as de-
scribed above, thus approximating probabilities with rel-

ative frequencies.

As observed, problems are encountered when n(Vi1)
and/or n(CV;) are small. However, Laplace’s law of suc-
cession [Good, 1950; Good, 1965) can be used to alleviate
the problem. It states that if in the sample of N trialk
there were n successes, the probability of the next tria
being successful is (n + 1)/(N + 2), assuming that the
initial distribution of successes and failures is uniform.

Let us explore the same situations as above: if n(V;) =
0 then h(f) = 1/(2p(C)). If p(C) is decreasing then A(s’
is growing; the reason for this strange behavior lies ir
the initial assumption. If n(V;) > 0 and n(CV;) = 0 ther
k(i) = 1/((n(Vi)+2)p(C)). Again, h(f) is proportional tc
1/p(C). However, since h(f) is a monotonically decreas
ing function of ri(V1), the reliability of the estimation i
incorporated in A(1).

4 Estimation of probabilities

In [Good, 1965] it is suggested that instead of assum
ing a uniform initial distribution (like in Laplace’s lav
of succession) a more flexible and convenient class of ini
tial probability densities should be used. Let the initia
probability density function be of the form:

-1 b—1

11—

where a > 0,b > 0 and B(a,b) is Beta function.
Then, after n successes in N trials, the mathematica
expectation of the probability of a success in the nex

trial is equal to:

n+a

_ 3
N+a+b (

g(n,N) =

where @ > 0 and b > 0.

Note that Laplace’s law of succession is only a speciz
case of (3) when a and b equal 1.

Let us prove that this approximation with an apprc
priate selection of parameters a and b has the followin
four properties

1) (0,0) = %5 = »(C)

p(C), apriori probability of class C, must be greate
than 0. This can be achieved by estimating it by Laplace
law of succession. According to our new method for est
mating conditional probabilities the parameters a and
should then be set such as to satisfy the desired propert;
Let a + b = m. The value of m is domain dependent. !
is related to the amount of noise in the domain. m ca
be small if little noise is expected and should grow if tk



amount of noise is substantial. In the experiments in sec-
tion 5 the value 2 was used for m, like in Laplace’s law
of succession. Once m is determined, parameters a and b
can be set as follows: @ = p(C)m and b = m —a. It can

then be proved that q(O 0) = P-E)ﬂ = p(C).

2) q(0,N) = %5 >0becausea>0
g(N,N) = 5525 < 1 because b > 0.
b
3) ¢(N+1,N+1)= *ﬁ‘;ﬁ%il—m>
>1- Ntats — = ﬁ = q(N, N).
4) ¢(O,N +1) = N+1+a+b < N+r.|+b =q(0,N)

5 Experimental results

The naive Bayesian formula was tested on four medical
domains that are described in more detail in [Bratko &
Kononenko, 1986|. Results, shown in Table 1, represent
the average of 10 experiments. Each time 70% of the
original examples were randomly taken for training and
the remaining 30% for testing. All the methods used the
sam~ random split in one test.

Domain F#classes | Bayesl | Bayes2 | Bayes3
Lymphography 4 79.0 436 || 84.8
Hepatitis 2 82.6 83.2 84.9
Breast cancer 2 77.4 77.4 78.6
Primary tumor 22 48.2 25.9 81.2

Table 1: Results of experiments in four medical domains.
In all cases the Bayesian formula is evaluated naively,
however, Bayesl approximates probabilities with relative
frequencies, Bayes2 with Laplace’s law of succession and
Bayes3 with the new method, described in section 4.

6 Discussion

The results in Table 1 show that the naive Bayesian clas-
sifier performs better with a proper probabilities’ estima-
ti. . method (Bayes3) than when the two other estima-
tion methods (Bayesl and Bayes2) are used. Since many
sophiéticated inductive learning systems [e.g. Clark &
Niblett, 1987; Cestnik et al, 1987| are reported to achieve
slightly lower classification accuracy than naive Bayesian
classifier using approximation with relative frequencies,
the new method also performs substantially better than
the above-mentioned systems.

In Table 1 it can be observed that estimating proba-
bilities by Laplace’s law of succession in Bayes2 (assum-
ing.a uniform apriori distribution) is often unrealistic,
especially in multi-class decision problems, like in lym-
phography and primary tumor. The cause for worse per-

formance of Bayes2 on these two domains is explained in
section 3.

The new method for estimating probabilities, pre-
sented in section 4, has a firm theoretical background
[Good, 1965]. Since the estimated probabilities are treated
as random variables with associated distributions, sev-
eral interesting properties like, for example, variance, can
also be observed. The method in general can be used by
any inductive learning system that gives probabilistic an-
swers.

The attributes’ independence assumption, made by
the naive Bayesian method, is often unrealistic. How-
ever, in real world domains there is a trade-off between
not making this assumption and the quality of proba-
bility estimations; without the independence assumption
conditional probabilities are estimated from smaller sam-
ples.
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