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Preface

What This Book Is About

This book is about what to do with data to get the most out of it. There is a lot more to that
statement than first meets the eye.

Much information is available today about data warehouses, data mining, KDD, OLTP,
OLAP, and a whole alphabet soup of other acronyms that describe techniques and
methods of storing, accessing, visualizing, and using data. There are books and
magazines about building models for making predictions of all types—fraud, marketing,
new customers, consumer demand, economic statistics, stock movement, option prices,
weather, sociological behavior, traffic demand, resource needs, and many more.

In order to use the techniques, or make the predictions, industry professionals almost
universally agree that one of the most important parts of any such project, and one of the
most time-consuming and difficult, is data preparation. Unfortunately, data preparation
has been much like the weather—as the old aphorism has it, “Everyone talks about it, but
no one does anything about it.” This book takes a detailed look at the problems in
preparing data, the solutions, and how to use the solutions to get the most out of the
data—whatever you want to use it for. This book tells you what can be done about it,
exactly how it can be done, and what it achieves, and puts a powerful kit of tools directly in
your hands that allows you to do it.

How important is adequate data preparation? After finding the right problem to solve, data
preparation is often the key to solving the problem. It can easily be the difference between
success and failure, between useable insights and incomprehensible murk, between
worthwhile predictions and useless guesses.

For instance, in one case data carefully prepared for warehousing proved useless for
modeling. The preparation for warehousing had destroyed the useable information content
for the needed mining project. Preparing the data for mining, rather than warehousing,
produced a 550% improvement in model accuracy. In another case, a commercial baker
achieved a bottom-line improvement approaching $1 million by using data prepared with the
techniques described in this book instead of previous approaches.

Who This Book Is For

This book is written primarily for the computer savvy analyst or modeler who works with
data on a daily basis and who wants to use data mining to get the most out of data. The
type of data the analyst works with is not important. It may be financial, marketing,
business, stock trading, telecommunications, healthcare, medical, epidemiological,



genomic, chemical, process, meteorological, marine, aviation, physical, credit, insurance,
retail, or any type of data requiring analysis. What is important is that the analyst needs to
get the most information out of the data.

At a second level, this book is also intended for anyone who needs to understand the issues
in data preparation, even if they are not directly involved in preparing or working with data.
Reading this book will give anyone who uses analyses provided from an analyst’s work a
much better understanding of the results and limitations that the analyst works with, and a far
deeper insight into what the analyses mean, where they can be used, and what can be
reasonably expected from any analysis.

Why | Wrote It

There are many good books available today that discuss how to collect data, particularly
in government and business. Simply look for titles about databases and data
warehousing. There are many equally good books about data mining that discuss tools
and algorithms. But few, if any books, address what to do with the “dirty data” after it is
collected and before exploring it with a data mining tool. Yet this part of the process is
critical.

| wrote this book to address that gap in the process between identifying data and building
models. It will take you from the point where data has been identified in some form or
other, if not assembled. It will walk you through the process of identifying an appropriate
problem, relating the data back to the world from which it was collected, assembling the
data into mineable form, discovering problems with the data, fixing the problems, and
discovering what is in the data—that is, whether continuing with mining will deliver what
you need. It walks you through the whole process, starting with data discovery, and
deposits you on the very doorstep of building a data-mined model.

This is not an easy journey, but it is one that | have trodden many times in many projects.
There is a “beaten path,” and my express purpose in writing this book is to show exactly
where the path leads, why it goes where it does, and to provide tools and a map so that you
can tread it again on your own when you need to.

Special Features

A CD-ROM accompanies the book. Preparing data requires manipulating it and looking at
it in various ways. All of the actual data manipulation technigues that are conceptually
described in the book, mainly in Chapters 5 through 8 and 10, are illustrated by C
programs. For ease of understanding, each technique is illustrated, so far as possible, in a
separate, well-commented C source file. If compiled as an integrated whole, these
provide an automated data preparation tool.

The CD-ROM also includes demonstration versions of other tools mentioned, and useful



for preparing data, including WizWhy and WizRule from WizSoft, KnowledgeSEEKER
from Angoss, and Statistica from StatSoft.

Throughout the book, several data sets illustrate the topics covered. They are included on
the CD-ROM for reader investigation.
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Introduction

Ever since the Sumerian and Elam peoples living in the Tigris and Euphrates River basin
some 5500 years ago invented data collection using dried mud tablets marked with tax
records, people have been trying to understand the meaning of, and get use from,
collected data. More directly, they have been trying to determine how to use the
information in that data to improve their lives and achieve their objectives.

These are the same objectives addressed by the latest technology to wring use and
meaning out of data—the group of technologies that today have come to be called data
mining. Often, something important gets lost in the rush to apply these powerful
technologies to “find something in this data.” The technologies themselves are not an
answer. They are tools to help find an answer. It is no use looking for an answer unless
there is a question. But equally important, given a question, both the data and the miner
need to be readied to find the best answer to the question asked.

This book has two objectives: 1) to present a proven approach to preparing the data, and
the miner, to get the most out of computer-stored data, and 2) to help analysts and
business managers make cost-effective and informed decisions based on the data, their
expertise, and business needs and constraints. This book is intended for everyone who
works with or uses data and who needs to understand the nature, limitations, application,
and use of the results they get.

In The Wizard of Oz, while the wizard hid behind the curtain and manipulated the controls,
the results were both amazing and magical. When the curtain was pulled back, and the
wizard could be seen manipulating the controls, the results were still amazing—the
cowardly lion did find courage, the tin man his heart, the scarecrow his brain. The power
remained; only the mystery evaporated. This book “pulls back the curtain” about the
reason, application, applicability, use, and results of data preparation.

Knowledge, Power, Data, and the World

Francis Bacon said, “Knowledge is power.” But is it? And if it is, where is the power in
knowledge?

Power is the ability to control, or at least influence, events. Control implies taking an
action that produces a known result. So the power in knowledge is in knowing what to do
to get what you want—knowing which actions produce which results, and how and when
to take them. Knowledge, then, is having a collection of actions that work reliably. But
where does this knowledge come from?

Our knowledge of the world is a map of how things affect each other. This comes from



observation—watching what happens. Watching implies making a record of happenings,
either mental or in some other form. These records, when in nonmental form, are data,
which is simply a collection of observations of things that happen, and what other things
happen when the first things happen. And how consistently.

The world forms a comprehensive interlocking system, called by philosophers “the great
system of the world.” Essentially, when any particular thing happens in the world, other
things happen too. We call this causality and want to know what causes what. Everything
affects everything else. As the colloquial expression has it, “You can’t do just one thing.” This
system of connected happenings, or events, is reflected in the data collected.

Data, Fishing, and Decision Making

We are today awash in data, primarily collected by governments and businesses.
Automation produces an ever-growing flood of data, now feeding such a vast ocean that
we can only watch the swelling tide, amazed. Dazed by our apparent inability to come to
grips with the knowledge swimming in the vast ocean before us, we know there must be a
vast harvest to be had in this ocean, if only we could find the means.

Fishing in data has traditionally been the realm of statistical analysis. But statistical
analysis has been as a boy fishing with a pole from a riverbank. Today’s business
managers need more powerful and effective means to reap the harvest—ways to explore
and identify the denizens of the ocean, and to bring the harvest home. Today there are
three such tools for harvesting: data modeling reveals each “fish,” data surveying looks at
the shape of the ocean and is the “fish finder,” and data preparation clears the water and
removes the murk so that the “fish” are clearly seen and easily attracted.

So much for metaphor. In truth, corporations have huge data “lakes” that range from
comprehensive data stores to data warehouses, data marts, and even data “garbage
dumps.” Some of these are more useful than others, but in every case they were created,
and data collected, because of the underlying assumption that collected data has value,
corporate value—that is it can be turned into money.

All corporations have to make decisions about which actions are best to achieve the
corporate interest. Informed decisions—those made with knowledge of current
circumstances and likely outcome—are more effective than uninformed decisions. The core
business of any corporate entity is making appropriate decisions, and enterprise decision
support is the core strategic process, fed by knowledge and expertise—and by the best
available information. Much of the needed information is simply waiting to be discovered,
submerged in collected data.

Mining Data for Information

The most recently developed tools for exploring data, today known as data mining tools,



only begin the process of automating the search. To date, most modern data mining tools
have focused almost exclusively on building models—identifying the “fish.” Yet enormous
dividends come from applying the modeling tools to correctly prepared data. But
preparing data for modeling has been an extremely time-consuming process, traditionally
carried out by hand and very hard to automate.

This book describes automated techniques of data preparation, both methods and
business benefits. These proven automated techniques can cut the preparation time by
up to 90%, depending on the quality of the original data, so the modeler produces better
models in less time. As powerful and effective as these techniques are, the key benefit is
that, properly applied, the data preparation process prepares both the data and the
modeler. When data is properly prepared, the miner unavoidably gains understanding and
insight into the content, range of applicability, and limits to use of the data. When data is
correctly prepared and surveyed, the quality of the models produced will depend mostly
on the content of the data, not so much on the ability of the modeler.

But often today, instead of adequate data preparation and accurate data survey,
time-consuming models are built and rebuilt in an effort to understand data. Modeling and
remodeling are not the most cost-efficient or the most effective way to discover what is
enfolded in a data set. If a model is needed, the data survey shows exactly which model (or
models if several best fit the need) is appropriate, how to build it, how well it will work, where
it can be applied, and how reliable it will be and its limits to performance. All this can be done
before any model is built, and in a small fraction of the time it takes to explore data by
modeling.

Preparing the Data, Preparing the Miner

Correct data preparation prepares both the miner and the data. Preparing the data means
the model is built right. Preparing the miner means the right model is built. Data
preparation and the data survey lead to an understanding of the data that allows the right
model to be built, and built right the first time. But it may well be that in any case, the
preparation and survey lead the miner to an understanding of the information enfolded in
the data, and perhaps that is all that is wanted. But who is the miner?

Exploring data has traditionally been a specialist activity. But it is business managers who
need the results, insights, and intuitions embedded in stored data. As recently as 20 years
ago, spreadsheets were regarded as specialized tools used by accountants and were
considered to have little applicability to general business management. Today the vast
majority of business managers regard the spreadsheet as an indispensable tool. As with
the spreadsheet, so too the time is fast approaching when business managers will directly
access and use data exploration tools in their daily business decision making. Many
important business processes will be run by automated systems, with business managers
and analysts monitoring, guiding, and driving the processes from “control panels.” Such
structures are already beginning to be deployed. Skilled data modelers and explorers will



be needed to construct and maintain these systems and deploy them into production.

So who is the miner? Anyone who needs to understand and use what is in corporate data
sets. This includes, but is not limited to, business managers, business analysts, consultants,
data analysts, marketing managers, finance managers, personnel managers, corporate
executives, and statisticians. The miner in this book refers to anyone who needs to directly
understand data and wants to apply the techniques to get the best understanding out of the
data as effectively as possible. (The miner may or may not be a specialist who implements
these techniques for preparation. It is at least someone who needs to use them to
understand what is going on and why.) The modeler refers to someone versed in the special
techniques and methodologies of constructing models.

Is This Book for You?

| have been involved, one way or another, in the world of using automated techniques to
extract “meaning” from data for over a quarter of a century. Recently, the term “data
mining” has become fashionable. It is an old term that has changed slightly in meaning
and gained a newfound respectability. It used to be used with the connotation that if you
mess around in data long enough, you are sure to find something that seems useful, but is
probably just an exercise in self-deception. (And there is a warning to be had there,
because self-deception is very easy!)

This “mining” of data used to be the specialist province of trained analysts and
statisticians. The techniques were mainly manual, data quantities small, and the
techniques complex. The miracle of the modern computer (not said tongue in cheek) has
changed the entire nature of data exploration. The rate of generation and collection of raw
data has grown so rapid that it is absolutely beyond the means of human endeavor to
keep up. And yet there is not only meaning, but huge value to be had from understanding
what is in the data collections. Some of this meaning is for business—where to find new
customers, stop fraud, improve production, reduce costs. But other data contains
meaning that is important to understand, for our lives depend on knowing some of it! Is
global warming real or not? Will massive storms continue to wreak more and more havoc
with our technological civilization? Is a new ice age almost upon us? Is a depression
imminent? Will we run out of resources? How can the developing world be best helped?
Can we prevent the spread of AIDS? What is the meaning of the human genome?

This book will not answer any of those questions, but they, along with a host of other
guestions large and small, will be explored, and explored almost certainly by automated
means—that is, those techniques today called data mining. But the explorers will not be
exclusively drawn from a few, highly trained professionals. Professional skill will be sorely
needed, but the bulk of the exploration to come will be done by the people who face the
problems, and they may well not have access to skilled explorers. What they will have is
access to high-powered, almost fully automated exploration tools. They will need to know
the appropriate use and limits of the tools—and how to best prepare their data.



If you are looking at this book, and if you have read this far through the introduction, almost
certainly this book is for you! It is you who are the “they” who will be doing the exploring, and
this book will help you.

Organization

Data preparation is both a broad and a narrow topic. Business managers want an
overview of where data preparation fits and what it delivers. Data miners and modelers
need to know which tools and techniques can be applied to data, and how to apply them
to bring the benefits promised. Business and data analysts want to know how to use the
techniques and their limits to usefulness. All of these agendas can be met, although each
agenda may require a different path through the book.

Chapters 1 through 3 lay the ground work by describing the data exploration process in
which data preparation takes place. Chapters 4 through 10 outline each of the problems
that have to be addressed in best exposing the information content enfolded in data, and
provide conceptual explanations of how to deal with each problem. Chapters 11 and 12
look at what can be discovered from prepared data, and how both miner and modeling
performance are improved by using the techniques described.

Chapter 1 places data preparation in perspective as part of a decision-making process. It
discusses how to find appropriate problems and how to define what a solution looks like.
Without a clear idea of the business problem, the proposed business objectives, and
enough knowledge of the data to determine if it’s an appropriate place to look for at least
part of the answer, preparing data is for naught. While Chapter 1 provides a top-down
perspective, Chapter 2 tackles the process from the bottom up, tying data to the real
world, and explaining the inherent limitations and problems in trying to capture data about
the world. Since data is the primary foundation, the chapter looks at what data is as it
exists in database structures. Chapter 3 describes the data exploration process and the
interrelationship between its components—data preparation, data survey, and data
modeling. The focus in this chapter is on how the pieces link together and interact with
each other.

Chapters 4 through 9 describe how to actually prepare data for survey and modeling.
These chapters introduce the problems that need to be solved and provide conceptual
descriptions of all of the techniques to deal with the problems. Chapter 4 discusses the
data assay, the part of the process that looks at assembling data into a mineable form.
There may be much more to this than simply using an extract from a warehouse! The
assay also reveals much information about the form, structure, and utility of a data set.
Chapters 5 through 8 discuss a range of problems that afflict data, their solutions, and
also the concept of how to effectively expose information content. Among the topics these
chapters address are discovering how much data is needed; appropriately numerating
alpha values; removing variables and data; appropriately replacing missing values;



normalizing range and distribution; and assembling, enhancing, enriching, compressing,
and reducing data and data sets. Some parts of these topics are inherently and
unavoidably mathematical. In every case, the mathematics needed to understand the
techniques is at the “forgotten high school math” level. Wherever possible, and where it is
not required for a conceptual understanding of the issues, any mathematics is contained
in a section titled Supplemental Material at the end of those particular chapters. Chapter 9
deals entirely with preparing series data, such as time series.

Chapter 10 looks at issues concerning the data set as a whole that remain after dealing
with problems that exist with variables. These issues concern restructuring data and
ensuring that the final data set actually meets the need of the business problem.

Chapter 11 takes a brief look at some of the techniques required for surveying data and
examines a small part of the survey of the example data set included on the
accompanying CD-ROM. This brief look illustrates where the survey fits and the high
value it returns. Chapter 12 looks at using prepared data in modeling and demonstrates
the impact that the techniques discussed in earlier chapters have on data.

All of the preparation techniques discussed here are illustrated in a suite of C routines on the
accompanying CD-ROM. Taken together they demonstrate automated data preparation and
compile to provide a demonstration data preparation program illustrating all of the points
discussed. All of the code was written to make the principles at work as clear as possible,
rather than optimizing for speed, computational efficiency, or any other metric. Example data
sets for preparation and modeling are included. These are the data sets used to illustrate the
discussed examples. They are based on, or extracted from, actually modeled data sets. The
data in each set is assembled into a table, but is not otherwise prepared. Use the tools and
techniques described in the book to explore this data. Many of the specific problems in these
data sets are discussed, but by no means all. There are surprises lurking, some of which
need active involvement by the miner or modeler, and which cannot all be automatically
corrected.

Back to the Future

| have been involved in the field known today as data mining, including data preparation,
data surveying, and data modeling, for more than 25 years. However, thisis a
fast-developing field, and automated data preparation is not a finished science by any
means. New developments come only from addressing new problems or improving the
techniques used in solving existing problems. The author welcomes contact from anyone
who has an interest in the practical application of data exploration techniques in solving
business problems.

The techniques in this book were developed over many years in response to data problems
and modeling difficulties. But, of course, no problems are solved in a vacuum. | am indebted
to colleagues who unstintingly gave of their time, advice, and insight in bringing this book to



fruition. | am equally indebted to the authors of many books who shared their knowledge and
insight by writing their own books. Sir Isaac Newton expressed the thought that if he had
seen further than others, it was because he stood on the shoulders of giants. The giants on
whose shoulders |, and all data explorers stand, are those who thought deeply about the
problems of data and its representations of the world, and who wrote and spoke of their
conclusions.



Chapter 1: Data Exploration as a Process

Overview

Data exploration starts with data, right? Wrong! That is about as true as saying that
making sales starts with products.

Making sales starts with identifying a need in the marketplace that you know how to meet
profitably. The product must fit the need. If the product fits the need, is affordable to the
end consumer, and the consumer is informed of your product’s availability (marketing),
then, and only then, can sales be made. When making sales, meeting the needs of the
marketplace is paramount.

Data exploration also starts with identifying a need in its “marketplace” that can be met
profitably. Its marketplace is corporate decision making. If a company cannot make
correct and appropriate decisions about marketing strategies, resource deployment,
product distribution, and every other area of corporate behavior, it is ultimately doomed.
Making correct, appropriate, and informed business decisions is the paramount business
need. Data exploration can provide some of the basic source material for decision
making—information. It is information alone that allows informed decision making.

So if the marketplace for data exploration is corporate decision making, what about profit?
How can providing any information not be profitable to the company? To a degree, any
information is profitable, but not all information is equally useful. It is more valuable to
provide accurate, timely, and useful information addressing corporate strategic problems
than about a small problem the company doesn’t care about and won’t deploy resources
to fix anyway. So the value of the information is always proportional to the scale of the
problem it addresses. And it always costs to discover information. Always. It takes time,
money, personnel, effort, skills, and insight to discover appropriate information. If the cost
of discovery is greater than the value gained, the effort is not profitable.

What, then, of marketing the discovered information? Surely it doesn’t need marketing.
Corporate decision makers know what they need to know and will ask for it—won’t they?
The short answer is no! Just as you wouldn’t even go to look for stereo equipment unless
you knew it existed, and what it was good for, so decision makers won’t seek information
unless they know it can be had and what it is good for. Consumer audio has a great depth
of detail that needs to be known in order to select appropriate equipment. Whatever your
level of expertise, there is always more to be known that is important—once you know
about it. Speakers, cables, connectors, amplifiers, tuners, digital sound recovery,
distortion, surround sound, home theater, frequency response. On and on goes the list,
and detailed books have been written about the subject. In selecting audio equipment (or
anything else for that matter), an educated consumer makes the best choice. It is exactly



the same with information discovered using data exploration.

The consumers are decision makers at all levels, and in all parts of any company. They
need to know that information is available, as well as the sort of information, its range of
applicability, limits to use, duration of applicability, likely return, cost to acquire, and a host
of other important details. As with anything else, an educated consumer makes the best
use of the resource available. But unlike home audio equipment, each problem in data
exploration for business is unique and has needs different from other problems. It has not
yet become common that the decision maker directly explores broadly based corporate
data to discover information. At the present stage of data exploration technology, it is
usual to have the actual exploration done by someone familiar with the tools
available—the miner. But how are the miner and the decision maker(s) to stay “in synch”
during the process? How is the consumer, the decision maker, to become educated about
reasonable expectations, reasonable return, and appropriate uses of the discovered
information?

What is needed is a process. A process that works to ensure that all of the participants are
engaged and educated, that sets appropriate expectations, and that ensures the most value
is obtained for the effort put in. That process is the data exploration process, introduced in
this chapter.

1.1 The Data Exploration Process
Data exploration is a practical multistage business process at which people work using a
structured methodology to discover and evaluate appropriate problems, define solutions
and implementation strategies, and produce measurable results. Each of the stages has a
specific purpose and function. This discussion will give you a feel for the process: how to
decide what to do at each stage and what needs to be done. This is a look at what goes
in, what goes on, and what comes out of data exploration. While much of this discussion
is at a conceptual level, it provides some practical “hands-on” advice and covers the major
issues and interrelationships between the stages.
At the highest-level overview, the stages in the data exploration process are
1. Exploring the Problem Space
2. Exploring the Solution Space
3. Specifying the Implementation Method

4. Mining the Data (three parts)

a. Preparing the Data



b. Surveying the Data

c. Modeling the Data

This is the “map of the territory” that you should keep in mind as we visit each area and
discuss issues. Figure 1.1 illustrates this map and shows how long each stage typically
takes. It also shows the relative importance of each stage to the success of the project.
Eighty percent of the importance to success comes from finding a suitable problem to
address, defining what success looks like in the form of a solution, and, most critical of all,
implementing the solution. If the final results are not implemented, it is impossible for any
project to be successful. On the other hand, mining—preparation, surveying, and
modeling—traditionally takes most of the time in any project. However, after the
importance of actually implementing the result, the two most important contributors to
success are solving an appropriate problem and preparing the data. While implementing
the result is of the first importance to success, it is almost invariably outside the scope of
the data exploration project itself. As such, implementation usually requires organizational
or procedural changes inside an organization, which is well outside the scope of this
discussion. Nonetheless, implementation is critical, since without implementing the results
there can be no success.

Data exploration project

Time to Impartanca
complels o succass
(pesrcent of total) (percent of tolal)
1. Exploring the prablem 10 15 ]
2. Exploring the solution 9 20 14 a0
3, Implementation specification 1 51
4, Data mining ]
a. Data preparation 1] BO 15 20
b. Data surveying 15 3
. Data modaling 5 J 2 )

Figure 1.1 Stages of a data exploration project showing importance and duration
of each stage.

1.1.1 Stage 1: Exploring the Problem Space

This is a critical place to start. It is also the place that, without question, is the source of
most of the misunderstandings and unrealistic expectations from data mining. Quite aside
from the fact that the terms “data exploration” and “data mining” are (incorrectly) used
interchangeably, data mining has been described as “a worm that crawls through your
data and finds golden nuggets.” It has also been described as “a method of automatically



extracting unexpected hidden patterns from data.” It is hard to see any analogous
connection between either data exploration or data mining and metaphorical worms. As
for automatically extracting hidden and unexpected patterns, there is some analogous
truth to that statement. The real problem is that it gives no flavor for what goes into finding
those hidden patterns, why you would look for them, nor any idea of how to practically use
them when they are found. As a statement, it makes data mining appear to exist in a world
where such things happen by themselves. This leads to “the expectation of magic” from
data mining: wave a magic wand over the data and produce answers to questions you
didn’t even know you had!

Without question, effective data exploration provides a disciplined approach to identifying
business problems and gaining an understanding of data to help solve them. Absolutely
no magic used, guaranteed.

ldentifying Problems

The data exploration process starts by identifying the right problems to solve. This is not
as easy as it seems. In one instance, a major telecommunications company insisted that
they had already identified their problem. They were quite certain that the problem was
churn. They listened patiently to the explanation of the data exploration methodology, and
then, deciding it was irrelevant in this case (since they were sure they already understood
the problem), requested a model to predict churn. The requested churn model was duly
built, and most effective it was too. The company’s previous methods yielded about a 50%
accurate prediction model. The new model raised the accuracy of the churn predictions to
more than 80%. Based on this result, they developed a major marketing campaign to
reduce churn in their customer base. The company spent vast amounts of money
targeting at-risk customers with very little impact on churn and a disastrous impact on
profitability. (Predicting churn and stopping it are different things entirely. For instance, the
amazing discovery was made that unemployed people over 80 years old had a most
regrettable tendency to churn. They died, and no incentive program has much impact on
death!)

Fortunately they were persuaded by the apparent success, at least of the predictive
model, to continue with the project. After going through the full data exploration process,
they ultimately determined that the problem that should have been addressed was
improving return from underperforming market segments. When appropriate models were
built, the company was able to create highly successful programs to improve the value
that their customer base yielded to them, instead of fighting the apparent dragon of churn.
The value of finding and solving the appropriate problem was worth literally millions of
dollars, and the difference between profit and loss, to this company.

Precise Problem Definition

So how is an appropriate problem discovered? There is a methodology for doing just this.
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Start by defining problems in a precise way. Consider, for a moment, how people
generally identify problems. Usually they meet, individually or in groups, and discuss what
they feel to be precise descriptions of problems; on close examination, however, they are
really general statements. These general statements need to be analyzed into smaller
components that can, in principle at least, be answered by examining data. In one such
discussion with a manufacturer who was concerned with productivity on the assembly
line, the problem was expressed as, “I really need a model of the Monday and Friday
failure rates so we can put a stop to them!” The owner of this problem genuinely thought
this was a precise problem description.

Eventually, this general statement was broken down into quite a large number of
applicable problems and, in this particular case, led to some fairly sophisticated models
reflecting which employees best fit which assembly line profiles, and for which shifts, and
so on. While exploring the problem, it was necessary to define additional issues, such as
what constituted a failure; how failure was detected or measured; why the Monday and
Friday failure rates were significant; why these failure rates were seen as a problem; was
this in fact a quality problem or a problem with fluctuation of error rates; what problem
components needed to be looked at (equipment, personnel, environmental); and much
more. By the end of the problem space exploration, many more components and
dimensions of the problem were explored and revealed than the company had originally
perceived.

It has been said that a clear statement of a problem is half the battle. It is, and it points
directly to the solution needed. That is what exploring the problem space in a rigorous
manner achieves. Usually (and this was the case with the manufacturer), the exploration
itself yields insights without the application of any automated techniques.

Cognitive Maps

Sometimes the problem space is hard to understand. If it seems difficult to gain insight
into the structure of the problem, or there seem to be many conflicting details, it may be
helpful to structure the problem in some convenient way. One method of structuring a
problem space is by using a tool known as a cognitive map (Figures 1.2(a) and 1.2(b)). A
useful tool for exploring complex problem spaces, a cognitive map is a physical picture of
what are perceived as the objects that make up the problem space, together with the
interconnections and interactions of the variables of the objects. It will very often show
where there are conflicting views of the structure of the problem.



Figure 1.2 Cognitive maps: simple (a) and complex (b).

Figure 1.2(a) shows a simple cognitive map expressing the perceived relationships
among the amount of sunshine, the ocean temperature, and the level of cloud cover.
Figure 1.2(b) shows a somewhat more complex cognitive map. Cloud cover and global
albedo are significant in this view because they have a high number of connections, and
both introduce negative feedback relationships. Greenhouse gases don’t seem to be
closely coupled. A more sophisticated cognitive map may introduce numerical weightings
to indicate the strength of connections. Understanding the implications of the more
complex relationships in larger cognitive maps benefits greatly from computer simulation.

Note that what is important is not to resolve or remove these conflicting views, but to
understand that they are there and exactly in which parts of the problem they occur. They
may in fact represent valid interpretations of different views of a situation held by different
problem owners.

Ambiguity Resolution

While the problems are being uncovered, discovered, and clarified, it is important to use
techniques of ambiguity resolution. While ambiguity resolution covers a wide range of
areas and techniques, its fundamental purpose is to assure that the mental image of the
problem in the problem owner’s mind—a mental image replete with many associated
assumptions—is clearly communicated to, and understood by, the problem solver—most
specifically that the associated assumptions are brought out and made clear. Ambiguity
resolution serves to ensure that where there are alternative interpretations, any
assumptions are explicated. For a detailed treatment of ambiguity resolution, see the
excellent Exploring Requirements: Quality Before Design by Grause and Weinberg. (See
Further Reading.)

Pairwise Ranking and Building the Problem Matrix



Exploring the problem space, depending on the scope of the project, yields anything from
tens to hundreds of possible problems. Something must be done to deal with these as
there may be too many to solve, given the resources available. We need some way of
deciding which problems are the most useful to tackle, and which promise the highest
yields for the time and resources invested.

Drawing on work done in the fields of decision theory and econometrics, it is possible to
use a rationale that does in fact give consistent and reliable answers as to the most
appropriate and effective problems to solve: the pairwise ranking. Figure 1.3 illustrates the
concept. Generating pairwise rankings is an extremely powerful technique for reducing
comparative selections. Surprisingly, pairwise rankings will probably give different results
than an intuitive ranking of a list. Here is a simple technique that you can use to
experiment.

Py i

Figure 1.3 Pairwise ranking method. This method is illustrative only. In practice,
using a spreadsheet or a decision support software package would ease the
comparison.

Create a four-column matrix. In column 1, list 10-20 books, films, operas, sports teams, or
whatever subject is of interest to you. Start at the top of the list and pick your best,
favorite, or highest choice, putting a “1” against it in column 2. Then choose your second
favorite and enter “2” in column 2 and so on until there is a number against each choice in
that column. This is an intuitive ranking.

Now start again at the top of the list in column 1. This time, choose which is the preferable
pick between items 1 and 2, then 1 and 3, then 1 and 4, and so on to the last item. Then

make your preferable picks between those labeled 2 and 3, 2 and 4, and so on. For each
pair, put a check mark in column 3 against the top pick. When you have finished this, add
up the check marks for each preferred pick and put the total in column 4. When you have



finished, column 4 cells will contain 1, 2, 3, 4, and so on, check marks. If there is a tie in
any of your choices, simply make a head-to-head comparison of the tied items. In column
4, enter a “1” for the row with the most check marks, a “2” for the second-highest number,
and so on. This fourth column represents your pairwise ranking.

There are many, well-founded psychological studies that show, among other things, that a
human can make judgments about 7 (plus or minus 2) items at the same time. Thus an
intuitive ranking with more than 10 items will tend to be inconsistent. However, by making
a comparison of each pair, you will generate a consistent ranking that gives a highly
reliable indicator of where each item ranks. Look at the results. Are your listings different?
Which is the most persuasive listing of your actual preferences—the intuitive ranking or
the pairwise ranking?

Using the principle of the comparison technique described above with identified problems
forms the problem space matrix (PSM). An actual PSM uses more than a single column of
judgment rankings—“Problem,” “Importance,” “Difficulty,” “Yield,” and “Final Rank,” for
example. Remember that the underlying ranking for each column is always based on the
pairwise comparison method described above.

Where there are many problem owners, that is, a number of people involved in describing
and evaluating the problem, the PSM uses a consensus ranking made from the individual
rankings for “Importance,” “Difficulty,” and “Yield.” For the column “Importance,” a ranking
is made to answer the question “Which of these two problems do you think is the most
important?” The column “Difficulty” ranks the question “Given the availability of data,
resources, and time, which of these two problems will be the easier to solve?” Similarly for
“Yield,” the question is “If you had a solution for each of these two problems, which is
likely to yield the most value to the company?” If there are special considerations in a
particular application, an additional column or columns might be used to rank those
considerations. For instance, you may have other columns that rank internal political
considerations, regulatory issues, and so on.

The “Final Rank” is a weighted scoring from the columns “Importance,” “Difficulty,” and
“Yield,” made by assigning a weight to each of these factors. The total of the weights must
add up to 1. If there are no additional columns, good preliminary weightings are

Importance 0.5
Difficulty 0.25
Yield 0.25

This is because “Importance” is a subjective weighting that includes both “Difficulty” and
“Yield.” The three are included for balance. However, discussion with the problem owners
may indicate that they feel “Yield,” for example, is more important since benefit to the



company outweighs the difficulty of solving the problem. Or it may be that time is a critical
factor in providing results and needs to be included as a weighted factor. (Such a column
might hold the ranks for the question, “Which of these two will be the quickest to solve?”)

The final ranking is made in two stages. First, multiplying the value in each column by the
weighting for that column creates a score. For this reason it is critical to construct the
guestions for each column so that the “best” answer is always the highest or the lowest
number in all columns. Whichever method you chose, this ranks the scores from highest
to lowest (or lowest to highest as appropriate).

If completed as described, this matrix represents the best selection and optimum ranking
of the problems to solve that can be made. Note that this may not be the absolute best
selection and ranking—just the best that can be made with the resources and judgments
available to you.

Generating real-world matrixes can become fairly complex, especially if there are many
problems and several problem owners. Making a full pairwise comparison of a real-world
matrix having many problems is usually not possible due to the number of comparisons
involved. For sizeable problems there are a number of ways of dealing with this
complexity. A good primer on problem exploration techniques is The Thinker’s Toolkit by
Morgan D. Jones (see Further Reading). This mainly focuses on decision making, but
several techniques are directly applicable to problem exploration.

Automated help with the problem ranking process is fairly easy to find. Any modern
computer spreadsheet program can help with the rankings, and several decision support
software packages also offer help. However, new decision support programs are
constantly appearing, and existing ones are being improved and modified, so that any list
given here is likely to quickly become out of date. As with most other areas of computer
software, this area is constantly changing. There are several commercial products in this
area, although many suitable programs are available as shareware. A search of the
Internet using the key words “decision support” reveals a tremendous selection. It is
probably more important that you find a product and method that you feel comfortable
with, and will actually use, than it is to focus on the particular technical merits of individual
approaches and products.

1.1.2 Stage 2: Exploring the Solution Space

After discovering the best mix of precisely defined problems to solve, and ranking them
appropriately, does the miner now set out to solve them? Not quite. Before trying to find a
solution, it helps to know what one looks like!

Typical outputs from simple data exploration projects include a selection from some or all
of the following: reports, charts, graphs, program code, listings of records, and algebraic
formulae, among others. What is needed is to specify as clearly and completely as



possible what output is desired (Figure 1.4). Usually, many of the problems share a
common solution.
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Figure 1.4 Exactly how does the output fit into the solution space?

For example, if there are a range of problems concerning fraudulent activity in branch
offices, the questions to ask may include: What are the driving factors? Where is the
easiest point in the system to detect it? What are the most cost-effective measures to stop
it? Which patterns of activity are most indicative of fraud? And so on. In this case, the
solution (in data exploration terms) will be in the form of a written report, which would
include a listing of each problem, proposed solutions, and their associated rankings.

If, on the other hand, we were trying to detect fraudulent transactions of some sort, then a
solution might be stated as “a computer model capable of running on a server and
measuring 700,000 transactions per minute, scoring each with a probability level that this
is fraudulent activity and another score for confidence in the prediction, routing any
transactions above a specific threshold to an operator for manual intervention.”

It cannot be emphasized enough that in the Solution Space Exploration stage, the
specified solution must be precise and complete enough that it actually specifies a
real-world, implementable solution to solve the problem. Keep in mind that this
specification is needed for the data exploration process, not data mining. Data mining
produces a more limited result, but still one that has to fit into the overall need.

A company involved in asset management of loan portfolios thought that they had made a
precise solution statement by explaining that they wanted a ranking for each portfolio
such that a rational judgment could be made as to the predicted performance. This
sounds like a specific objective; however, a specific objective is not a solution
specification.



The kind of statement that was needed was something more like “a computer program to
run on a Windows NT workstation terminal that can be used by trained operators and that
scores portfolios and presents the score as a bar graph . . .” and so on. The point here is
that the output of the data exploration process needed to be made specific enough so that
the solution could be practically implemented. Without such a specific target to aim at, it is
impossible to mine data for the needed model that fits with the business solution. (In
reality, the target must be expected to move as a project continues, of course. But the
target is still needed. If you don’t know what you’re aiming at, it’s hard to know if you’ve hit
it!)

Another company wanted a model to improve the response to their mailed catalogs.
Discovering what they really needed was harder than creating the model. Was a list of
names and addresses needed? Simply a list of account numbers? Mailing labels
perhaps? How many? How was response to be measured? How was the result to be
used? It may seem unlikely, but the company had no clear definition of a deliverable from
the whole process. They wanted things to improve in general, but would not be pinned
down to specific objectives. It was even hard to determine if they wanted to maximize the
number of responses for a given mailing, or to maximize the value per response. (In fact,
it turned out—after the project was over—that what they really wanted to do was to
optimize the value per page of the catalog. Much more effective models could have been
produced if that had been known in advance! As it was, no clear objective was defined, so
the models that were built addressed another problem they didn’t really care about.)

The problems and difficulties are compounded enormously by not specifying what
success looks like in practice.

For both the problem and the solution exploration it is important to apply ambiguity
resolution. This is the technique that is used to test that what was conceived as a problem
is what was actually addressed. It also tests that what is presented as a solution is what
was really wanted by the problem owners. Ambiguity resolution techniques seek to
pinpoint any misunderstandings in communication, reveal underlying assumptions, and
ensure that key points and issues are understood by everyone involved. Removing
ambiguity is a crucial element in providing real-world data exploration.

1.1.3 Stage 3: Specifying the Implementation Method

At this point, problems are generated and ranked, solutions specified, expectations and
specifications matched, and hidden assumptions revealed.

However, no data exploration project is conducted just to discover new insights. The point
is to apply the results in a way that increases profitability, improves performance,
improves quality, increases customer satisfaction, reduces waste, decreases fraud, or
meets some other specified business goal. This involves what is often the hardest part of
any successful data exploration project—maodifying the behavior of an organization.



In order to be successful, it is not enough to simply specify the results. Very successful
and potentially valuable projects have died because they were never seriously
implemented. Unless everyone relevant is involved in supporting the project, it may not be
easy to gain maximum benefit from the work, time, and resources involved.

Implementation specification is the final step in detailing how the various solutions to
chosen problems are actually going to be applied in practice. This details the final form of
the deliverables for the project. The specification needs to be a complete practical
definition of the solution (what problem it addresses, what form it takes, what value it
delivers, who is expected to use it, how it is produced, limitations and expectations, how
long it is expected to last) and to specify five of the “six w’s”: who, how, what, when, and
where (why is already covered in the problem specification).

It is critical at this point to get the “buy-in” of both “problem owners” and “problem holders.”
The problem owners are those who experience the actual problem. The problem holders
are those who control the resources that allow the solution to be implemented. The
resources may be in one or more of various forms: money, personnel, time, or corporate
policy, to name only a few. To be effective, the defined solution must be perceived to be
cost-effective and appropriate by the problem holder. Without the necessary commitment
there is little point in moving further with the project.

1.1.4 Stage 4: Mining the Data

Geological mining (coal, gold, etc.) is not carried out by simply applying mining equipment
to a lump of geology. Enormous preparation is made first. Large searches are made for
terrain that is geologically likely to hold whatever is to be mined. When a likely area is
discovered, detailed surveys are made to pinpoint the most likely location of the desired
ore. Test mines are dug before the full project is undertaken; ore is assayed to determine
its fineness. Only when all of the preparation is complete, and the outcome of the effort is
a foregone conclusion, is the full-scale mining operation undertaken.

So it should be with mining data. Actually mining the data is a multistep process. The first
step, preparation, is a two-way street in which both the miner is prepared and the data is
prepared. It is not, and cannot be, a fully autonomous process since the objective is to
prepare the miner just as much as it is to prepare the data. Much of the actual data
preparation part of this first and very important step can be automated, but miner
interaction with the data remains essential. Following preparation, the survey. For
effective mining this too is most important. It is during the survey that the miner
determines if the data is adequate—a small statement with large ramifications, and more
fully explored in Chapter 11.

When the preparation and survey are complete, actually modeling the data becomes a
relatively small part of the overall mining effort. The discovery and insight part of mining



comes during preparation and surveying. Models are made only to capture the insights
and discoveries, not to make them. The models are built only when the outcome is a
foregone conclusion.

Preparing the Data for Modeling

Why prepare data? Why not just take it as it comes? The answer is that preparing data
also prepares the miner so that when using prepared data, the miner produces better
models, faster.

Activities that today come under the umbrella of the phrase “data mining” actually have
been used for many years. During that time a lot of effort has been put forth to apply a
wide variety of techniques to data sets of many different types, building both predictive
and inferential models. Many new techniques for modeling have been developed over that
time, such as evolution programming. In that same time other modeling tools, such as
neural networks, have changed and improved out of all recognition in their capabilities.
However, what has not changed at all, and what is almost a law of nature, is
GIGO—qgarbage in, garbage out. Keeping that now-popular aphorism firmly in mind leads
logically to the observation that good data is a prerequisite for producing effective models

of any type.

Unfortunately, there is no such thing as a universal garbage detector! There are, however,
a number of different types of problems that constantly recur when attempting to use data
sets for building the types of models useful in solving business problems. The source,
range, and type of these problems, the “GI” in GIGO, are explored in detail starting in
Chapter 4. Fortunately, there are a number of these problems that are more or less easily
remedied. Some remedies can be applied automatically, while others require some
choices to be made by the miner, but the actual remedial action for a wide range of
problems is fairly well established. Some of the corrective techniques are based on
theoretical considerations, while others are rules of thumb based on experience. The
difficulty is in application.

While methodologies and practices that are appropriate for making models using various
algorithms have become established, there are no similar methodologies or practices for
using data preparation techniques. Yet good data preparation is essential to practical
modeling in the real world.

The data preparation tools on the accompanying CD-ROM started as a collection of
practical tools and techniques developed from experience while trying to “fix” data to build
decent models. As they were developed, some of them were used over and over on a
wide variety of modeling projects. Their whole purpose was to help the miner produce
better models, faster than can be done with unprepared data, and thus assure that the
final user received cost-effective value. This set of practical tools, in the form of a
computer program, and a technique of applying the program, must be used together to



get their maximum benefit, and both are equally important. The accompanying
demonstration software actually carries out the data manipulations necessary for data
preparation. The technique is described as the book progresses. Using this technique
results in the miner understanding the data in ways that modeling alone cannot reveal.
Data preparation is about more than just readying the data for application of modeling
tools; it is also about gaining the necessary insights to build the best possible models to
solve business problems with the data at hand.

One objective of data preparation is to end with a prepared data set that is of maximum
use for modeling, in which the natural order of the data is least disturbed, yet that is best
enhanced for the particular purposes of the miner. As will become apparent, this is an
almost totally different sort of data preparation activity than is used, say, in preparing data
for data warehousing. The objective, techniques, and results used to prepare data when
mining are wholly different.

The Prepared Information Environment (PIE)

A second objective of data preparation is to produce the Prepared Information
Environment (PIE). The PIE is an active computer program that “envelops” the modeling
tools to protect them from damaged and distorted data. The purpose and use of this very
important tool in modeling is more fully described in Chapter 3. Its main purposes are to
protect the modeling tool from damaged data and to maximally expose the data set’s
information content to the modeling tool. One component, the Prepared Information
Environment Input module (PIE-I) does this by acting as an intelligent buffer between the
incoming data, manipulating the training, testing, and execution data sets before the
modeling tool sees the data. Since even the output prediction variables are prepared by
the PIE-I, any model predictions are predictions of the prepared values. The predictions of
prepared values need to be converted back into their unmodified form, which is done by
the Prepared Information Environment Output module (PIE-O).

A clear distinction has to be made between the training and testing data set, and the
execution data set. On some occasions the training, testing, and execution data sets may
all be drawn from the same “pool” of data that has been assembled prior to modeling. On
other occasions the execution data may be impossible to obtain at the time of modeling.
In the case of industrial modeling, for instance, it may be required to build a model that
predicts likely time to failure for a manufactured component based on the manufacturing
information collected as it is manufactured. The model, when built, validated, and verified,
will be placed in service to monitor future production. However, at the time the model is
being built, using already collected data, the data on next month’s or next year’s
production is impossible to acquire. The same is true for stock market data, or insurance
claims data, for instance, where the model is built on data already collected, but applied to
future stock movements or insurance claims.

In the continuously learning model described in the Supplemental Material section at the
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end of this chapter, the actual data to be used for mailing was not available until it was
acquired specifically for the mailing. The model built to predict likely responders to the
mailing solicitation was built before the mailing data was available. The initial mailing
response model was built on information resulting from previous mailings. It was known
that the characteristics of the variables (described in Chapter 2) for the training data that
was available were similar to those in the actual mailing data set—even though the
precise data set for the mailing had not been selected.

In general, preparation of the data for modeling requires various adjustments to be made
to the data prior to modeling. The model produced, therefore, is built using adjusted,
prepared data. Some mechanism is needed to ensure that any new data, especially data
to which the model is to be applied, is also adjusted similarly to the training data set. If this
is not done, the model will be of no value as it won’t work with raw data, only with data
similarly prepared to that used for training.

It is the PIE that accomplishes this transformation. It may perform many other useful tasks
as well, such as novelty detection, which measures how similar the current data is to that
which was used for training. The various tasks and measures are discussed in detail in
various parts of the book. However, a principal purpose of the PIE is to transform
previously unencountered data into the form that was initially used for modeling. (This is
done by the PIE-I.)

Notable too is that a predictive model’s output variable(s), the one(s) that the model is
trying to predict or explain, will also have been in its adjusted format, since the model was
trying to predict or explain it in a prepared data set. The PIE also will transform the
prepared and normalized model output into the experiential range encountered in the data
before preparation—in other words, it undoes the transformations for the predicted values
to get back the original range and type of values for the predicted output. (This is
accomplished by the PIE-O.)

While the PIE adds great value in many other areas, its main function is allowing models
trained on prepared data to be used on other data sets.

For one-shot modeling, where all of the data to be modeled and explained is present, the
PIE’s role is more limited. It is simply to produce a file of prepared data that is used to
build the model. Since the whole of the data is present, the role of the PIE is limited to
translating the output variables from the predicted adjusted value to their predicted actual

expected value. @

Thus, the expected output from the data preparation process is threefold: first, a prepared
miner, second, a prepared data set, and third, the PIE, which will allow the trained model
to be applied to other data sets and also performs many valuable ancillary functions. The
PIE provides an envelope around the model, both at training and execution time, to
insulate the model from the raw data problems that data preparation corrects.
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Surveying the Data

Surveying the prepared data is a very important aspect of mining. It focuses on answering
three questions: What's in the data set? Can | get my questions answered? Where are the
danger areas? These questions may seem similar to those posed by modeling, but there

is a significant difference.

Using the survey to look at the data set is different in nature from the way modeling
approaches the data. Modeling optimizes the answer for some specific and particular
problem. Finding the problem or problems that are most appropriate is what the first stage
of data exploration is all about. Providing those answers is the role of the modeling stage
of data mining. The survey, however, looks at the general structure of the data and
reports whether or not there is a useful amount of information enfolded in the data set
about various areas. The survey is not really concerned with exactly what that information
might be—that is the province of modeling. A most particular purpose of the survey is to
find out if the answer to the problem that is to be modeled is actually in the data prior to
investing much time, money, and resource in building the model.

The survey looks at all areas of the data set equally to make its estimate of what
information is enfolded in the data. This affects data preparation in that such a survey may
allow the data to be restructured in some way prior to modeling, so that it better addresses
the problem to be modeled.

In a rich data set the survey will yield a vast amount of insight into general relationships
and patterns that are in the data. It does not try to explicate them or evaluate them, but it
does show the structure of the data. Modeling explores the fine structure; survey reveals
the broad structure.

Given the latter fact, the search for danger areas is easier. An example of a danger area
is where some bias is detectable in the data, or where there is particular sparsity of data
and yet variables are rapidly changing in value. In these areas where the relationship is
changing rapidly, and the data do not describe the area well, any model’s performance
should be suspect. Perhaps the survey will reveal that the range in which the model
predictions will be important is not well covered.

All of these areas are explored in much more detail in Chapter 11, although the
perspective there is mainly on how the information provided by the survey can be used for
better preparing the data. However, the essence of the data survey is to build an overall
map of the territory before committing to a detailed exploration. Metaphorically speaking,
it is of immense use to know where the major mountain ranges, rivers, lakes, and deserts
are before setting off on a hiking expedition. It is still necessary to make the detailed
exploration to find out what is present, but the map is the guide to the territory.
Vacationers, paleontologists, and archeologists all use the same basic topographic map
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to find their way to sites that interest them. Their detailed explorations are very different
and may lead them to each make changes to the local, or fine, structure of their individual
maps. However, without the general map it would be impossible for them to find their way
to likely places for a good vacation site, dinosaur dig, or an ancient city. The general
map—the data survey—shows the way.

Modeling the Data

When considering data mining, even some of the largest companies in the U.S. have
asked questions whose underlying meaning was, “What sort of problems can | solve with
a neural net (or other specific technique)?” This is exactly analogous to going to an
architect and asking, “What sort of buildings can | build with this power saw (or other tool
of your choice)?” The first question is not always immediately seen as irrelevant, whereas
the second is.

Some companies seem to have the impression that in order to produce effective models,
knowledge of the data and the problem are not really required, but that the tools will do all
the work. Where this myth came from is hard to imagine. It is so far from the truth that it
would be funny if it were not for the fact that major projects have failed entirely due to
ignorance on the part of the miner. Not that the miner was always at fault. If ordered to
“find out what is in this data,” an employee has little option but to do something. No one
who expected to achieve anything useful would approach a lump of unknown substance,
put on a blindfold, and whack at it with whatever tool happened to be at hand. Why this is
thought possible with data mining tools is difficult to say!

Unfortunately, focusing on the data mining modeling tools as the primary approach to a
problem often leads to the problem being formulated in inappropriate ways. Significantly,
there may be times when data mining tools are not the right ones for the job. It is worth
commenting on the types of questions that are particularly well addressed with a
data-mined model. These are the questions of the “How do | .. . ?” and “Why is it

that ... ?” sort.

For instance, if your questions are those that will result in summaries, such as “What were
sales in the Boston branch in June?” or “What was the breakdown by shift and product of
testing failures for the last six weeks?” then these are questions that are well addressed
by on-line analytical processing (OLAP) tools and probably do not need data mining. If
however, the questions are more hypothesis driven, such as “What are the factors driving
fraudulent usage in the Eastern sector?” or “What should be my target markets and what
is the best feature mix in the marketing campaign to capture the most new customers?”
then data mining, used in the context of a data exploration process, is the best tool for the
job.

1.1.5 Exploration: Mining and Modeling



This brief look at the process of data exploration emphasizes that none of the pieces stands
alone. Problems need to be identified, which leads to identifying potential solutions, which
leads to finding and preparing suitable data that is then surveyed and finally modeled. Each
part has an inextricable relationship to the other parts. Modeling, the types of tools and the
types of models made, also has a very close relationship with how data is best prepared, and
before leaving this introduction, a first look at modeling is helpful to set the frame of
reference for what follows.

1.2 Data Mining, Modeling, and Modeling Tools

One major purpose for preparing data is so that mining can discover models. But what is
modeling? In actual fact, what is being attempted is very simple. The ways of doing it may
not be so simple, but the actual intent is quite straightforward.

It is assumed that a data set, either one immediately available or one that is obtainable,
might contain information that would be of interest if we could only understand what was
in it. Therein lies the rub. Since we don’'t understand the information that is in the data just
by looking at it, some tool is needed that will turn the information enfolded in the data set
into a form that is understandable. That’s all. That’s the modeling part of data mining—a
process for transforming information enfolded in data into a form amenable to human
cognition.

1.2.1 Ten Golden Rules

As discussed earlier in this chapter, the data exploration process helps build a framework

for data mining so that appropriate tools are applied to appropriate data that is

appropriately prepared to solve key business problems and deliver required solutions.

This framework, or one similar to it, is critical to helping miners get the best results and

return from their data mining projects. In addition to this framework, it may be helpful to

keep in mind the 10 Golden Rules for Building Models:

1. Select clearly defined problems that will yield tangible benefits. @

2. Specify the required solution. E]

3. Define how the solution delivered is going to be used. @

4. Understand as much as possible about the problem and the data set (the domain). @
5. Let the problem drive the modeling (i.e., tool selection, data preparation, etc.). @

6. Stipulate assumptions. @

7. Refine the model iteratively. @
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8. Make the model as simple as possible—but no simpler. @

9. Define instability in the model (critical areas where change in output is drastically

S

10. Define uncertainty in the model (critical areas and ranges in the data set where the
model produces low confidence predictions/insights). @

different for a small change in inputs).

In other words, rules 1-3 recapitulate the first three stages of the data exploration
process. Rule 4 captures the insight that if you know what you're doing, success is more
likely. Rule 5 advises to find the best tool for the job, not just a job you can do with the
tool. Rule 6 says don’t just assume, tell someone. Rule 7 says to keep trying different
things until the model seems as good as it’s going to get. Rule 8 means KISS (Keep It
Sufficiently Simple). Rules 9 and 10 mean state what works, what doesn’t, and where
you’re not sure.

To make a model of data is to express the relationships that change in one variable, or set
of variables, has on another variable or set of variables. Another way of looking at it is that
regardless of the type of model, the aim is to express, in symbolic terms, the shape of how
one variable, or set of variables, changes when another variable or set of variables
changes, and to obtain some information about the reliability of this relationship. The final
expression of the relationship(s) can take a number of forms, but the most common are
charts and graphs, mathematical equations, and computer programs. Also, different
things can be done with each of these models depending on the need. Passive models
usually express relationships or associations found in data sets. These may take the form
of the charts, graphs, and mathematical models previously mentioned. Active models take
sample inputs and give back predictions of the expected outputs.

Although models can be built to accomplish many different things, the usual objective in
data mining is to produce either predictive or explanatory (also known as inferential)
models.

1.2.2 Introducing Modeling Tools

There are a considerable variety of data mining modeling tools available. A brief review of
some currently popular techniques is included in Chapter 12, although the main focus of
that chapter is the effect of using prepared data with different modeling techniques.
Modeling tools extend analysis into producing models of several different types, some
mentioned above and others examined in more detail below.

Data mining modeling tools are almost uniformly regarded as software programs to be run
on a computer and that perform various translations and manipulations on data sets.
These are indeed the tools themselves, but it does rather leave out the expertise and


chenliangA
Note
让模型尽可能的简单

chenliangA
Note
定义模型中的不稳定性（输入的一点小变化就会剧烈改变输出结果的关键区域）

chenliangA
Note
定义模型的不确定性（模型产生低可信度的预测或者洞察的关键区域或范围）

chenliangA
Highlight

chenliangA
Highlight


domain knowledge needed to successfully use them. In any case, there are a variety of
support tools that are also required in addition to the so-called data mining tools, such as
databases and data warehouses, to name only two obvious examples. Quite often the
results of mining are used within a complex and sophisticated decision support system.
Close scrutiny often makes problematic a sharp demarcation between the actual data
mining tools themselves and other supporting tools. For instance, is presenting the results
in, say, an OLAP-type tool part of data mining, or is it some other activity?

In any case, since data mining is the discovery of patterns useful in a business situation,
the venerable tools of statistical analysis may be of great use and value. The demarcation
between statistical analysis and data mining is becoming somewhat difficult to discern
from any but a philosophical perspective. There are, however, some clear pointers that
allow determination of which activity is under way, although the exact tool being used may
not be indicative. (This topic is also revisited in Chapter 12.)

Philosophically and historically, statistical analysis has been oriented toward verifying and
validating hypotheses. These inquiries, at least recently, have been scientifically oriented.
Some hypothesis is proposed, evidence gathered, and the question is put to the evidence
whether the hypothesis can reasonably be accepted or not. Statistical reasoning is
concerned with logical justification, and, like any formal system, not with the importance or
impact of the result. This means that, in an extreme case, it is quite possible to create a
result that is statistically significant—and utterly meaningless.

It is fascinating to realize that, originally, the roots of statistical analysis and data mining
lie in the gaming halls of Europe. In some ways, data mining follows this heritage more
closely than statistical analysis. Instead of an experimenter devising some hypothesis and
testing it against evidence, data mining turns the operation around. Within the parameters
of the data exploration process, data mining approaches a collection of data and asks,
“What are all the hypotheses that this data supports?” There is a large conceptual
difference here. Many of the hypotheses produced by data mining will not be very
meaningful, and some will be almost totally disconnected from any use or value. Most,
however, will be more or less useful. This means that with data mining, the inquirer has a
fairly comprehensive set of ideas, connections, influences, and so on. The job then is to
make sense of, and find use for, them. Statistical analysis required the inquirer first to
devise the ideas, connections, and influences to test.

There is an area of statistical analysis called “exploratory data analysis” that approaches
the previous distinction, so another signpost for demarcation is useful. Statistical analysis
has largely used tools that enable the human mind to visualize and quantify the
relationships existing within data in order to use its formidable pattern-seeking
capabilities. This has worked well in the past. Today, the sheer volume of data, in
numbers of data sets, let alone quantity of data, is beyond the ability of humans to sift for
meaning. So, automated solutions have been called into play. These automated solutions
draw largely on techniques developed in a discipline known as “machine learning.” In



essence, these are various techniques by which computerized algorithms can, to a
greater or lesser degree, learn which patterns actually do exist in data sets. They are not
by any means as capable as a trained human mind, educated in the knowledge domain,
would be. They are, however, formidably fast (compared to humans), tireless, consistent,
and error-free for a particular class of errors. They are error-free in the sense that, once
validated that they are indeed performing accurately, the output is consistent. Judgments
about what the outputs mean remain firmly in the human domain. That is to say, while
decisions as to particular actions to be taken under given circumstances can be
programmed algorithmically, humans had to either explicitly program such switch points
or permit the program to train and learn them. No amount of artificial intelligence reaches
the level of sophistication represented by even human stupidity! In fact, appearances to
the contrary, computer programs still cannot make self-motivated, intentional decisions.

Regardless of their source and how they are used (or misused), the function and purpose
of modeling tools is actually very straightforward. It is to transform any of the required
knowledge enfolded in a particular data set into a form useful to, or comprehensible by,
humans. It may be both useful and comprehensible, but this is not necessarily so.

In marketing applications, for instance, models often have to be created where
comprehensibility is not an issue. The marketing manager simply wants a model that
delivers more, or more valuable, leads, customers, or orders. Why such a model works is
not an issue, at least not until someone asks, “Why does that market segment produce
better results?” A specific instance of this occurred with a company concerned with
providing college students with funding to attend college. It had long been their practice to
mail solicitations to people they felt would be appropriate candidates somewhat before the
end of the school year, assuming that was the time when people were considering which
college to attend and applying for financial aid. In order to investigate this further,
marketing response models were made with a variety of their assumptions altered for a
small subset of the mailing. Analysis of the results indicated strongly that mailing
immediately following the end of the school year showed a stronger response. This
seemed so counterintuitive to the marketers that they found it hard to accept and
immediately asked why this was so. At this point a variety of different models drawing on
different data sets had to be built to explore the question. (It turned out that, for the
population segment for which this response was valid, colleges were explored first and
the earlier solicitation had been thrown away as unwanted “junk mail” by the time financial
aid for school was being considered. Early mailing meant that they weren’t in the running
for that segment of the population.)

This leads to consideration of the types of models that are used.

1.2.3 Types of Models

After conducting a data exploration project and stipulating the problem set, solution set,
and implementation strategies, preparing the data, surveying it, then selecting algorithms



for the purpose, there still remains the process of building models and delivering the
results.

First, a brief observation about modeling in general. A misconception of inexperienced
modelers is that modeling is a linear process. This imagined linear process can be shown
as

1. State the problem.

2. Choose the tool.

3. Get some data.

4. Make a model.

5. Apply the model.

6. Evaluate results.

On the contrary, building any model should be a continuous process incorporating several
feedback loops and considerable interaction among the components. Figure 1.5 gives a
conceptual overview of such a process. At each stage there are various checks to ensure
that the model is in fact meeting the required objectives. It is a dynamic process in which

various iterations converge toward the best solution. There is naturally a fair amount of
human interaction and involvement in guiding the search for an optimum solution.

Figure 1.5 Model building outline.

The various types of models were briefly touched on previously, but discussing them



together helps clarify their similarities and differences.

1.2.4 Active and Passive Models

Basically, active models actually respond in some way, whereas passive models are
nonreactive.

Passive models generally answer questions and show relationships using charts, graphs,
words, mathematical formulae, and so on. The example above describing why some
college applicants respond better to late mailings was a passive model. It explicated in an
understandable way the “why” of the relationship. It was “actionable information” in that,
as a result, better marketing plans can be made and characteristics of the targeted
population can be identified. A model is passive in that it does not take inputs, give
outputs, change, react, or modify anything as it is used. It is simply a fixed expression,
such as a statement on a piece of paper.

On the other hand, an active model performs one or more activities. An active model built
for the college loan application, for instance, might take a specific input file and score or
categorize it as to the type of response to be expected for each instance (record) in the
file.

The differentiation between active and passive models may be critical to the modeler and
to the application. It will have a considerable effect on which data is selected for modeling.
However, when preparing the selected data set, the difference between active and
passive model requirements has little if any impact on how the data is further prepared for
modeling.

1.2.5 Explanatory and Predictive Models

Here, of course, the one type of model is created to explain some facet of the data, while
the other is designed to predict, classify, or otherwise interpret data. These are not
synonymous with active and passive.

On occasion, particularly in the arena of industrial automation, the required output from
the modeling process is a passive, predictive model. For instance, in a paper mill, where
paper is made, the key parts of the process were captured in the shift foreman’s
experience. At shift change, the new foreman, who had enormous experience, would
make various adjustments based on such measures as the taste of the process (actually
tasting the slurry as a means of measuring what was happening in the mixture) at a
particular stage. Each foreman knew how to tune the process to produce fine paper. Each
foreman knew what was going wrong when indeed things were going wrong, and how to
fix them. Yet each foreman’s recipe was different!

The business problem here was that automating such a process seemed impossible. The
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“rules” for making paper were embedded in the shift foremen’s heads, and extracting a
useful set of rules by questioning them, although tried, proved impossible. Instead of
studying the experts (shift foremen), the modeling approach was to instrument the paper
mill, collect data about the process, analyze the collected data, and model the process.
This type of approach is called automated expertise capture. This process involves
watching and modeling what an expert actually does rather than questioning the expert to
create a model.

It took considerable effort, but eventually successful passive predictive models were
produced in the form of mathematical statements. These mathematical statements
described how the process behaved, and how its behavior changed as conditions
changed. To automate the paper-making process, these mathematical statements were
turned into a particular sort of programming language called “ladder logic,” which is widely
used in programmable logic controllers (PLCs). The passive, explanatory model was used
to create the program for the PLCs. It essentially captured the expertise of the foremen
and encapsulated it in succinct expressions. These, in turn, were used in machine and
process automation.

Without giving detailed examples of each model type (which would properly belong in a
book on modeling rather than data preparation), it can be easily seen that it is quite
possible to have active-explanatory, passive-explanatory, active-predictive, or
passive-predictive models.

Passive-predictive models can be exemplified in the “score cards” used to score certain
credit applicants. These are really worksheets that loan officers can use. Modeling
techniques have been used to improve the performance of such devices. The output is a
fixed, passive worksheet printed on a form. It is, nonetheless, used as a predictive and
classification tool by the user. However, note that the output of the modeling technique
used is passive predictive.

1.2.6 Static and Continuously Learning Models

This is an interesting and important division of modeling that deserves a closer look,
particularly the continuously learning models. These hold enormous promise for the
application of the sophisticated techniques outlined here.

Static (One-Shot) Models

Static modeling is used to discover relationships or answer questions that are drawn from
historical data. In point of fact, all data is historical. (If you have future data about, say, the
stock market, please let me know!) However, in this context “historical” data can be taken
to mean that the data set from which the model is built is not going to be updated with
more current data. Questions leading to the building of static models might be similar to
“What factors drive the failure modes in disk drive manufacture?” Once the failure modes


chenliangA
Highlight


in manufacturing are analyzed, corrective action will be applied to fix problems, and that’s
that. Naturally, the process will be monitored to find out how well the “fix” worked, but the
data previously collected is no longer representative of production since changes were
made based on the failure mode’s driving factors. If any further investigation into the
problem is wanted, the historical data cannot address the new issues as systemic
changes were made. New data representative of the modified system’s performance
would have to be collected.

Although pursuing answers to problems requiring static models can be a fairly complex
undertaking and draw on the full resources of the tools available, as well as heavily relying
on the experience of the modeler, producing the static models themselves is fairly
straightforward. An answer in a fixed form, one that does not interact with data to modify
itself, is the final solution.

Inexperienced modelers frequently see the static model, or a series of static models, as
how modeling should take place. While static models are certainly an appropriate solution
for many problems, they are very prevalent even where more extensive techniques are
more appropriate. We will now examine one alternative.

Continuously Learning Models

These types of models represent a relatively hands-off, controlling, or discovering process
working in dynamic conditions. Constructing a robust continuously learning model draws
on resources from outside the domain of data exploration. The core, or enabling,
technology, however, is data mining directed by the data exploration process.

Continuous learning is a system using an autonomous model containing a number of
internal set points. One natural example of such a system is a human being. We contain
many set points that control our behavior, one of which is internal temperature. The
internal temperature of a healthy human being is estimated at about 98.6° Fahrenheit.
That temperature may be regarded as a set point. Our bodies seek to maintain a constant
internal temperature in spite of external assaults. We may be motivated to make a number
of internal and external environmental adjustments to, say, keep warm when the external
temperature is falling. These include turning up the thermostat, putting on more clothes,
shivering, having a hot drink, and possibly a whole host of other activities. All the time
we’re actively manipulating the environment, both internal and external, to maintain the
specific set point for internal temperature. It is exactly this type of behavior that is used in
an artificially constructed, but still self-motivated model.

In artificial continuously learning systems, the primary set points are always externally
specified; natural continuously learning systems may evolve suitable set points. The

system evaluates incoming data and modifies its behavior in such a way as to modify
those parameters of its environment that are more or less under its control so that the
system maintains the set points. It is a self-adaptive system adjusting in real time to a



dynamic environment. It is continuously changing its internal structure to reflect its past
experiences, and using those past experiences to modify its environment. If a
continuously learning predictive model was given an identical input at different times, it
may well produce totally different predictions—depending on what it had experienced,
and the changes in its environment, in the interim. This is very different from a
sequentially updated series of static models. The key is a continuous interaction between
components.

As far as data preparation is concerned, the preparatory activities carried out when
making static models tend to be manual. When continuously learning systems are
deployed, however, the PIE that permits continuous, automated data preparation
becomes a vital part of the whole process.

The easiest way to see what is involved in a continuously learning model is to examine a
simplified actual application, and the Supplemental Material section at the end of this chapter
briefly outlines a simplified application using a continuously learning model.

1.3 Summary

When discussing data mining, it is easy to think of the process only in terms of what
various tools can do. This is exactly analogous to focusing on types of nails and what to
do with them simply because a hammer collection is available. For sure, we will do
different things with a 6-ounce ball-peen hammer, a 12-ounce claw hammer, and a
14-pound sledgehammer. However, the object of the exercise may be to knock down a
wall, construct a house, repair a car door, or drive a railroad spike. It is the nature of the
job to be done that determines which tool to use—not the other way around. So it is too
with data mining. To obtain effective results when mining, focusing on the tools is not
enough. This chapter has looked from the “100,000-foot level” at the whole process of
data exploration, giving a perspective of where data mining fits within the process, and
how data preparation, modeling, and the other components of mining interact. Because
modeling is so closely connected with data preparation, the chapter introduced various
types of models commonly produced by miners.

The key point is that data mining does not exist independently of the business problems that
it needs to solve. Data mining exists to serve needs, in general the needs of a business user.
The first thing to focus on is the business problem—what is the real problem, what does

success look like? When that is established, then and only then is it time to select data and
tools appropriate for the job.

Supplemental Material

A Continuously Learning Model Application

A major credit card issuer in the United States wanted to try innovative and more effective
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approaches for a solicitation program aimed at acquiring new customers. Several routes
to market, including telemarketing and “take-one” programs, were used as well as direct
mail. Additional marketing promotions, solicitations, and offer structures were included in
the overall program, including balance transfer, affinity group marketing, and a variety of
rates and payment terms. Most of this detail will not be included in this description.
Although continuously learning models were used in all aspects of the solicitation, for
clarity we will focus only on the direct mail portion. Before describing how a continuously
learning model was built for this customer, it will be helpful to have a brief introduction to
the significant considerations in credit card solicitations.

Typically, a marketing solicitation program without continuously learning techniques
involves selecting the mailing list, producing the mail piece, making a bulk mailing,
receiving the responses, entering the responses, and approving or declining each
responding applicant. In essence, the bulk of the mailing goes out all together as far as
that is possible. In practice the mailing is usually of such quantity that it is often spread
over a number of days.

Since the mailing goes out, in effect, all at once, the response quickly builds to a
maximum and then gradually tails off to a trickle. The sudden influx of responses
necessitates hiring temporary staff, and renting office space and equipment for the staff,
to cope with the sudden data entry workload. Federal requirements put great pressure on
credit card issuers to “decision” an application—that is, to approve or decline the
applicant—within a very short time period or face heavy financial penalties. The
“decisioning” process involves studying credit references on all applicants, with the
reference information almost invariably obtained from outside vendors. However, credit
reference information can only legally be obtained for people who are actually offered
credit.

Furthermore, the national average response rate for an unsolicited mailing program is well
under 3%. The approve/decline rate is difficult to generalize since usually a variety of
groups are targeted and the approve/decline rate varies enormously depending on the
group actually targeted. It was estimated that at the time of this program it cost about
$140 to acquire a new credit card customer by direct mail.

How the Continuously Learning Model Worked

The initial reaction of the company when approached with a discussion of the possibilities
of data exploration was to say that they knew all about data mining, as they had bought a
neural network package and one of their business analysts had built a model, but it didn’t
work in their market. Fortunately, they were persuaded to consider the power of data
exploration, not simply to mistake it for a PC-based neural network tool.

For the purposes of this explanation it is not necessary to examine the problem and
solution explorations. Suffice it to say that the credit card issuer was interested in reducing



the overall cost of the program, lowering the cost per acquisition, and improving the
quality of the applicants and users in ways that are discussed during the course of this
example.

An advantage of the traditional system of making a massive bulk mailing is that maximum
return is felt shortly after the start date of the program. The bulk of new users who are
going to respond typically have their credit cards activated within 60 days of program
commencement. As discussed, this requires a considerable investment in temporary staff
and facilities. The credit card issuer was willing to forgo this quick return for the proposed
system that was designed to produce a steady stream of applicants at a preselected rate.
The constancy in application level removed the need for, and cost of, temporary staff and
facilities, allowing existing staff to cope with the flow rate. It also removed the sudden
pressure on the “decisioning” process and additionally permitted the mailing to be
routinized. Over the length of the program these changes alone saved a considerable
amount of money for the card issuer.

Although it was conceived as a whole, we will consider the simplified pieces of the
continuously learning system as they become relevant. The system as a whole is larger
than the model itself since the whole system also includes the environment in which the
model operates. The system starts with what was labeled the “slush pile.”

As was mentioned above, credit reference information can only be obtained for those
people to whom credit is actually offered. In order that certain information can be obtained
about people that the credit card company may wish to offer credit to, but has not yet
done so, a method of “reservation numbers” was devised. Using this system, most of the
information pertaining to a particular candidate (instance) is made available, but not the
information about who it is. Thus you might know details such as education level, credit
balance, number of children, marital status, and possibly well over 100 or more other
demographic and sociographic measures. What you cannot know until an offer is made is
name and address information, which makes it impossible to attach a record to an
individual. In place of the missing information a unique key was supplied; called the
“reservation number,” it allowed the credit information vendor to supply the relevant
information when an offer of credit was to be made. The important point here is that it was
possible to know a great deal about the population of potential new customers, but not to
know specifically who they were until an offer was made. The information about the
population was truly anonymous.

The slush pile consisted of a large number of records (instances) of credit information
identified by reservation number. The pool was maintained with a minimum of about
1,000,000 records. As the records (instances) were “used,” that is, they had been
selected and a solicitation made to them, the appropriate record was removed from the
slush pile and replaced with a new, unsolicited credit record.

The continuously learning solicitation system began with the mailing process. A lot of
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preparatory work was needed to build a PIE. A result of the data preparation process, the
PIE is a model of the data that allows new data drawn from the same population that was
used to create the model to be transformed in “real time” into a form appropriate to be
modeled. Its purpose is to convert raw data into the selected form after manual
involvement in data preparation has been completed. The PIE for this application was
built from credit information similar to, but not used in, this application.

Since there was no history of performance, the initial action was to make a random
selection from the slush pile for the initial mailing. However, once responses from the
initial mailing were received, it immediately became possible to begin building a model of
who was likely to respond to the solicitation.

Information about who had actually responded to the mailing was entered into a table.
Using the information about who had been solicited and who had responded, a fully
automatic modeling process built models segmenting those attributes most indicative of a
response to the mailing. The key features of the continuously learning system were that
modeling was fully automatic—with no human operator involvement—and that the
response was automatically optimized based on feedback information. One of the set
points was externally fixed within the system—that is, the number of responses required.
Another set point was variable and selected for optimization—that is, response rate as a
percentage of solicitations. The environmental parameters under the “control” of this
piece of the system included the selection criteria from the slush pile—that is, the
characteristics of the person to whom the offer was made. Also included in the
environment was which offer to make from the variety available. Thus, optimal cross-sell
of additional products was automatically built in. The system, on receiving feedback
information about response, used the information to update its model of the current
driving factors—that is, what was working best at that instant, incorporating changes
produced by competing offers, market dynamics, or social changes in the real world.

Fully automatic selection of the next batch to be mailed was made by the system based
on the response model generated from previous mailings. The system automatically
adjusted the number of solicitations to be mailed, based upon response levels, so that the
right number of responses came back to meet the target selected in the project objectives.

The next stage in the process was that the applications were decisioned. This
approve/decline information was entered into the system. The system now had additional
factors in its environment to control—targeting not only people who would respond, but
also those most likely to be approved. Once again, this model was automatically
maintained, without human intervention, by the continuously learning system.

Following this, additional automatic environmental controls were added. The first was
added when pattern of use information became available. Many credit card issuers feel a
strong preference toward customers who are not “convenience users,” those who pay the
balance in full when requested and, thus, never generate revenue for the issuer in the



form of interest payments. Another increase in the quality of the target potential
customers resulted—those who would not only respond and be approved, but also would
be profitable for the card issuer. Eventually, default and fraud were modeled and added
into the selection process.

This is a highly simplified description indeed. However, the system as described consists
of four “sensors” feeding into a model continuously learning to recognize particular
features in the environment—responsiveness, approval likeliness, convenience user
tendency, and proclivity to default/fraud. The “environmental” parameters under the
system’s control were the selection criteria for the 160 or so variables of the prospects in
the slush pile, plus what products to offer each candidate.

Some particularly notable features of this system were that, for the duration of the
program, the internal structures of the various model elements changed—dramatically in
some cases. That is to say, the key indicating factors of, for example, who was likely to
respond to the solicitation were dramatically different at different times. (A competing offer
from another company targeted much of the original population. Any static model would
have been defeated. The continuously learning model simply moved its sights and kept
right on producing. Some time later the company’s marketers discovered what was going
on.)

Clearly, any static model would have lost predictive power very quickly. The “half-life” of a
static model, especially as market and economic conditions were changing rapidly,
seemed to be about six weeks. While no full analysis of many of the underlying reasons
for this shift was made, various economic, political, and social changes were happening
during the solicitation period, from such things as the competing offer already mentioned,
to a presidential election. Cursory examination of the parameter drift in the models
indicated that these changes had an impact. In fact, competition from other credit card
companies’ solicitation programs, targeting similar demographic and affinity groups, made
for the most dramatic changes in the model.

In addition to actively reacting to changing conditions in order to optimize return, various
pieces of business intelligence were generated. There were, in fact, a variety of different
offers made, such as gold cards, preapproved and non-preapproved cards, interest rates
and terms, home equity loans, lines of credit, and so on. Although not specifically
requested in the specification of the system, a response surface model built of the
response pattern based on the actual offer revealed what it was about different offers that
different groups found attractive. This allowed the company’s marketing organization to
make adjustments to terms and conditions offered to increase the appeal of the
solicitation.

Although this is a very brief summary description of what a continuously learning model
looks like in practice, it shows that it has a key place in a data miner’s toolkit. This particular
model produced spectacular results. This system was able to achieve, among other things,



response rates peaking over 10% (compared to an industry standard of well under 3%) and
a greatly reduced acquisition cost (varying from time to time, of course, but under $75 at
times compared to the client’s previous $140). Additional benefits gained might be described
(from the credit card issuer’s viewpoint) as higher-quality customers—less likely to be
convenience users or to default.



Chapter 2: The Nature of the World and Its

Impact on Data Preparation

Overview

Data is explored to discover knowledge about the data, and ultimately, about the world.
There are, however, some deep assumptions underlying this idea. It presupposes that
knowledge is discoverable. In the case of using data mining as a tool for discovering
knowledge, it presupposes that knowledge is discoverable in a collection of data. A
reasonable assumption is that the discovered knowledge is to be usefully applied to the
real world. It is therefore also assumed that the data to be mined does in fact have some
persistent relationship to the world from which it was drawn. It is also assumed that any
relationships that happen to be present in the assembled data can be meaningfully
related back to real-world phenomena.

These crucial assumptions underpinning data exploration and data mining are usually
unstated. They do, however, have a major impact on the actual process of mining data,
and they affect how data is prepared for mining. Any analysis of data that is made in the
hope of either understanding or influencing the world makes these assumptions. To better
understand why data is manipulated in the way that it is during data preparation, and to
understand the effects of the manipulations, we need to closely examine the assumptions,

the nature of what data is measuring, and define the terms “data,” “information,” and
“knowledge.”

Chapter 1 provided an overall framework for data exploration and put all of the components
into perspective. This chapter will focus on the nature of the connection between the
experiential world and the measurements used to describe it, how those measurements are
turned into data, and how data is organized into data sets. Having created an organized
representation of part of the world in a data set, we will also look at the nature and reasons
for some of the adjustments, alterations, and reformatting that have to be applied to the data
sets to prepare them for mining.

2.1 Measuring the World

The world is a place of unbelievable complexity. No matter how closely we look at some
facet of the world, there is an infinite depth of detail. Yet our brains and minds construct
meaningful (for us) simplicities from the stunning complexity that surrounds us. Using
these simplicities we make representations of the world that we find useful, like lunch and
banks. And using these simplicities, we can collect and record impressions about various
facets of them, which we call data. It is this data that we then explore, at least with data
mining, to understand something about the reality of the world—to discover information.
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The data itself from which information is to be discovered, however rich and copious, is
but a pale reflection of the real world. It doesn’t matter how much care is taken in
examining the world and collecting data about it, reality is always more fluid, rich, and
complex than any human can comprehend. Data never provides more than a pale and
hazy shadow, a murky outline, of the true workings of the world. And yet this gossamer
wisp is just enough for us to grasp at the edges of understanding. We may imagine that
we control and manipulate the firm reality, but it is no more than a shadow of reality that is
in our grasp. Understanding this, and understanding too the way that data connects to the
world, is crucial for any data explorer. However powerful the exploring tools, or aggressive
the explorer, nothing can be discovered that is beyond the limits of the data itself.

2.1.1 Objects

This is not a philosophical treatise, and | will leave discussing the true nature of the world
to philosophers. The world exists in a way that humans generally agree on. It consists of
objects that we can identify, such as cars, trees, cost-of-living adjustments, cartons of
milk, beams of light, gross national products, beauty, truth, and justice. For data
exploration through data mining it is these objects that form the basic material of the world
to be explored. These objects actually comprise the fundamental underpinning, or the
interface, that connects the activities of mining to the real world. Data mining explores the
relationships that exist between these objects.

The precise definition of objects is another philosophical issue that need not concern
miners. It is almost, if not actually, impossible to define what an object “really” is. It is also
difficult or impossible to define the limits of an object precisely and unambiguously, since
the world at very fine scale seems to appear as “shades of gray.” The miner takes a
pragmatic view of the objects in the world, finding it unnecessary to define the actual
objects and instead regarding an object as a collection of features about which
measurements can be taken.

A car, for instance, is accepted by the miner as a defined object. The car possesses
certain measurable features, such as the number of wheels, number of seats, color,
weight, number of cylinders, fuel consumption, and a host of others. These
measurements are not necessarily fixed; for instance, weight will change if fuel is added.
However, they can be defined and measured with sufficient accuracy for any particular
purpose, and the features can be specified as needed, such as “weight of vehicle empty.”

Clearly, objects do not have to be physical. The cost of living is a hon-physical object. It
has a definition and features. The features of the cost of living can be measured, such as
what it may be in dollars, its rate of change per month or year, what percentage of the
mean or median income it represents, and so on.

Objects in the real world relate to and interact with each other. Living objects interact with



the world in noticeable and familiar ways, such as eating and breathing. Even inanimate
objects interact with the world. Rocks, for example, interact with the ground on which they
rest at an atomic level, and so do not sink into it. Mountains are worn down by weather,
and even continents interact with the core of the earth and drift about. The cost of living
changes, as does the unemployment level—driven (we say) by the economy and
marketplace. All of these interactions form what philosophers have called “the great
system of the world.” The features of objects captured as data form a reflection of this
great system of the world. If the reflection is accurate, the features themselves, to a
greater or lesser degree, represent that system. It is in this sense that data is said to
represent or, sometimes, to form a system.

2.1.2 Capturing Measurements

For the data miner, objects actually consist of measurements of features. It is the groups
of features that are taken as the defining characteristics of the objects, and actual
instance measurements of the values of those features are considered to represent
instances of the object. For instance, my car is a dark blue, two-door, six-cylinder,
five-passenger vehicle. That is to say, for this particular instance of “car,” considering five
features—ownership, color, door count, cylinder count, and passenger capacity—the
measurements are Dorian Pyle, dark blue, 2, 6, 5.

These measurements are all taken in such a way that they have a particular type of
validity. In this particular case, they were all taken at the same time, which is to say that
they were true at the instant of my writing. The validating feature here, then, is a
timestamp. This need not be the case, of course, although timestamps are very often
used. To continue using cars as an example, other validating stamps might be “all
18-year-old males,” or “all Ford Escorts,” or “all red cars with four cylinders.” This would
mean collecting measurements about all vehicles owned by 18-year-olds, all Ford
Escorts, or all red cars with four cylinders, for instance.

There is an assumption here, then, that measurements are taken about objects under
some validating circumstance. In effect, the world state is “frozen” by the validating
circumstance and the measurements taken yielding a particular value. This idea of
“freezing” the world’s state while taking measurements is an important one, particularly for
miners. There are a variety of factors involved in taking measurements that can make the
measurements seem inconsistent. Since it is very often part of mining to understand and
estimate where the variability in a particular measurement comes from, as well as how
reliable the measurement is, we need to look at some sources of variability.

2.1.3 Errors of Measurement

Measurement implies that there is some quantity to measure, and some device to
calibrate the measurement against. A simple illustration of such a physical measurement
is measuring a distance with a ruler. A nonphysical measurement might be of an opinion



poll calibrated in percentage points of one opinion or another.

There are several ways in which a measurement may be in error. It may be that the
guantity is not correctly compared to the calibration. For instance, the ruler may simply
slip out of position, leading to an inaccurate measurement. The calibration device may be
inaccurate—for instance, a ruler that is longer or shorter than the standard length. There
are also inevitable errors of precision. For example, measurements of distance simply
have to be truncated at some point, whether measuring to the nearest mile, foot, meter,
centimeter, or angstrom unit.

Some of these errors, such as incorrect comparison, lead to a sort of “fuzz” in the
measurement. Since there are likely to be as many measurements short as there are
long, such errors also tend to cluster about the “correct” point. Statisticians have devised
many ways to characterize this type of error, although the details are not needed here. If
the calibration is in error—say, wrong ruler length—this leads to a systematic error, since
all measurements made with a given ruler tend to be “off” the mark by the same amount.
This is described as a bias.

Figure 2.1 shows the distortion, or error, that might be caused by the “fuzz” in such
measurements. It shows what unbiased error might do to a measurement. Figure 2.2
shows what bias added to unbiased error might look like. These types of measurements
are showing “point” measurements, so called because if taken without any error they
appear as points on a graph.
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Figure 2.1 Unbiased noise spreads the measurements evenly around the
measurement point. Most cluster near the actual value.
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Figure 2.2 Biased noise makes most of the measurements cluster around a
point that is not the true measurement.

Environmental errors are rather different in nature, but of particular importance in mining.
Environmental errors express the uncertainty due to the nature of the world. Another way
of looking at this interaction is that it expresses uncertainty due to the nature of the
interactions between variables. These between-variable interactions are critically
important to miners. Since there is some level of uncertainty in these interactions, they
warrant a much closer inspection.

Suppose a particular potential purchaser of products from a catalog has actually made a
previous purchase. The catalog company wants to measure several features of the object
“purchaser” to combine them with measurements about other purchasers and create a
general purchaser profile. There are many circumstances in the world that surround and
influence purchasers. To make the required measurements, the world is “frozen” in its
state for the particular purchaser and the surrounding circumstances captured. Several
variables are measured. Each measurement is, of course, subject to the point distortion,
or error, described previously.

Each fuzzy circle in Figure 2.3 represents such a single measurement. The central point
of each circle represents the idealized point value, and the surrounding circle represents
the unavoidable accompanying fuzz or error. Whatever the value of the actual
measurement, it must be thought of as being somewhere in this fuzzy area, near to the
idealized point value.
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Figure 2.3 Taking several point measurement values with uncertainty due to
error outlines a measurement curve surrounded by an error band.

Suppose now that the world is unfrozen, conditions allowed to change minutely, and then
refrozen. What happens to the measurement? If the driving factors are linearly related to
the measurement, then a minute change in circumstances makes a minute change in
measurement. The measurement taken under the slightly changed circumstances is
slightly changed in direction and distance from the first measurement. Other minute
changes in the world’s state make similar minute changes in measurement. Such a series
of measurements traces out the fuzzy line shown in Figure 2.3. This is the sort of change
in measurement that might be traced out in the value of your bank account, say, if income
varied by some small amount. The small change in income represents a change in the
state of the world. The error represents the general fluctuation in bank account level due
to the normal uncertainties of life. Perhaps if your income were slightly lower, the bank
balance would be a little lower. An increase in income might raise the bank balance a
little, but a further increase might lower it as you might then choose to put money into
another account. This small change in your bank account that is associated with a small
change in income demonstrates the effect of a linear relationship.

But perhaps the relationship is not linear, at least locally. What does this mean? It might
mean that a minute change in some other circumstance would persuade you to use a
completely different bank. Perhaps a better interest rate paid by another bank might be
enough. This could mean that the overall shape of the curves would be the same, but their
height would change, indicating the influence of interest rate changes. Figure 2.4 shows
what this might look like.
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Figure 2.4 Groups and clusters of curves that result when a small change in
world conditions makes a nonlinear or “step” change in the measured values.

What this figure might mean is that a small change in interest rate persuaded you to take
all your money out of one bank and deposit it in another bank. For one bank the minute
change in interest rate means that you completely and totally disappear as a customer,
while appearing as a new customer for some other bank. The world change is small, but
instead of slightly changing the bank balance up or down in the first bank, it made it
disappear! The various lines in Figure 2.4 might then represent different banks, with the
curves representing different balances. This “curve bundle” represents where and how
the point measurements might map onto the world under the slightly different
circumstances.

Some conditions, then, would be very sensitive to a minute change in circumstances due
to the unfreezing/minute change/refreezing cycle, while other conditions were not so
sensitive, or might be even completely unaffected by small changes. What this means for
actual measurements is that, even for minute changes in the circumstances surrounding
measurements, there are a variety of possible results. The changes may be undetectably
small, given the nature of truncating the measurement accuracy discussed above. So the
measurements traced out in state space, due possibly to the miniscule perturbations that
are unavoidable in the real world, trace out not fuzzy points, but fuzzy curves. (State
space will be covered in more detail later in this chapter. For now, very briefly, state space
is the space in which measurement values can be plotted, like the space on a graph.)

A very important point to note for the miner here is that while many of the environmental
factors may be unknowable, and certainly uncontrollable, they are subject to some
limitations. For instance, it is very unlikely that any minute change in world conditions
would change your deposit in a bank account into your ownership of a Swiss bank!
Defining the limits, and determining the shape and size of the measurement curves, can
be a critical factor in building models.



Determining the extent of the error is not so important to data preparation. What is
important, and the reason for the discussion, is that during preparation it may be possible
to determine where some of the components in the overall error come from, and to
explore its shape. Mining to build models is concerned with addressing and, if possible,
understanding the nature of the error; data preparation, with exposing and, perhaps,
ameliorating it.

2.1.4 Tying Measurements to the Real World

Sometimes measurements are described as consisting of two components: the actual
absolute perfect value, plus distortion. The distortion is often referred to as error.
However, the distortion is actually an integral part of the measurement. Use of the term
“error” has unfortunate connotations, as if there is somehow something wrong with the
measurement. There seems to be an implication that if only the measurer had been more
careful, the error could have been eliminated. While some part of the distortion may
indeed result from a mistake on the part of the measurer, and so truly is an error in the
sense of a “mistake,” much of the distortion is not only unavoidable, but is actually a
critical part of what is being measured.

This use of the term “error” is emotionally loaded in ways that do a disservice to the miner.
For all of the reasons discussed above, actual measurements are better envisioned as
represented by curve bundles drawn in some state space. Some part of the curve will
represent error in the sense of mistakes on the part of the measurer—whether human or
machine. However, most of the range of the curve represents the way the feature maps
onto an uncertain world. Even a perfect measurer, should such a thing exist, would still
not be able to squeeze the various curves into a single point—nor even into a single
curve.

Contrary to the view that there exists some perfect measurement with error, the more
realistic situation is one that includes a distributed mapping of the measurement onto the real
world, plus some single estimate of the location of some particular instance on the bundle of
curves. Nonetheless, the term “error” is the one in general use in measurement and must be
accepted. Remember that it is not to be thought of as some sort of mistake to be corrected,
but as representing an essential and unavoidable part of the measurement that is integral
with mapping the feature measured to the real world. Moreover, it is often the job of the
miner to discover the shape of the measurement bundle. In mining, the error is often
included in a feature called “noise” (looked at in detail later), although noise also includes
other components.

2.2 Types of Measurements

So far this chapter has discussed measurements in general, and problems and limitations
with making the measurements. Looked at more closely, there is an intuitive difference



between different types of measurements. For instance, the value “1.26 feet” is obviously
of a different type than the value “green.” This difference has a major impact on both the
way data is prepared and the way it is modeled. Since these differences are important,
the different types of measurements need to be examined in some detalil.

All measurements have one feature in common: they are all made on some scale.
Measurements in general map onto the world in ways represented by the measurement
curve bundles. Individual instance values are not curves, but point measurements. It is
usual to speak of the measurements of a particular feature of an object as a variable. A
variable represents a measurement that can take on a number of particular values, with a
different value possible for each instance. Conceptually, a variable is a container holding
all of the measurements of a particular feature of some specific object. But different types
of containers are needed to hold different types of measurements, just as tomatoes and
soda both need different types of containers to hold them. The “containers” for variables
are a way to classify them using descriptions such as “nominal” and “ratio” that will be
discussed in a moment. Some variables consist of two components—the scale on which
they are measured and the measured value itself—and others require more components.
The class of variables that can be indicated by the position of a single point (value) on
some particular scale are called scalar variables. There are other types of variables that
require more than one value to define them; they are often called vector variables. Most of
the work of the miner considers scalar variables, and these need to be examined in detail.
So first, we will look at the different types of containers, and then what is in each of them.

2.2.1 Scalar Measurements

Scalar measurements come in a variety of types. Different types of measurements
inherently carry different amounts of information. You can intuitively see this: just think
about measuring the temperature of your coffee. By limiting the measurement to just “hot”
or “cold,” you will see that this measurement contains less information than the

measurements “scalding,” “too hot,” “nice and hot,” “hot,” “not hot,” “warm,” “cool,” and
“cold.” The idea of information content is a very useful way to order the types of scalar

measurements.

Nominal Scale Measurements

Values that are nominally scaled carry the least amount of information of the types of
measurements to be considered. Nominal values essentially just name things. There is a
notable difference in type or identity, but little or nothing more can be said if the scale of
measurement is actually nominal. A nominal measurement is little more than a label used
for purposes of identification. There is no inherent order in the nominal measurements.
Nor indeed can nominally measured values even be meaningfully grouped together. They
do, nonetheless, carry definite information, little though it might be.

Categorical Scale Measurements
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Categorical measurements name groups of things, not individual entities. This
categorization allows values to be grouped in meaningful ways. As with nominal
measurements, nothing more can be said about the size or type of the differences. They
are no more than labels for different groups.

For instance, ZIP codes, although they look like numbers, are really simply arbitrary labels
for postal delivery zones. Listing them in their apparent numerical order is not particularly
revealing. Standard industry classification (SIC) codes are very similar to ZIP codes in
that, although they categorize different types of business activity, a numerical ordering
seems no more nor less reasonable than an alphabetical listing of the activity represented
by the number. It should also be clear that any ordering of scales such as marital status,
ethnic background, or academic interest seems quite arbitrary.

However, it is possible to use a number as a categorically measured value label in order
to more conveniently label and differentiate the category to which it belongs. Although
formed using characters that are numerical symbols rather than letters of the alphabet,
the labels remain exactly that, labels, and carry no numerical significance. Postal
authorities numerically labeled ZIP codes, and the federal government numerically
labeled SIC codes. Numerically labeled or not, all that can be said about the categories is
that they are different in type. Numbering the measurement values is only a matter of
convenience, and there is no implied ordering or ranking.

Not only do the categorical labels have no particular order, there is no information
included in the categorization that indicates how different they are from each other. There
is no real meaning in saying, for instance, that a plumber is twice a carpenter or
three-quarters of a corporate director. You may have some personal feeling as to the
amount of difference there is between different brands of boot polish. However, there is
no way to determine, simply by knowing the category of the product, if the amount of
difference between black and brown polish is more or less than between, say, black and
red or red and brown types of polish. All that can be said, simply by knowing its category,
is that there is a difference.

Categorical measurements, then, denote that there is a difference in kind or type, but are
not able to quantify the difference. The scale used amounts to no more than a
comprehensive listing of all of the categories into which the value can fall.

Ordinal Scale Measurements

When something more can be said about the measurement scale used, the additional
information gives some sort of order to the categories that are used to label the
measurement. Because there is some sort of meaningful order to the listing of the labels,
this type of measurement is often known as an ordinal measurement.



Ordinal measurements carry far more information than either nominals or categoricals.
You may not be surprised to learn that by taking a table of the actual distances between,
say, major American cities, the joint distance table alone is enough to re-create the layout
of the cities that show up on a map. Surprisingly, instead of the actual distances, just
using a simple pairwise ranking of cities by distance is also enough to re-create the layout
of the cities as seen on a map almost perfectly.

This example shows that for the purpose of making a schematic map, knowing the actual
distances provides little additional information. Most of the information required to
accurately create a schematic map of American cities is enfolded in a simple pairwise
ranking of cities by their distance apart.

The ranking of the categories must be done subject to a very particular condition, called
transitivity, which is actually a reasonable notion although of critical importance.
Transitivity means that if A is ranked higher than B, and B higher than C, then A must be
ranked higher than C. Thatis: If A> B and B > C, then A > C. While measuring a value
using an ordinal scale adds a huge amount of information over that contained in a
categorical measurement, the transitivity requirement places some constraints on how the
ordinal scale can actually be built. Note that the ordinal scale does not require that
anything has to be specified about the amount of the difference between each category.

For instance, at a “blind tasting” for wines, you sample several different types and styles
of wine and mark down pairwise combinations of preference. Perhaps you prefer the
cabernet to the merlot, and the merlot to the shiraz. If transitivity holds and you prefer the
cabernet to the shiraz, the result is an ordinal listing of wine preferences: the favorites, in
order, are cabernet, merlot, and shiraz. However, there is no indication of by how much
you prefer the cabernet to the merlot. It may be that the difference in preference is slight:
you choose cabernet 51% of the time and merlot 49% of the time; the shiraz doesn’t get a
look in. On the other hand, given the availability of cabernet, perhaps you will choose that
every time, only considering the others when cabernet is unavailable.

The point here is that ordinal measurements do indeed carry a lot of information, but allow
for no comparison of the magnitude of the differences between the categories.

Interval Scale Measurements

When there is information available not only about the order for ranking the values
measured but also about the differences in size between the values, then the scale is
known as an interval scale. This means that the scale carries with it the means to indicate
the distance that separates the values measured. Interval variables are almost always
measured using numbers. Because numbers are almost exclusively used when
discussing interval-scaled values, measurements scaled this way are part of the group
called quantitative measurements—that is, values that capture differences in, changes in,
or the amount of the quantity of some attribute of an object.



An interval scale that almost everyone is familiar with is the temperature scale. Every day
newspapers, radio, and television provide a forecast of the temperature range for the
day’s weather. If the low for the day is predicted to be 40 and the high 50, this provides
some particular idea of what temperature you will experience. In this case the range
through which the temperature is expected to move is 10°. If at some other time of year
the low/high is forecast as 80 through 90, you can tell that the expected temperature
range is again 10°, the same as earlier in the year. Thus the difference of 10° indicates the
same amount of temperature change regardless of where it occurs on the range of the
scale.

However, you cannot say, based on the interval scale used, that the low for the two days
can be compared using their ratio. That is to say, 80° is not twice as hot as 40°. It is easy
to see that there must be something wrong in supposing that the ratios are meaningful if
instead of using Fahrenheit, you made the same comparison using the Celsius scale to
measure the same temperature range.

Roughly speaking, 80°F corresponds to 25°C, while 40°F corresponds to about 5°C.
However, the ratio of 80 to 40 is 2, but the ratio of 25 to 5 is 5! This means that when
measuring the temperature with a Fahrenheit thermometer, you might say that it was
twice as hot (ratio of 2), but your Celsius-using neighbor claims that it was five times as
hot (ratio of 5)! One of these observations at least must be wrong, and in fact they are
both wrong.

What is wrong, of course, is that the zero point, often called the origin of the scale, is not
at the same temperature for the two scales. This means that the scales have differing
ratios at equivalent temperatures. In fact, the zero point is arbitrarily set, which is a
characteristic of interval scales. So, as far as temperature goes, scientists use a scale
known as the “Absolute” or “Kelvin” scale specifically to overcome this problem. On this
scale, the zero point corresponds to a true zero point so that the ratios of numbers
compared on this scale have meaning.

Ratio Scale Measurements

The scale that carries the most information content is the ratio scale. One ratio scale
measure that you are no doubt very familiar with measures the content of your bank
account. It starts at a true zero point, which is to say that when the bank balance is 0 it is
because there is no money in it. Also, it is denominated in currency units of equal value
and size. This means that you can express meaningful ratio values of the state of your
finances, knowing, for instance, that $10 is twice as much as $5, and $100 is twice $50. At
any position on the scale, for any values, the ratio is a meaningful measure of properties
of the scale.

As with the interval scale, ratio-scaled values are also quantitative. It is useful to consider



two types of ratio-scaled measurements: those for which the scale that they are measured
on must be named and those for which no scale is named. The characteristics of each
type are sufficiently different that it is sometimes important to treat them differently during
data preparation.

Usually it is important to know the units of a particular ratio measurement. To measure
sales activity as “5” is not useful. Even if you knew that they were “4” last month, there is
no reference in the numbers to indicate their significance. Knowledge of the unit of
measurement is required. It means something if we stipulate that the units are millions of
dollars and something else again if the units are thousands of Russian rubles or numbers
of units shipped.

There is a class of ratio-scaled values that is measured only as numbers. These numbers
are sometimes called dimensionless. A dimensionless number expresses a relationship
that holds true without reference to the underlying measurements of the scale. For
instance, consider a lighthouse standing on a rocky headland. Each lighthouse signals in
a particularly distinct way such that any ship that sees the signal knows which particular
lighthouse is in view just from the pattern of the signal. The lighthouse signals by showing
a light in a unique pattern that is repeated over time. In any time cycle, however long or
short, the light is on for a certain duration and off for another duration. Suppose that for a
particular lighthouse the light is on for 10 seconds and off for 5. The ratio of on/off is 10/5,
which, by division, reduces to 2/1, or 2. This measurement, sometimes known as a duty
cycle, is dimensionless, and for this particular lighthouse it is 2. That is not 2 per anything,
or 2 anythings, simply 2. The lighthouse pattern repeats once in 15 seconds, or four times
per minute. So long as we consider only complete cycles, it doesn’t matter at all over how
long a period the duty cycle of the lighthouse is measured; it will always be 2.

Care must be taken with measurements over time. Sometimes these measurements are
assumed to be dimensionless when in fact they are not. A common discussion of
ratio-scale variables discusses the distinction between “how many” and “how much.” The
“how much” type is said to require the scale units, as in the sales figures just discussed.
“How many” types of measurements are often said not to need such units. For instance, in
stock market reports, not only is the market index quoted, but frequently the
“advance/decline ratio” is given.

“The stock market was up today,” the news anchor might say, “with advances leading
declines 5 to 4.” This means that five stocks went up in price for every four that did not.
Now a ratio of 5/4 can be given as 1.25 and this gives the appearance of a dimensionless
number. Here is a measurement of “how many” (i.e., 5/4) rather than “how much” (which
is measured in “points” or dollars or some other specified unit).

However, the “gotcha” is that the count of advances to declines was taken over today.
When considering the example of the lighthouse, a very important point was that, so long
as we looked at complete cycles, the length of time of the observation did not matter. The



advance/decline ratio applies only to the specific period over which it was measured. If a
period is included that is longer or shorter by only a few minutes, it is possible that the
measurement would not be 5/4. Indeed, you can be quite sure that in choosing some
other period there is no reason to think that the 5/4 ratio holds true except by coincidence.

We have become so culturally accustomed to the idea of fixed and “natural”
measurements of time that it is easy to overlook the fact that measurements of duration
are arbitrary. By happenstance the Babylonians had a number system based on the
number 60. Since it was they who made the original astronomical measurements, and
because they thought there were approximately 360 days in a year, we now have 360
degrees in a circle. By a series of what they thought were convenient divisions, they
arrived at a 24-hour day as standard. The hours were further divided in smaller parts, and
by making a second division of the minute parts of an hour by 60 we get the “seconds,” so
called because of the second division involved. Very clever and useful. However, there
are alternatives.

Napoleon, in attempting to introduce the metric system, tried to “rationalize” all of the
measuring systems then in use. Measures for distance and mass—the meter and gram,
respectively—were adopted; however, the division of the year into 10 months and the day
into 10 hours, and so on, was not accepted. The point is that all of our measurements of
time are arbitrary. Some are arbitrary through human selection, but even the rotation of
our planet has varied considerably through the eons. The first creatures out of the
primordial soup probably experienced an 18-hour day. The slowing of planetary rotation
has brought us to a day of approximately 24 hours. Because we are creatures of planet
Earth, there are many cycles that are tied to days, seasons, and years. However, there is
nothing inherently special about these scale units any more than any other scale unit.

Measurements in time, then, need to be considered carefully. By identifying and
confirming complete cycles, returning to an identifiable identical state from time to time,
dimensionless numbers may be useful. Measures based on the “how many/how much”
dichotomy are suspect.

2.2.2 Nonscalar Measurements

Scalar values consist of just two component parts, the value of the measurement and the
scale against which the measurement was made. In traffic court it is enough to prove that
the speed of a vehicle was, or was not, some particular number of miles per hour. The
speed is expressed as a number and the scale in miles per hour. Nonscalar
measurements need more component parts to capture additional information. Speed is
the number of miles traveled in one hour. Velocity, however, is measured as speed in a
particular direction. There are at least four components in such a measurement—two
scales and two measurements on those scales. Navigation at sea, for instance, is very
concerned with velocity—how fast and in which direction the vessel is travelling.



Measurements such as velocity can be plotted on a two-dimensional graph in the form of
a point specified by the measurements of speed on one axis, and direction on another. A
line drawn on a graph from the common point that was chosen to begin the measurement
representation, to the point where it ends up, is known as a vector. There is a great deal of
literature about such vector quantities, their properties, and how to manipulate them. So
far as data preparation is concerned, however, vector quantities are built out of scalar
guantities. It is true that the scalar quantities are linked in particular and significant ways,
but for the purposes of data preparation, the vectors can be carefully treated as multiple
scalar values.

This is not to minimize the importance of vector quantities. Indeed, the concept of state
space regards the instance value of multiple features as a multidimensional vector. Each
record in a table, in other words, is taken as a vectoral representation. The point here is that
most vectors can be thought of as being made up of separate scalar values and can be
usefully treated for purposes of data preparation at the scalar level.

2.3 Continua of Attributes of Variables

So far this chapter has addressed the way in which measurements are taken using
different types of scale. Collections of measured values of particular features are grouped
together into variables. Because the values are collected together, it is possible to look for
patterns in the way the values change with changes in the validating feature, or with
changes in other variables.

When the measurements are actually taken in practice, certain patterns appear if many
instances of values of a variable are considered as a whole. These aggregate collections
of values begin to show a variety of different features. It is hard to characterize these
elementary patterns as a part of data mining, although they are in truth the surface ripples
of the deeper structure that miners will be seeking when the actual data mining tools are
applied to the prepared data. Although this discussion only concerns introductory issues
about data preparation, it is still true that the data preparation begins with a fairly
comprehensive survey of the properties of each of the variables taken individually. It is in
the appreciation of the basic types of attributes of variables that data preparation begins.
Chapter 4 looks at this issue in considerable detail. Later discussion in this chapter
summarizes the methods that will prepare variables for modeling.

Although described as if each of the scales were separate, actually the types blur together
into a more continuous spectrum than the separate descriptions seem to imply. It is usual
to describe variables as being of the same type as the scale, or features of the scale, on
which they are measured. So it is convenient, say, to talk of a categorical variable, or a
continuous variable. A measured value on a scale is, of course, a single point and as such
cannot show any pattern. It cannot even show any of the “fuzz” of noise discussed earlier.
Variables, being collections of instance values of a particular feature, all being made on a
common scale, do show recognizable patterns, or attributes. It is these common attributes
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of variables that can be described as existing in a continuum.

2.3.1 The Qualitative-Quantitative Continuum

This continuum captures the low to high information content of the different types of scalar
variables. Describing variables as qualitative or quantitative might not make it obvious that
what is being described is information content. Nominal variables are at the qualitative
end of the scale—that is, they separate attributes by a difference in quality. Similarly, at
the other end of the scale is the ratio (quantitative) association. Information content varies
continuously across the scale. Any sharp division implied by the qualitative-quantitative
differentiation is not really present. So this continuum really recapitulates the differences
in the scales that were discussed before, except that it considers the impact of the
different scales on variables.

2.3.2 The Discrete-Continuous Continuum

This will prove to be a very important distinction about variables. In fact, the
discrete-continuous distinction forms a continuum. As was done when considering scales,
for ease of explanation it is easiest to look at several points along the continuum. At each
of the points viewed, the distinctions are easy to draw. There are, however, no hard and
fast boundaries in practice.

As a very brief introduction to the following discussion, discrete variables are considered
to have a very limited set of values that they can take on, such as colors of the rainbow.
Continuous values can take on any value within a range, like the temperature. To see that
this is a continuum, consider your bank account—discrete or continuous? Technically, it is
discrete as it is restricted to values to the nearest penny. In practice, however, the
guantization, or fineness of division, is such that it would usually be more useful to
consider it as a continuous value.

Single-Valued Variables (Constants)

It may seem odd to discuss a “variable” as having only a single value. Strictly speaking,
since it is not varying its value, it would seem to be something other than a variable.
However, variables that do not vary are often used, and very useful they are, too. Some
examples of constants are the number of days in a week, inches in a foot, the distance
represented by a light year, and the number of sides in a triangle. These constant values
are representative of what we see as invariant, defining characteristics of an object.

They also turn up when modeling variables. Perhaps a marketing organization wants to
examine all records for “the gold card upgrade program.” There may be many different
marketing programs represented in the original data set. In this original data set, the
variable “program name” is variable—it varies by having different values representing the
different programs. The indicator for the gold card upgrade program is, say, “G”. Different



letters are used to identify other programs. However, by the time only the records that are
relevant to the gold card upgrade program are extracted into a separate file, the variable

“program name” becomes a constant, containing only “G” in this data set. The variable is
a defining feature for the object and, thus, becomes a constant.

Nonetheless, a variable in a data set that does not change its value does not contribute
any information to the modeling process. Since constants carry no information within a
data set, they can and should be discarded for the purposes of mining the data.

Two-Valued Variables

At least variables with two values do vary! Actually, this is a very important type of
variable, and when mining, it is often useful to deploy various techniques specifically
designed to deal with these dichotomous variables. An example of a dichotomous
variable is “gender.” Gender might be expected to take on only values of male and female
in normal use. (In fact, there are always at least three values for gender in any practical
application: “male,” “female,” and “unknown.”)

Empty and Missing Values: A Preliminary Note

A small digression is needed here. When preparing data for modeling, there are a number
of problems that need to be addressed. One of these is missing data. Dealing with the
problem is discussed more fully later, but it needs to be mentioned here that even
dichotomous variables may actually take on four values. These are the two values it
nominally contains and the two values “missing” and “empty.”

It is often the case that there will be variables whose values are missing. A missing value
for a variable is one that has not been entered into the data set, but for which an actual
value exists in the world in which the measurements were made. This is a very important
point. When preparing a data set, the miner needs to “fix” missing values, and other
problems, in some way. It is critical to differentiate, if at all possible, between values that
are missing and those that are empty. An empty value in a variable is one for which no
real-world value can be supposed.

A simple example will help to make the difference clear. Suppose that a sandwich shop
sells one particular type of sandwich that contains turkey with either Swiss or American
cheese. In order to determine customer preferences and to control inventory, the store
keeps records of customer purchases. The data structure contains a variable “gender” to
record the gender of the purchaser, and a variable “cheese type” to record the type of
cheese in the sandwich. “Gender” could be expected to take the values “M” for male and
“F” for female. “Cheese type” could be expected to take the values “S” for Swiss and “A”
for American cheese.

Suppose that during the recording of a sale, one particular customer requests a turkey
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sandwich with no cheese. In recording the sale the salesperson forgets to enter the
customer’s gender. This transaction generates a record with both fields “gender” and
“cheese type” containing no entry. In looking at the problem, the miner can assume that in
the real world in which the measurements were taken, the customer was either male or
female, and any adjustment must be made accordingly. As for “cheese type,” this value
was not measured because no value exists. The miner needs a different “fix” to deal with
this situation.

If this example seems contrived, it is based on an actual problem that arose when
modeling a grocery store chain’s data. The original problem occurred in the definition of
the structure of the database that was used to collect the data. In a database, missing and
empty values are called nulls, and there are two types of null values, one each
corresponding to missing and empty values. Nulls, however, are not a type of
measurement.

Miners seldom have the luxury of going back to fix the data structure problem at the
source and have to make models with what data is available. If a badly structured data set
is all that’s available, so be it; the miner has to deal with it! Details of how to handle empty
and missing values are provided in Chapter 8. At this point we are considering only the
underlying nature of missing and empty variables.

Binary Variables

A type of dichotomous variable worth noting is the binary variable, which takes on only the
values “0” and “1.” These values are often used to indicate if some condition is true or
false, or if something did or did not happen. Techniques applicable to dichotomous
variables in general also apply to binary variables. However, when mining, binary
variables possess properties that other dichotomous variables may not.

For instance, it is possible to take the mean, or average, of a binary variable, which
measures the occurrence of the two states. In the grocery store example above, if 70% of
the sandwich purchasers were female, indicated by the value “1,” the mean of the binary
variable would be 0.7. Certain mining techniques, particularly certain types of neural
networks, can use this kind of variable to create probability predictions of the states of the
outputs.

Other Discrete Variables

All of the other variables, apart from the constants and dichotomous variables, will take on
at least three or more distinct values. Clearly, a sample of data that contains only 100
instances cannot have more than 100 distinct values of any variable. However, what is
important is to understand the nature of the underlying feature that is being measured. If
there are only 100 instances available, these represent only a sample of all of the possible
measurements that can be taken. The underlying feature has the properties that are
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indicated by all of the measurements that could be taken. Much of the full representation
of the nature of the underlying feature may not be present in the instance values actually
available for inspection. Such knowledge has to come from outside the measurements,
from what is known as the domain of inquiry.

As an example, the underlying value of a variable measuring “points” on a driving license
in some states cannot take on more than 13 discrete values, 0-12 inclusive. Drivers
cannot have less than 0 points, and if they get more than 12 their driving licenses are
suspended. In this case, regardless of the actual range of values encountered in a
particular sample of a data set, the possible range of the underlying variable can be
discovered. It may be significant that a sample does, or does not, contain the full range of
values available in the underlying attribute, but the miner needs to try to establish how the
underlying attribute behaves.

As the density of discrete values, or the number of different values a variable can take on,
increases for a given range, so the variable approaches becoming a continuous variable.

In theory, it is easy to determine the transition point from discrete to continuous variables.
The theory is that if, between any two measurements, it is inherently possible to find
another measurement, the variable is continuous; otherwise not. In practice it is not
always so easy, theoretical considerations notwithstanding. The value of a credit card
balance, for instance, can in fact take on only a specifically limited number of discrete
values within a specified range. The range is specified by a credit limit at the one end and
a zero balance (ignoring for the moment the possibility of a credit balance) at the other.
The discrete values are limited by the fact that the smallest denomination coin used is the
penny and credit balances are expressed to that level. You will not find a credit card
balance of “$23.45964829.” There is, in fact, nothing that comes between $23.45 and
$23.46 on a credit card statement.

Nonetheless, with a modest credit limit of $500 there are 50,000 possible values that can
occur in the range of the credit balance. This is a very large number of discrete values that
are represented, and this theoretically discrete variable is usually treated for practical
purposes as if it were continuous.

On the other hand, if the company for which you work has a group salary scale in place,
for instance, while the underlying variable probably behaves in a continuous manner, a
variable measuring which of the limited number of group salary scales you are in probably
behaves more like a categorical (discrete) variable.

Techniques for dealing with these issues, as well as various ways to estimate the most
effective technique to use with a particular variable, are discussed later. The point here is

to be aware of these possible structures in the variables.

Continuous Variables
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Continuous variables, although perhaps limited as to a maximum and minimum value,
can, at least in theory, take on any value within a range. The only limit is the accuracy of
representation, which in principle for continuous variables can be increased at any time if
desired.

A measure of temperature is a continuous variable, since the “resolution” can be increased
to any amount desired (within the limit of instrumentation technology). It can be measured to
the nearest degree, or tenth, or hundredth, or thousandth of a degree if so chosen. In
practice, of course, there is a limit to the resolution of many continuous variables, such as a
limit in ability to discriminate a difference in temperature.

2.4 Scale Measurement Example

As an example demonstrating the different types of measurement scales, and the
measurements on those scales, almost anything might be chosen. | look around and see
my two dogs. These are things that appear as measurable objects in the real world and
will make a good example, as shown in Table 2.1.

TABLE 2.1 Title will go here

Scale Type Measurement Measured Value Note
Nominal Name * Fuzzy Distinguishes one from
the other.
» Zeus
Categorical Breed » Golden Could have chosen
Retriever other categories.
+ Golden
Retriever
Categorical Gender * Female
(Dichotomous)
* Male
Categorical Shots up to 1

(Binary) Date
(1=Yes;0=No) 1



Categorical Eye color * Value exists in

(Missing) real world

Categorical Drivers * No such value

(Empty) License # in real world

Ordinal Fur length * Longer Comparative length

allowing ranking.

* Shorter

Interval Date of Birth * 1992
« 1991

Ratio Weight » 78 Ibs
+ 811Ibs

Ratio Height / * 0.5625

(Dimensionless) Length
+ 0.625

2.5 Transformations and Difficulties—Variables, Data, and
Information

Much of this discussion has pivoted on information—information in a data set, information
content of various scales, and transforming information. The concept of information is
crucial to data mining. It is the very substance enfolded within a data set for which the
data set is being mined. It is the reason to prepare the data set for mining—to best expose
the information contained in it to the mining tool. Indeed, the whole purpose for mining
data is to transform the information content of a data set that cannot be directly used and
understood by humans into a form that can be understood and used.

Part of Chapter 11 takes a more detailed look at some of the technical aspects of
information theory, and how they can be usefully used in the data preparation process.
Information theory provides very powerful and useful tools, not only for preparing data, but
also for understanding exactly what is enfolded in a data set. However, while within the
confines of information theory the term “information” has a mathematically precise
definition, Claude Shannon, principal pioneer of information theory, also provided a very
apt and succinct definition of the word. In the seminal 1949 work The Mathematical
Theory of Communication, Claude E. Shannon and Warren Weaver defined information
as “that which reduces uncertainty.” This is about as concise and practical a definition of
information as you can get.



Data forms the source material that the miner examines for information. The extracted
information allows better predictions of the behavior of some aspect of the world. The
improved prediction means, of necessity, that the level of uncertainty about the outcome is
reduced. Incorporating the information into a predictive or inferential framework provides
knowledge of how to act in order to bring about some desired result. The information will
usually not be perfect, so some uncertainty will remain, perhaps a great deal, and thus the
knowledge will not be complete. However, the better the information, the more predictive or
powerfully inferential the knowledge framework model will be.

2.6 Building Mineable Data Representations

In order to use the variables for mining, they have to be in the form of data. Originally the
word “datum” was used to indicate the same concept that is indicated here, in part, by
“measurement” or “value.” That is, a datum was a single instance value of a variable.
Here measurement both signifies a datum, and also is extended to indicate the values of
several features (variables) taken under some validating condition. @

A collection of data points was called data, and the word was also used as a plural form of
datum. Computer users are more familiar with using data as a singular noun, which is the
style adopted here. However, there is more to the use of the term than simply a collection
of individual measurements. Data, at least as a source for mining, implies that the data
points, the values of the measurements, are all related in some identifiable way. One of
the ways the variables have to be structured has already been mentioned—they have to
have some validating phenomenon associated with a set of measurements. For example,
with each instance of a customer of cellular phone service who decides to leave a carrier,
a process called churning, the various attributes are captured and associated together.

The validating phenomenon for data is an intentional feature of the data, an integral part
of the way the data is structured. There are many other intentional features of data,
including basic choices such as what measurements to include and what degree of
precision to use for the measurements. All of the intentional, underlying assumptions and
choices form the superstructure for the data set. Three types of structure are discussed in
the next chapter. Superstructure, however, is the only one specifically involved in turning
variables into data.

Superstructure forms the framework on which the measurements hang. It is the
deliberately erected scaffolding that supports the measurements and turns them into data.

Putting such scaffolding in place and adding many instances of measured values is what
makes a data set. Superstructure plus instance values equals data sets.

2.6.1 Data Representation

The sort of data that is amenable to mining is always available on a computer system.
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This makes discussions of data representation easy. Regardless of how the internal
operations of the computer system represent the data, whether a single computer or a
network, data can almost universally be accessed in the form of a table. In such a table
the columns represent the variables, and the records, or rows, represent instances. This
representation has become such a standardized form that it needs little discussion. It is
also very convenient that this standard form can also easily be discussed as a matrix, with
which the table is almost indistinguishable. Not only is the table indistinguishable from a
matrix for all practical purposes, but both are indistinguishable from a spreadsheet.

Spreadsheets are of limited value in actual mining due to their limited data capacity and
inability to handle certain types of operations needed in data preparation, data surveying,
and data modeling. For exploring small data sets, and for displaying various aspects of
what is happening, spreadsheets can be very valuable. Wherever such visualization is
used, the same row/column assumption is made as with a table.

So it is that throughout the book the underlying assumption about data representation is
that the data is present in a matrix, table, or spreadsheet format and that, for discussion
purposes, such representation is effectively identical and in every way equivalent.
However, it is not assumed that all of the operations described can be carried out in any of
the three environments. Explanations in the text of actual manipulations, and the
demonstration code, assume only the table structure form of data representation.

2.6.2 Building Data—Dealing with Variables

The data representation can usefully be looked at from two perspectives: as data and as a
data set. The terms “data” and “data set” are used to describe the different ways of
looking at the representation. Data, as used here, implies that the variables are to be
considered as individual entities, and their interactions or relationships to other variables
are secondary. When discussing the data set, the implication is that not only the variables
themselves are considered, but the interactions and interrelationships have equal or
greater import. Mining creates models and operates exclusively on data sets. Preparation
for mining involves looking at the variables individually as well as looking at the data set
as a whole.

Variables can be characterized in a number of useful ways as described in this chapter.
Having described some features of variables, we now turn our attention to the types of
actions taken to prepare variables and to some of the problems that need to be
addressed.

Variables as Objects

In order to find out if there are problems with the variables, it is necessary to look at a
summary description and discover what can be learned about the makeup of the variable
itself. This is the foundation and source material for deciding how to prepare each
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variable, as well as where the miner looks at the variable itself as an object and
scrutinizes its key features and measurements.

Naturally it is important that the measurements about the variable are actually valid. That
is to say, any inferences made about the state of the features of the variable represent the
actual state of the variable. How could it be that looking at the variable wouldn’t reveal the
actual state of the variable? The problem here is that it may be impossible to look at all of
the instances of a variable that could exist. Even if it is not actually impossible, it may be
impractical to look at all of the instances available. Or perhaps there are not enough
instance values to represent the full behavior of the variable. This is a very important
topic, and Chapter 5 is entirely dedicated to describing how it is possible to discover if
there is enough data available to come to valid conclusions. Suffice it to say, it is
important to have enough representative data from which to draw any conclusions about
what needs to be done.

Given that enough data is available, a number of features of the variable are inspected.
Whatever it is that the features discover, each one inspected yields insight into the
variable’s behavior and might indicate some corrective or remedial action.

Removing Variables

One of the features measured is a count of the number of instance values. In any sample
of values there can be only a limited number of different values, that being the size of the
sample. So a sample of 1000 can have at most only 1000 distinct values. It may very well
be that some of the values occur more than once in the sample. In some cases—1000
binary variable instances, for example—it is certain that multiple occurrences exist.

The basic information comprises the number of distinct values and the frequency count of
each distinct value. From this information it is easy to determine if a variable is entirely
empty—that is, that it has only a single value, that of “empty” or “missing.” If so, the
variable can be removed from the data set. Similarly, constants are discovered and can
also be discarded.

Variables with entirely missing values and variables that contain only a single value can
be discarded because the lack of variation in content carries no information for modeling
purposes. Information is only carried in the pattern of change of value of a variable with

changing circumstances. No change, no information.

Removing variables becomes more problematic when most of the instance values are
empty, but occasionally a value is recorded. The changing value does indeed present
some information, but if there are not many actual values, the information density of the
variable is low. This circumstance is described as sparsity.

Sparsity
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When individual variables are sparsely populated with instance values, the miner needs to
decide when to remove them because they have insignificant value. Chapter 5 describes
in some detail how to decide when to remove sparse variables. Essentially, the miner has
to make an arbitrary decision about confidence levels, that is, how confident the miner
needs to be in the model.

There is more to consider about sparsity, however, than can be seen by considering
variables individually. In some modeling applications, sparsity is a very large problem. In
several applications, such as in telecommunications and insurance, data is collected in
ways that generate very sparsely populated data sets. The variable count can be high in
some cases, over 7000 variables in one particular case, but with many of the variables
very sparsely populated indeed. In such a case, the sparsely populated variables are not
removed. In general, mining tools deal very poorly with highly sparse data. In order to be
able to mine them, they need to be collapsed into a reduced number of variables in such a
way that each carries information from many of the original variables. Chapter 10
discusses collapsing highly sparse data.

Since each of the instances are treated as points in state space, and state space has
many dimensions, reducing the number of variables is called dimensionality reduction, or
collapsing dimensionality. Techniques for dealing with less extreme sparsity, but when
dimensionality reduction is still needed, are discussed in Chapter 7. State space is
described in more detail in Chapter 6.

Note that it has to be the miner’s decision if a particular variable should be eliminated
when some sparsity threshold is reached, or if the variable should be collapsed in
dimensionality with other variables. The demonstration software makes provision for
flagging variables that need to be retained and collapsed. If not flagged, the variables are
treated individually and removed if they fall below the selected sparsity threshold.

Monotonicity

A monotonic variable is one that increases without bound. Monotonicity can also exist in
the relationship between variables in which as one variable increases, the other does not
decrease but remains constant, or also increases. At the moment, while discussing
variable preparation, it is the monotonic variable itself that is being considered, not a
monotonic relationship.

Monotonic variables are very common. Any variable that is linked to the passage of time,
such as date, is a monotonic variable. The date always increases. Other variables not
directly related to time are also monotonic. Social security numbers, record numbers,
invoice numbers, employee numbers, and many, many other such indicators are
monotonic. The range of such categorical or nominal values increases without bound.
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The problem here is that they almost always have to be transformed into some
nonmonotonic form if they are to be used in mining. Unless it is certain that every possible
value of the monotonic variable that will be used is included in the data set, transformation
is required. Transformation is needed because only some limited part of the full range of
values can possibly be included in any data set. Any other data set, specifically the
execution data set, will contain values of the monotonic variable that were not in the
training data set. Any model will have no reference for predicting, or inferring, the meaning
of the values outside its training range. Since the mined model will not have been
exposed to such values, predictions or inferences based on such a model will at best be
suspect.

There are a number of transformations that can be made to monotonic variables,
depending on their nature. Datestamps, for instance, are often turned into seasonality
information in which the seasons follow each other consecutively. Another transformation
is to treat the information as a time series. Time series are treated in several ways that
limit the nature of the monotonicity, say, by comparing “now” to some fixed distance of
time in the past. Unfortunately, each type of monotonic variable requires specific
transformations tailored to best glean information from it. Employee numbers will no doubt
need to be treated differently from airline passenger ticket numbers, and those again from
insurance policy numbers, and again from vehicle registration numbers. Each of these is
monotonic and requires modification if they are to be of value in mining.

It is very hard to detect a monotonic variable in a sample of data, but certain detectable
characteristics point to the possibility that a variable is in fact monotonic. Two measures
that have proved useful in giving some indication of monotonicity in a variable (described
in Chapter 5) are interstitial linearity and rate of detection. Interstitial linearity measures
the uniformity of spacing between the sampled values, which tends to be more uniform in
a monotonic variable than in some nonmonotonic ones. Rate of discovery measures the
rate at which new values are experienced during random sampling of the data set. Rate of
detection tends to remain uniform for monotonic variables during the whole sampling
period and falls off for some nonmonotonic variables.

A problem with these metrics is that there are nonmonotonic variables that also share the
characteristics that are used to detect potential monotonicity. Nonetheless, used as
warning flags that the variables indicated need looking at more closely for monotonicity or
other problems, the metrics are very useful. As noted, automatically modifying the
variables into some different form is not possible.

Increasing Dimensionality

The usual problem in mining large data sets is in reducing the dimensionality. There are
some circumstances where the dimensionality of a variable needs to be increased. One
concern is to increase the dimensionality as much as is needed, but only as little as
necessary, by recoding and remapping variables. Chapter 7 deals in part with these
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techniques. The types of variables requiring this transformation, which are almost always
categorical, carry information that is best exposed in more than one dimension. A couple
of examples illustrate the point.

Colors can be represented in a variety of ways. Certainly a categorical listing covers the
range of humanly appreciated color through a multitude of shades. Equally well, for some
purposes, the spectral frequency might be listed. However, color has been usefully
mapped onto a color wheel. Such a wheel not only carries color information, but also
describes color as a continuum, carrying information about what other colors are near and
far from some selected category. This is very useful information. Since a circle can be
drawn on a plane, such as a piece of paper, it is easy to see that any point on the circle’s
circumference can be unambiguously represented by two coordinates, or numbers.
Mapping the color wheel onto a circle on a graph and using the two coordinates for some
selected color as the instance values of two variables may form a better description of
color than a categorical listing.

ZIP codes form a perennial problem in mining. Sometimes, depending on the application,
it is beneficial to translate the ZIP code from the categorical list into latitude and longitude.
These values translate the ZIP code into two instance values. The single variable “ZIP”
translates into two variables, say, “Lat” and “Lon.”

Once again, the decision of whether to expand the dimensionality of a variable must be, in
many cases, left up to the miner or domain expert.

Outliers

An outlier is a single, or very low frequency, occurrence of the value of a variable that is
far away from the bulk of the values of the variable. The question miners always ask is: “Is
this a mistake?” As a general rule of thumb, if it can be established that it is a mistake, it
can be rectified. (One way to do this, if the correct value cannot be found, is to treat it as a
missing value, discussed later in this chapter.) The problem is what to do if it cannot be
pinpointed as an error. It is a problem because, for some modeling methods in particular
(some types of neural network, for instance), outliers may distort the remaining data to the
point of uselessness. Figure 2.5(a) shows this sort of situation.



Bulk of Coutliar
measurament M,
Jviluns

] ,
R |
I & xxx
Ex EE XN @ X ]

I T T
(a)

n K L] x

L N L) Ly q Ly E x
EN NN N i EN AN WX LU
KWW GWW 4 K NNE NEW E i HMN WNEE WK 5
T T T T T T T T T T T 1

ikl

Figure 2.5 Examples of outliers: as an individual value (a) and as clumps of
values (b).

Insurance data typically suffers considerably from the problem of outliers. Most insurance
claims are small, but occasionally one comes in for some enormous sum. This is no error,
and it must be included in modeling. How to do this without distorting the remaining data is
a problem.

There is also a problem when the outliers are not individual values but clumps of values,
illustrated in Figure 2.5(b). It's actually the gaps between the clumps that can pose
problems. Are these clumps, perhaps, valid measurements from differently biased
instruments? Once again, it must be determined first that there is not some sort of error.
Maybe some measurements were made against an incorrect calibration and are biased.
However, again it might not be possible to determine that an error occurred. In general,
the miner is constrained to consider that the measurements are not an error until and
unless it is possible to definitely show that they are.

If indeed the outlying value is not a mistake, or is at least going to be dealt with as if it is
not, how is it to be treated? Fortunately there is a way of automatically dealing with the
problem if it is not a mistake. This involves remapping the variable’s values. Part of
Chapter 7 deals with this remapping.

Numerating Categorical Values

Dealing correctly with categorical values is one of the most important functions of data
preparation. For many modeling techniques it is necessary to translate categorical values
into numbers: they simply cannot deal with untranslated categorical values. Experience
shows that even modeling techniques that can deal well with untranslated categorical
values benefit from a valid numeration of categoricals.

However, a na«we way of making the translation, one that is very commonly done, is
terribly destructive of information. Simply assigning numbers to the nominals to create a



numbered list is a disastrous way to proceed! To see why, consider the variable “marital
status,” for instance, which might be measured as married, single, widowed, divorced, or
never married. To simply assign the numbers 1, 2, 3, 4, and 5 to these is totally
destructive of the natural structure of the data. If it turned out, for instance, that the natural
order of this variable, when translated, was in fact (on a scale of 0-1)

Never married 0
Single 0.1
Divorced 0.15
Widowed 0.65
Married 1

then the “brute force” assignment of numbers from 1-5 not only destroyed the natural
ordering of these measures, but even if they were in the right order, it would have
destroyed the interval information. Interval information is contained in the distance
between the numbers and may be a significant factor in modeling. Except by pure,
unadulterated luck, all of the structure contained in this variable would have been
destroyed. Worse than that, some meaningless artificial structure has been forced into the
data quite arbitrarily!

But what is the “natural order”? The natural order can be found embedded in the system
of variables. Recall that the data set reflects to some degree the system of the world. As
such, the data set itself forms a system. Thus, embedded in the data set is a structure that
reflects an appropriate ordering and distance for categorical values. Assigning values in
accord with the system embedded in the data reveals the natural ordering. Arbitrary
assignment not only destroys the order, and any information carried by the variable, but
actually introduces an artificial pattern to the data.

It is hard to imagine how more damage can be done to the natural ordering of the data
than by arbitrary number assignment to categoricals. If it is not intuitively clear how
damaging this might be, imagine working for a company that pays you for set periods of a
half-day, a day, a half-week, a week, and a month. Perhaps the rate of pay for these
periods in dollars might be

Time period Rate of pay ($)

Half-day 100
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Day 200

Half-week 500

Week 1000
Half-month 2000
Month 4000

This gives a natural order to these measures. Now, not knowing the actual numerical
values, in building a model the modeler lists these periods alphabetically for convenience
and assigns numbers to them:

Day 1
Half-day 2
Half-month 3
Half-week 4
Month 5
Week 6

Would you expect this ranking to accurately reflect anything significant about the
categories? Compare the relationship between the arbitrary ordering and the monetary

value:

Day 1 200
Half-day 2 100
Half-month 3 2000
Half-week 4 500
Month 5 4000

Week 6 1000



It is clear that the natural order of these ordinal values has been completely destroyed. It
would, for instance, be impossible to use the arbitrary value assigned to predict how much
is earned in each period. Thus, the arbitrary assignment has destroyed the information
carried in the ordinal labels.

Regardless of what arbitrary order is given to the measures—whether it be alphabetic,
reverse alphabetic, random selection, or just the order they are encountered in the data
set—the arbitrary assignment of values destroys information content at best. At worst it
introduces and creates patterns in the data that are not natural and that reflect throughout
the data set, wreaking havoc with the modeling process.

A data set reflects the real world to some extent. (If not, any model will be useless
anyway!) Any variables ordinal or higher in information content are, therefore, in an
appropriate ordering to some extent. The variables in a data set, because they form an
interlocking system, all have specific relationships to each other. It is quite easy, at least
for a computer, to reflect the ordering from the ordinal, or higher variables, into the
nominal and categorical variables, thus recovering the natural ordering. This process is
not perfect. If domain knowledge is available for a more appropriate ordering, this is
preferable. Domain expertise reflects far more knowledge of the real world than is
enfolded in any data set for mining! Most often, such domain knowledge is unavailable or
unknown. Using the information at hand can help enormously.

So, natural orderings can be recovered, at least to some extent, by looking at the data. In
a data set that had the pay periods listed in the above tables as categoricals, but without
numeric values, it is usually possible to recover, at least to some degree, the natural order
and spacing of the measures. In the event that full recovery cannot be made, it is still
possible to assign a ranking and position that turn out to be neutral; that is, even if they
don’t contribute much information, they at least do not distort the data. One of the key
principles in data preparation is to do as little damage as possible to the natural structure
in a data set.

Sometimes a nominal variable will fairly easily translate into a single numeric variable.
This allows translation of the nominal or categorical, one for one, into a numeric value for
modeling. This could have been done in the pay-period example described above if it was
possible to recover the value and spacing information. By simply inserting the recovered
value, a numeric variable replaces the nominal, one for one, when modeling.

Also note that sometimes a categorical value needs to be expanded into more than one
numeric value for reasons similar to those mentioned above during the discussion of
increasing the dimensionality of variables. Fortunately, discovering an appropriate
numeration of categorical values can be completely automated. Chapter 6 includes a
detailed discussion of the technique.

Anachronisms
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An anachronism is, literally, something out of place in time. Temporal displacement.
When mining, an anachronistic variable is one that creeps into the variables to be
modeled, but that contains information not actually available in the data when a prediction
is needed.

For example, in mining a data set to predict people who will take a money market account
with a bank, various fields of interest will be set up, one entitled “investor.” This could be a
binary field with a “1” indicating people who opened a money market account, and a “0”
for the others. Obviously, this is a field to predict. The data set might also include a field
entitled “account number” filled in with the issued account number. So far, so good.
However, if “account number” is included in the predicting variables, since there is only an
account number when the money market account has been opened, it is clearly
anachronistic—information not available until after the state of the field to be predicted is
known. (Such a model makes pretty good predictions, about 100% accurate—always a
suspicious circumstance!)

“Account number” is a fairly straightforward example, but is based on a real occurrence.
Easy to spot with hindsight, but when the model has 400-500 variables, it is easy to miss
one. Other forms of “leakage” of after-the-fact information can easily happen. It can
sometimes be hard to find where the leakage is coming from in a large model. In one
telephone company churn application, the variables did not seem to be at all
anachronistic. However, the models seemed to be too good to be believed. In order to get
information about their customers, the phone company had built a database accumulated
over time based on customer interviews. One field was a key that identified which
interviewer had conducted the interview. It turned out that some interviewers were
conducting general interviews, and others were conducting interviews after the customer
had left, or churned. In fact, the interviewer code was capturing information about who
had churned! Obviously an anachronistic variable, but subtle, and in this case hard to find.

One of the best rules of thumb is that if the results seem to good to be true, they probably
are. Anachronistic variables simply have to be removed.

2.6.3 Building Mineable Data Sets

Looking at data sets involves considering the relationships between variables. There is
also a natural structure to the interrelationships between variables that is just as critical to
maintain as it is within variables. Mining tools work on exploring the interactions, or
relationships, that exist between the collected variables. Unfortunately, simply preparing
the variables does not leave us with a fully prepared data set. Two separate areas need to
be looked at in the data set: exposing the information content and getting enough data.

A first objective in preparing the data set is to make things as easy as possible for the
mining tool. It is to prepare the data in such a way that the information content is best
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revealed for the tool to see. Why is it important to make the mining tools’ job easier?
Actually, there are important reasons. A brief discussion follows in the next section.

Some types of relationships cause problems for modeling tools. A second objective in
preparing the data set, then, is to obviate the problems where possible. We will look
briefly at some of those. If it is possible to detect such potentially damaging relationships,
even without being able to ameliorate them automatically, that is still very useful
information. The miner may be able to take corrective or remedial action, or at least be
aware of the problem and make due allowance for it. If there is some automatic action that
can correct the problem, so much the better.

Exposing the Information Content
Since the information is enfolded in the data, why not let the mining tool find it?

One reason is time. Some data sets contain very complex, involved relationships. Often,
these complex relationships are known beforehand. Suppose in trying to predict stock
market performance it is believed that the “trend” of the market is important. If indeed that
is the case, and the data is presented to a suitable modeling tool in an appropriate way,
the tool will no doubt develop a “trend detector.” Think, for a moment, of the complexity of
calculation involved in creating a trend measurement.

A simple measurement of trend might be to determine that if the mean of the last three
days’ closing prices is higher than the mean of the previous three days’ prices, the trend is
“up.” If the recent mean is lower than the older mean, the trend is “down.” If the means are
the same, the trend is “flat.” Mathematically, such a relationship might be expressed as

=

PoatbeotDis PoitPis*Dis
3 3

where t is trend and p is closing price for day i. This is a modestly complex expression
yielding a positive or negative number that can be interpreted as measuring trend. For a
human it takes insight and understanding, plus a knowledge of addition, subtraction,
multiplication, and division, to devise this measure. An automated learning tool can learn
this. It takes time, and repeated attempts, but such relationships are not too hard. It may
take a long time, however, especially if there are a large number of variables supplied to
the mining tool. The tool has to explore all of the variables, and many possible
relationships, before this one is discovered.

For this discussion we assumed that this relationship was in fact a meaningful one, and
that after a while, a mining tool could discover it. But why should it? The relationship was
already known, and it was known that it was a useful relationship. So the tool would have
discovered a known fact. Apart from confirmation (which is often a valid and useful reason
for mining), nothing new has yet been achieved. We could have started from this point,
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not worked to get here. Giving the tool this relationship to begin with would have sped up
the process, perhaps very much. The more complex the relationship, the more the speed
is improved.

However, a second reason for providing as much help as possible to the tool is much
more important for the end result, but directly related to the time factor. The reason is
noise. The longer that training continues, the more likely it is that noise will be learned
along with the underlying pattern. In the training set, the noisy relationship is every bit as
real as any other. The tool cannot discriminate, inside the training set, between the noise
and target patterns.

The relationships in data are known as features of the data. The trend that, for this
example, is assumed to be a valid relationship is called a predictive feature. Naturally, it's
desirable for the tool to learn all of the valid predictive features (or inferential features if it
is an inferential model that is needed) without learning noise features. However, as
training continues it is quite possible that the tool learns the noise and thereby misses
some other feature. This obscuring of one feature by another is called feature swamping.

By including relevant domain knowledge, the mining tool is able to spend its time looking
for other features enfolded in the data, and not busy itself rediscovering already known
relationships. In fact, there is a modeling technique that involves building the best model
prior to overfitting, taking a new data set, using the model to make predictions, and
feeding the predictions plus new training data into another round of mining. This is done
precisely to give the second pass with the tool a “leg up” so that it can spend its time
looking for new features, not learning old ones.

In summary, exposing the information content is done partly to speed the modeling
process, but also to avoid feature swamping. Searching for meaningful fine structure
involves removing the coarser structure. In other words, if you want to find gold dust,
move the rocks out of the way first!

Getting Enough Data

The discussion about preparing variables started with getting sufficient data to be sure
that there were enough instance values to represent the variable’s actual features. The
same is true for data sets. Unfortunately, getting enough of each variable to ensure that it
is representative does not also assure that a representative sample of the data set has
been captured. Why? Because now we’re interested in the interactions between
variables, not just the pattern existing within a variable.

Figure 2.6 explains why there is a difference. Consider two variables, instance values of
one of them plotted on the vertical axis, and the other on the horizontal axis. The marks
on the axes indicate the range of the individual variables. In addition to distributing the
individual values on the axes, there is a joint range of values that is shown by the ellipse.
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This ellipse shows for this hypothetical example where the actual real-world values might
fall. High values of variable 1 always correspond with low values of variable 2, and vice
versa. It is quite possible to select joint values that fall only in some restricted part of the
joint distribution, and yet still cover the full range of the individual variables. One way in
which this could occur is shown in the shaded part of the ellipse. If joint values were
selected that fell only inside the shaded area, it would be possible to have the full range of
each variable covered and yet only cover part of the joint distribution. In fact, in the
example, half of the joint distribution range is not covered at all. The actual method used
to select the instance values means that there is only a minute chance that the situation
used for the illustration would ever occur. However, it is very possible that simply having
representative distributions for individual variables will not produce a fully representative
joint distribution for the data set. In order to assure complete coverage of the joint
distribution, every possible combination of variables has to be checked, and that can
become impossible very quickly indeed!
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Figure 2.6 Joint occurrence of two variables may not cover the individual range
of each. Values falling in only part of the full range, illustrated by half of the ellipse,
may cover the full range of each variable, but not the full joint range.

The Combinatorial Explosion

With five variables, say, the possible combinations are shown in Figure 2.7. You can see
that the total number of combinations is determined by taking the five variables two at a
time, then three at a time, then four at a time. So, for any number of variables, the number
of combinations is the sum of all combinations from two to the total number of variables.
This number gets very large, very quickly! Table 2.2 shows just how quickly.
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Figure 2.7 Combinations of five variables compared against each other, from
two at a time andy20increasing to five at a time.

TABLE 2.2 The combinatorial explosion.

Number of variables Number of combinations
5 26
7 120
9 502
20 1,048,555
25 33554406

This “blowup” in the number of combinations to consider is known as the combinatorial
explosion and can very quickly defeat any computer, no matter how fast or powerful.
(Calculating combinations is briefly described in the Supplemental Material section at the
end of this chapter.) Because there is no practical way to check for every combination that
the intervariable variability has been captured for the data set, some other method of
estimating (technical talk for guessing!) if the variability has been captured needs to be



used. After all, some estimate of variability capture is needed. Without such a measure,
there is no way to be certain how much data is needed to build a model.

The expression of certainty is the key here and is an issue that is mentioned in different
contexts many times in this book. While it may not be possible to have 100% confidence
that the variability has been captured, it reduces the computational work enormously if
some lesser degree of confidence is acceptable. Reducing the demanded confidence
from 100% to 99%, depending on the number of variables, often changes the task from
impossible to possible but time-consuming. If 98% or 95% confidence is acceptable, the
estimating task usually becomes quite tractable. While confidence measures are used
throughout the preparation process, their justification and use are discussed in Chapter 5.
Chapter 10 includes a discussion on capturing the joint variability of multiple variables.

Missing and Empty Values

As you may recall, the difference between “empty” and “missing” is that the first has no
corresponding real-world value, while the second has an underlying value that was not
captured. Determining if any particular value is empty rather than missing requires domain
knowledge and cannot be automatically detected. If possible, the miner should
differentiate between the two in the data set. Since it is impossible to automatically
differentiate between missing and empty, if the miner cannot provide discriminating
information, it is perforce necessary to deal with all missing values in a similar way. In this
discussion, they will all be referred to as missing.

Some mining tools use techniques that do not require the replacement of missing values.
Some are able to simply ignore the missing value itself, where others have to ignore the
instance (record) altogether. Other tools cannot deal with missing values at all, and have
to have some default replacement for the missing value. Default replacement techniques
are often damaging to the structure of the data set. The discussion on numerating
categorical values discusses how arbitrary value replacement can damage information
content.

The general problem with missing values is twofold. First, there may be some information
content, predictive or inferential, carried by the actual pattern of measurements missing.
For example, a credit application may carry useful information in noting which fields the
applicant did not complete. This information needs to be retained in the data set.

The second problem is in creating and inserting some replacement value for the missing
value. The objective is to insert a value that neither adds nor subtracts information from
the data set. It must introduce no bias. But if it introduces no new information, why do it?

First, default replacement methods often do introduce bias. If not correctly determined, a
poorly chosen value adds information to the data set that is not really present in the world,
thus distorting the data. Adding noise and bias of this sort is always detrimental to
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modeling. If a suitable value can be substituted for the missing values, it prevents the
distortion introduced by poorly chosen defaults.

Second, for those modeling tools that have to ignore the whole instance when one of the
values is missing, plugging the holes allows the instance to be used. That instance may
carry important information in the values that are present, and by plugging the holes that
information is made available to the modeling tool.

There are several methods that can be used to determine information-neutral values to
replace the missing values. Chapter 8 discusses the issues and techniques used. All of
them involve caveats and require knowledgeable care in use.

Although the values of individual variables are missing, this is an issue in preparing the
data set since it is only by looking at how the variable behaves vis-...-vis the other
variables when it is present that an appropriate value can be determined to plug in when it
is missing. Of course, this involves making a prediction, but in a very careful way such that
no distortion is introduced—at least insofar as that is possible.

The Shape of the Data Set

The question of the shape of the data set is not a metaphorical one. To understand why,
we have to introduce the concept of state space.

State space can be imagined to be a space like any other—up to a point. It is called state
space because of the nature of the instances of data. Recall that each instance captures
a number of measurements, one per variable, that were measured under some validating
circumstance. An instance, then, represents the state of the object at validation. That is
where the “state” part of the phrase comes from. It is a space that reflects the various
states of the system as measured and captured in the instance values.

That's fine, but where does “space” come from? Figure 2.6, used earlier to discuss the
variability of two variables, shows a graphical representation of them. One variable is
plotted on one axis, and the other variable is plotted on the other axis. The values of the
combined states of the two variables can easily be plotted as a single point on the graph.
One point represents both values simultaneously. If there were three variables’ values,
they could be plotted on a three-dimensional graph, perhaps like the one shown in Figure
2.8. Of course, this three-dimensional object looks like something that might exist in the
world. So the two- and three-dimensional representations of the values of variables can
be thought of as determining points in some sort of space. And indeed they do—in state
space.



Figure 2.8 Points plotted in a 3D phase space (left) can be represented by a
manifold (right).

State space can be extended to as many dimensions as there are variables. It is
mathematically and computationally fairly easy to deal with state spaces of large numbers
of dimensions. For description, it is very difficult to imagine what is going on in
high-dimensional spaces, except by analogy with two- and three-dimensional spaces.
When describing what is going on in state space, only two or three dimensions will be
used here.

The left image in Figure 2.8 shows a three-dimensional state space, actually an x, y, z plot
of the values of three variables. Wherever these points fall, it is possible to fit a sheet (a
flexible two-dimensional plane) through them. If the sheet is flexible enough, it is possible
to bend it about in state space until it best fits the distribution of points. (We will leave
aside the issue of defining “best” here.) The right-hand image in Figure 2.8 shows how
such a sheet might look. There may be some points that do not fall onto the sheet exactly
when the best fit is made, making a sort of “fuzz” around the sheet.

State space is not limited to three dimensions. However, a sheet squeezed into two
dimensions is called a line. What would it be called in four dimensions? Or five? Or six? A
general name for the n-dimensional extension of a line or sheet is a manifold. It is
analogous to a flexible sheet as it exists in three dimensions, but it can be spread into as
many dimensions as required.

In state space, then, the instance values can all be represented as points defined by the
values of the variables—one variable per dimension. A manifold can in some “best fit” way
be spread through state space so it represents the distribution of the points. The fit of the
manifold to the points may not be perfect, so that the points cluster about the manifold’s
surface, forming “fuzz.”

The actual shape of the manifold may be exceedingly complex, and in some sense,
mining tools are exploring the nature of the shape of the manifold. In the same way that
the X, Y graph in two dimensions represents the relationship of one variable to another,
so the manifold represents the joint behavior of the variables, one to another, and one to
all of the others. However, we are now in a position to examine the question asked at the
beginning of this section: What shape is the data in?
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The question now becomes one of characterizing the manifold.

« If, for instance the “fuzz” is such that the manifold hardly represents the data at all over
some portion of its surface, modeling in that area is not likely to produce good results.

* In another area there may be very few data points around in state space to define the
shape of the manifold. Here, explore the shape as we might, the results will be poor too,
but for a different reason than described above.

» Elsewhere the shape of the manifold may be well defined by the data, but have
problematic shapes. For instance, it might be folded over on itself rather like a breaking
wave. Many modeling tools simply cannot deal with such a shape.

* Itis possible that the manifold has donutlike holes in it, or higher-dimensional forms of
them anyway.

» There could be tunnels through the manifold.

There are quite a number of problems with data sets that can be described as problems
with the shape of the manifold. In several of these cases, adjustments can be made.
Sometimes it is possible to change the shape of the manifold to make it easier to explore.
Sometimes the data can be enriched or enhanced to improve the manifold definition.

Many of these techniques for evaluating the data for problems are a part of data surveying.
The data survey is made prior to modeling to better understand the problems and limitations
of the data before mining. Where this overlaps with data preparation is that sometimes
adjustments can be made to ameliorate problems before they arise. Chapter 6 explores the
concept of state space in detail. Chapter 11 discusses the survey and those survey
techniques that overlap with data preparation. In itself, making the survey is as large a topic
as data preparation, so the discussion is necessarily limited.

2.7 Summary

This chapter has looked at how the world can be represented by taking measurements
about objects. It has introduced the ideas of data and the data set, and various ways of
structuring data in order to work with it. Problems that afflict the data and the data set (and
also the miner!) were introduced. All of this data, and the data set, enfolds information,
which is the reason for mining data in the first place.

The next chapter looks at the process of mining. Just as this chapter briefly examined the
nature of data to provide a framework for the rest of the book, so the next chapter introduces
the nature of what it is to prepare data for mining. And just as this chapter did not solve the
problems discussed, so too the next chapter does not solve all of the problems of mining or



data preparation! Solving the problems discussed must wait until later chapters when this
introductory look at the territory is complete. This point is halfway through the introduction to
the nature of the territory. We've looked at how data connects to the world, and now turn our
attention to how preparation addresses data.

Supplemental Material

Combinations

The formula for determining how many combinations may be taken from n objects, r at a
time, is

|
- i
oL

The symbol ! indicates that the factorial of the quantity is to be used. A factorial of any
number may be found by multiplying the number by one less than itself, and one less than
that, and so on from the number to 1. So

8=8x7x6xXx5x4x3x2x1=40,320
Ifn=5andr= 3, then

3! 120 120
Ci = -t =
35 =30 o2y 12

=10

In determining the full number of variable comparisons needed for 10 variables, all of the
combinations of variables from 2 to 10 have to be summed:

CH+CP+C+C+ CP+ O+ G + 3" + Cp

A more convenient way of writing this expression is to use the summation notation:

10

EE-JG

i=2

The sigma symbol “x” indicates repetitive addition. The “i = 2” indicates that in the
expression to the right of the sigma, the symbol i should first be replaced with a “2.” The
“10” above the sigma indicates that the replacement should continue until 10 is reached.
The expression to the right of the sigma is the notation indicating combination.

Thus it is that



CP+ ¥+ Cf+ O+ O+ CP+ O+ CP+ Cl = ¥ CF°

The only difference is that the sigma notation is more compact.



Chapter 3: Data Preparation as a Process

Overview

Data preparation has been placed in the context of data exploration, in which the problem
to be solved, rather than the technology, is paramount. Without identifying the problem to
solve, it is hard to define how to extract value from the data mining activities that follow.
Equally important is specifying the form of a solution. Without a firm idea of what success
looks like, it is hard to determine if indeed the result found, and the form that it is delivered
in, have actually succeeded. Having specified what a suitable solution looks like, and
collected or discovered appropriate data, you can begin the process of data mining.

Data mining is about working with data, which to a greater or lesser degree reflects some
real-world activity, event, or object. In this discussion of data preparation for mining, there
is a close focus on exploring more exactly what data represents, how and why it is
transformed, and what can be done with and said about it. Much more will be said about
data as the techniques for manipulating it are introduced. However, before examining how
and why data is manipulated, a missing piece still remains to be addressed. Data needs
to be prepared so that the information enfolded within it is most easily accessed by the
mining tools. The missing piece, the bridge to understanding, is the explanation of what
the overall process looks like. The overview of the process as a whole provides a
framework and a reference to understand where each component fits into the overall
design. This chapter provides the overview. Most detail is deliberately left out so that the
process may be seen holistically. The questions that must arise from such a quick dash
across the landscape of data preparation are answered in later chapters when each area
is revisited in more detail.

Preparation of data is not a process that can be carried out blindly. There is no automatic
tool that can be pointed at a data set and told to just “fix” the data. Maybe one day, when
artificial intelligence techniques are a good bit more intelligent than they are today, fully
automatic data preparation will become more feasible. Until that day there will remain as
much art as science in good data preparation. However, just because there is art involved
in data preparation does not mean that powerful technigues are not available or useful.

Because data preparation techniques cannot be completely automated, it is necessary to
apply them with knowledge of their effect on the data being prepared. Understanding their
function and applicability may be more important than understanding how the tools
actually work. The functionality of each tool can be captured in computer code and
regarded as a “black box.” So long as the tools perform reliably and as intended,
knowledge of how the transformations are actually performed is far less important than
understanding the appropriate use and limitations of each of the encapsulated
technigues.
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Art there may be, but successful practice of the art is based on understanding the overall
issues and objectives, and how all the pieces relate together. Gaining that understanding of
the broad picture is the purpose of this chapter. It connects the description of the data
exploration process, data, data sets, and mining tools with data preparation into a whole.
Later chapters discuss the detail of what needs to be done to prepare data, and how to do it.
This chapter draws together these themes and discusses when and why particular
techniques need to be applied and how to decide which technique, from the variety
available, needs to be used.

3.1 Data Preparation: Inputs, Outputs, Models, and
Decisions

The process takes inputs and yields outputs. The inputs consist of raw data and the
miner’s decisions (selecting the problem, possible solution, modeling tools, confidence
limits, etc.). The outputs are two data sets and the Prepared Information Environment
(PIE) modules. Figure 3.1 illustrates this. The decisions that have to be made concern the
data, the tools to be used for mining, and those required by the solution.
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Figure 3.1 The data preparation process illustrating the major decisions, data,
and process inputs and outputs.

This section explains

* What the inputs are, what the outputs are, what they do, and why they’re needed

» How modeling tools affect what is done

» The stages of data preparation and what needs to be decided at each stage

The fundamental purpose of data preparation is to manipulate and transform raw data so
that the information content enfolded in the data set can be exposed, or made more easily



accessible. The best way to actually make the changes depends on two key decisions:
what the solution requires and what the mining tool requires. While these decisions affect
how the data is prepared, the inputs to and outputs from the process are not affected.

During this overview of data preparation, the actual inner workings of the preparation
process will be regarded as a black box. The focus here is in what goes into and what
comes out of the preparation process. By ignoring the details of the actual preparation
process at this stage, it is easier to see why each of the inputs is needed, and the use of
each of the output pieces. The purpose here is to try to understand the relationships
between all of the pieces, and the role of each piece. With that in place, it is easier to
understand the necessity of each step of the preparation process and how it fits into the
whole picture.

At the very highest level, mining takes place in three steps:
1. Prepare the data

2. Survey the data

3. Model the data

Each of these steps has different requirements in the data preparation process. Each step
takes place separately from the others, and each has to be completed before the next can
begin. (Which doesn’t mean that the cycle does not repeat when results of using the
model are discovered. Getting the model results might easily mean that the problem or
solution needs to be redefined, or at least that more/different/better data is found, which
starts off the cycle afresh.)

3.1.1 Step 1: Prepare the Data

Figure 3.1 shows the major steps in the data preparation process. Problem selection is a
decision-and-selection process affecting both solution selection and data selection. This
has been extensively discussed in Chapter 1 and will not be reiterated here. Modeling tool
selection is driven by the nature of the specified solution and by the data available, which
is discussed later in this chapter in “Modeling Tools and Data Preparation.” Chapter 12
discusses tool use and the effect of using prepared data with different techniques.

Some initial decisions have to be made about how the data is to be prepared. In part, the
nature of the problem determines tool selection. If rules are needed, for example, it is
necessary to select a tool that can produce them. In turn, tool selection may influence how
the data is prepared. Inspection of the data may require reformatting or creating some
additional features. Looking at the preliminary decisions that need to be made before
applying the appropriate techniques is covered in part in this chapter and also in the next.
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The miner must determine how the data is to be appropriately prepared. This is based on
the nature of the problem, the tools to be used, and the types of variables in the data set.
With this determined, preparation begins. Preparation has to provide at least four
separate components as outputs:

A training data set

* A testing data set

A PIE-I (Prepared Information Environment Input module)

A PIE-O (Prepared Information Environment Output module)

Each of these is a necessary output and has a specific function, purpose, and use. Each
is needed because of the nature of data sets extracted from the real world. These four
components are the absolute minimum required for mining, and it is likely that additional
data sets will be needed. For example, a validation data set may also be considered
essential. It is not included in the list of four essential components since valid models can
be created without actually validating them at the time the miner creates them. If there is
insufficient data on hand for three representative data sets, for instance, the model could
be validated later when more data is available. But in some sense, each of these four
components is indispensable. Why these four?

The training data set is required to build a model. A testing data set is required for the
modeling tool to detect overtraining. The PIE-I is what allows the model to be applied to
other data sets. The PIE-O translates the model’s answers into applicable measured
values. Since these are the critical output components of the data preparation process,
we must look at each of these four components more closely.

A mining tool’s purpose is to learn the relationships that exist between the variables in the
data set. Preparation of the training data set is designed to make the information enfolded
in the data set as accessible and available as possible to the modeling tool. So what’s the
purpose of the test data set?

Data sets are not perfect reflections of the world. Far from it. Even if they were, the nature
of the measuring process necessarily captures uncertainty, distortion, and noise. This
noise is integral to the nature of the world, not just the result of mistakes or poor
procedures. There are a huge variety of errors that can infect data. Many of these errors
have already been discussed in Chapter 2—for instance, measurement error. Some of
these errors are an inextricable part of the data and cannot be removed or “cleaned.” The
accumulated errors, and other forms of distortion of “true” values, are called noise. The
term “noise” comes from telephony, where the added error to the true signal is actually
heard as the noise of a hiss in a telephone earpiece. AM radio also suffers from noise in
the transmitted signal, especially if lightning is nearby. In general, noise simply means
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distortion of the original signal. Somehow a modeling tool must deal with the noise in the
data.

Each modeling tool has a different way of expressing the nature of the relationships that it
finds between variables. But however it is expressed, some of the relationship between
variables exists because of the “true” measurement and some part is made up of the
relationship caused by the noise. Itis very hard, if not impossible, to precisely determine
which part is made up from the underlying measurement and which from the noise.
However, in order to discover the “true” underlying relationship between the variables, it is
vital to find some way of estimating which is relationship and which is noise.

One problem with noise is that there is no consistent detectable pattern to it. If there were,
it could be easily detected and removed. So there is an unavoidable component in the
training set that should not be characterized by the modeling tool. There are ways to
minimize the impact of noise that are discussed later, but there always remains some
irreducible minimum. In fact, as discussed later, there are even circumstances when it is
advantageous to add noise to some portion of the training set, although this deliberately
added noise is very carefully constructed.

Ideally, a modeling tool will learn to characterize the underlying relationships inside the
data set without learning the noise. If, for example, the tool is learning to make predictions
of the value of some variable, it should learn to predict the true value rather than some
distorted value. During training there comes a point at which the model has learned the
underlying relationships as well as is possible. Anything further learned from this point will
be the noise. Learning noise will make predictions from data inside the training set better.
In any two subsets of data drawn from an identical source, the underlying relationship will
be the same. The noise, on the other hand, not representing the underlying relationship,
has a very high chance of being different in the two data sets. In practice, the chance of
the noise patterns being different is so high as to amount to a practical certainty. This
means that predictions from any data set other than the training data set will very likely be
worse as noise is learned, not better. It is this relationship between the noise in two data
sets that creates the need for another data set, the test data set.

To illustrate why the test data set is needed, look at Figure 3.2. The figure illustrates
measurement values of two variables; these are shown in two dimensions. Each data
point is represented by an X. Although an X is shown for convenience, each X actually
represents a fuzzy patch on the graph. The X represents the actual measured value that
may or may not be at the center of the patch. Suppose the curved line on the graph
represents the underlying relationship between the two variables. The Xs cluster about
the line to a greater or lesser degree, displaced from it by the noise in the relationship.
The data points in the left-hand graph represent the training data set. The right-hand
graph represents the test data set. The underlying relationship is identical in both data
sets. The difference between the two data sets is only the noise added to the
measurements. The noise means that the actual measured data points are not identically
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positioned in the two data sets. However, although different in values, note that by using
the appropriate data preparation techniques discussed later in the book (see, for example,
Chapter 11), it can be known that both data sets do adequately represent the underlying
relationship even though the relationship itself is not known.
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Figure 3.2 The data points in the training and test data sets with the underlying
relationship illustrated by the continuous curved lines.

Suppose that some modeling tool trains and tests on the two data sets. After each attempt
to learn the underlying relationship, some metric is used to measure the accuracy of the
prediction in both the training and test data sets. Figure 3.3 shows four stages of training,
and also the fit of the relationship proposed by the tool at a particular stage. The graphs
on the left represent the training data set; the graphs on the right represent the test data
set.
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Figure 3.3 The four stages of training with training data sets (left) and test data
sets (right): poor fit (a), slightly improved fit due to continued training (b),
near-perfect fit (c), and noise as a result of continued training beyond best fit point

(d).



In Figure 3.3(a), the relationship is not well learned, and it fits both data sets about equally
poorly. After more training, Figure 3.3(b) shows that some improvement has occurred in
learning the relationship, and again the error is now lower in both data sets, and about
equal. In Figure 3.3(c), the relationship has been learned about as well as is possible from
the data available, and the error is low, and about equal in both data sets. In Figure 3.3(d),
learning has continued in the training (left) data set, and an almost perfect relationship
has been extracted between the two variables. The problem is that the modeling tool has
learned noise. When the relationship is tried in the test (right) data set, it does not fit the
data there well at all, and the error measure has increased.

As is illustrated here, the test data set has the same underlying “true” relationships as the
training data set, but the two data sets contain noise relationships that are different.
During training, if the predictions are tested in both the training and test data sets, at first
the predictions will improve in both. So the tool is improving its real predictive power as it
learns the underlying relationships and improves its performance based on those
relationships. In the example shown in Figure 3.3, real-world improvement continues until
the stage shown in Figure 3.3(c). At that point the tool will have learned the underlying
relationships as well as the training data set allows. Any further improvement in prediction
will then be caused by learning noise. Since the noise differs between the training set and
the test set, this is the point at which predictive performance will degrade in the test set.
This degradation begins if training continues after the stage shown in Figure 3.3(c), and
ends up with the situation shown in Figure 3.3(d). The time to stop learning is at the stage
in Figure 3.3(c).

As shown, the relationships are learned in the training data set. The test data set is used
as a check to try to avoid learning noise. Here is a very important distinction: the training
data set is used for discovering relationships, while the test data set is used for
discovering noise. The instances in the test data set are not valid for independently testing
any predictions. This is because the test data has in fact been used by the modeling tool
as part of the training, albeit for noise. In order to independently test the model for
predictive or inferential power, yet another data set is needed that does not include any of
the instances in either the training or test data sets.

So far, the need for two learning sets, training and test, has been established. It may be
that the miner will need another data set for assessing predictive or inferential power. The
chances are that all of these will be built from the same source data set, and at the same
time. But whatever modifications are made to one data set to prepare it for modeling must
also be made to any other data set. This is because the mining tool has learned the
relationships in prepared data. The tool has to have data prepared in all data sets in an
identical way. Everything done in one has to be done in all. But what do these prepared
data sets look like? How does the preparation process alter the data?

Figure 3.4 shows the data view of what is happening during the data preparation process.
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The raw training data in this example has a couple of categorical values and a couple of
numeric values. Some of the values are missing. This raw data set has to be converted
into a format useful for making predictions. The result is that the training and test sets will
be turned into all numeric values (if that is what is needed) and normalized in range and
distribution, with missing values appropriately replaced. These transformations are
illustrated on the right side of Figure 3.4. It is obvious that all of the variables are present
and normalized. (Figure 3.4 also shows the PIE-I and PIE-O. These are needed for later
use.)
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Figure 3.4 Data preparation process transforms raw data into prepared training
and test sets, together with the PIE-I and PIE-O modules.

3.1.2 Step 2: Survey the Data

Mining includes surveying the data, that is, taking a high-level overview to discover what
is contained in the data set. Here the miner gains enormous and powerful insight into the
nature of the data. Although this is an essential, critical, and vitally important part of the
data mining process, we will pass quickly over it here to continue the focus on the process
of data preparation.

3.1.3 Step 3: Model the Data

In this stage, the miner applies the selected modeling tool to the training and test data
sets to produce the desired predictive, inferential, or other model desired. (See Figure
3.5.) Since this book focuses on data preparation, a discussion of modeling issues,
methods, and techniques is beyond the present scope. For the purposes here it will be
assumed that the model is built.



data sat
~
- T Inferential
A | Mining tool pradictive
Test / model
dEI_ﬁl. Eﬂt -

— ,-f"'-}
]’f”

—

Figure 3.5 Mining the inferential or predictive model.

3.1.4 Use the Model

Having created a satisfactory model, in order to be of practical use it must be applied to
“live” data, also called the execution data. Presumably, it is very similar in character to the
training and test data. It should, after all, be drawn from the same population (discussed in
Chapter 5), or the model is not likely to be applicable. Because the execution data is in its
‘raw” form, and the model works only with prepared data, it is necessary to transform the
execution data in the same way that the training and test data were transformed. That is
the job of the PIE-I: it takes execution data and transforms it as shown in Figure 3.6(a).
Figure 3.6(b) shows what the actual data might look like. In the example it is variable V4
that is missing and needs to be predicted.
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Figure 3.6 Run-time prediction or inferencing with execution data set (a). Stages
that the data goes through during actual inference/prediction process (b).

Variable V4 is a categorical variable in this example. The data preparation, however,
transformed all of the variables into scaled numeric values. The mined model will



therefore predict the result in the form of scaled numeric values. However, the prediction
must be given as a categorical value. This is the purpose of the PIE-O. It “undoes” the
effect of the PIE-I. In this case, it converts the mined model outputs into the desired
categorical values.

The whole purpose of the two parts of the PIE is to sit between the real-world data, cleaning
and preparing the incoming data stream identically with the way the training and test sets
were prepared, and converting predicted, transformed values back into real-world values.
While the input execution data is shown as an assembled file, it is quite possible that the
real-world application has to be applied to real-time transaction data. In this case, the PIE
dynamically prepares each instance value in real time, taking the instance values from
whatever source supplies them.

3.2 Modeling Tools and Data Preparation

As always, different tools are valuable for different jobs. So too it is with the modeling tools
available. Prior to building any model, the first two questions asked should be: What do
we need to find out? and Where is the data? Deciding what to find out leads to the next
two questions: Exactly what do we want to know? and In what form do we want to know
it? (These are issues discussed in Chapter 1.) A large number of modeling tools are
currently available, and each has different features, strengths, and weaknesses. This is
certainly true today and is likely to be even more true tomorrow. The reason for the
greater differences tomorrow lies in the way the tools are developing.

For a while the focus of data mining has been on algorithms. This is perhaps natural since
various machine-learning algorithms have competed with each other during the early,
formative stage of data exploration development. More and more, however, makers of
data exploration tools realize that the users are more concerned with business problems
than algorithms. The focus on business problems means that the newer tools are being
packaged to meet specific business heeds much more than the early, general-purpose
data exploration tools. There are specific tools for market segmentation in database
marketing, fraud detection in credit transactions, churn management for telephone
companies, and stock market analysis and prediction, to mention only four. However,
these so-called “vertical market” applications that focus on specific business needs do
have drawbacks. In becoming more capable in specific areas, usually by incorporating
specific domain knowledge, they are constrained to produce less general-purpose output.
As with most things in life, the exact mix is a compromise.

What this means is that the miner must take even more care now than before to
understand the requirements of the modeling tool in terms of data preparation, especially
if the data is to be prepared “automatically,” without much user interaction. Consider, for
example, a futures-trading automation system. It may be intended to predict the
movement, trend, and probability of profit for particular spreads for a specific futures
market. Some sort of hybrid model works well in such a scenario. If past and present
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market prices are to be included, they are best regarded as continuous variables and are
probably well modeled using a neural-network-based approach. The overall system may
also use input from categorized news stories taken off a news wire. News stories are
read, categorized, and ranked according to some criteria. Such categorical data is better
modeled using one of the rule extraction tools. The output from both of these tools will
itself need preparation before being fed into some next stage. The user sees none of the
underlying technicality, but the builder of the system will have to make a large number of
choices, including those about the optimal data preparation techniques to meet each
objective. Categorical data and numeric data may well, and normally do, require different
preparation techniques.

At the project design stage, or when directly using general-purpose modeling tools, it is
important to be aware of the needs, strengths, and weaknesses of each of the tools
employed. Each tool has a slightly different output. It is harder to produce humanly
comprehensible rules from any neural network product than from one of the rule
extraction variety, for example. Almost certainly it is possible to transform one type of
output to another use—to modify selection rules, for instance, into providing a score—but
it is frequently easier to use a tool that provides the type of output required.

3.2.1 How Modeling Tools Drive Data Preparation

Modeling tools come in a wide variety of flavors and types. Each tool has its strengths and
weaknesses. It is important to understand which particular features of each tool affect
how data is prepared.

One main factor by which mining tools affect data preparation is the sensitivity of the tool
to the numeric/categorical distinction. A second is sensitivity to missing values, although
this sensitivity is largely misunderstood. To understand why these distinctions are
important, it is worth looking at what modeling tools try to do.

The way in which modeling tools characterize the relationships between variables is to
partition the data such that data in particular partitions associates with particular
outcomes. Just as some variables are discrete and some variables are continuous, so
some tools partition the data continuously and some partition it discretely. In the examples
shown in Figures 3.2 and 3.3 the learning was described as finding some “best-fit” line
characterizing the data. This actually describes a continuous partitioning in which you can
imagine the partitions are indefinitely small. In such a partitioning, there is a particular
mathematical relationship that allows prediction of output value(s) depending on how far
distant, and in exactly what direction (in state space), the instance value lies from the
optimum. Other mining tools actually create discrete partitions, literally defining areas of
state space such that if the predicting values fall into that area, a particular output is
predicted. In order to examine what this looks like, the exact mechanism by which the
partitions are created will be regarded as a black box.
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We have already discussed in Chapter 2 how each variable can be represented as a
dimension in state space. For ease of description, we’ll use a two-dimensional state
space and only two different types of instances. In any more realistic model there will
almost certainly be more, maybe many more, than two dimensions and two types of
instances. Figure 3.7 shows just such a two-dimensional space as a graph. The Xs and
Os in Figure 3.7(a) show the positions of instances of two different instance types. It is the
job of the modeling tool to find optimal ways of separating the instances.

Figure 3.7 Modeling a data set: separating similar data points (a), straight lines
parallel to axes of state space (b), straight lines not parallel to axes of state space
(c), curves (d), closed area (e), and ideal arrangement (f).

Various “cutting” methods are directly analogous to the ways in which modeling tools
separate data. Figure 3.7(b) shows how the space might be cut using straight lines
parallel to the axes of the graph. Figure 3.7(c) also shows cuts using straight lines, but in
this figure they are not constrained to be parallel to the axes. Figure 3.7(d) shows cuts
with lines, but they are no longer constrained to be straight. Figure 3.7(e) shows how
separation may be made using areas rather than lines, the areas being outlined.

Whichever method or tool is used, it is generally true that the cuts get more complex
traveling from Figure 3.7(b) to 3.7(e). The more complex the type of cut, the more
computation it takes to find exactly where to make the cut. More computation translates
into “longer.” Longer can be very long, too. In large and complex data sets, finding the
optimal places to cut can take days, weeks, or months. It can be a very difficult problem to
decide when, or even if, some methods have found optimal ways to divide data. For this
reason, it is always beneficial to make the task easier by attempting to restructure the
data so that it is most easily separated. There are a number of “rules of thumb” that work
to make the data more tractable for modeling tools. Figure 3.7(f) shows how easy a time
the modeling tool would have if the data could be rearranged as shown during



preparation! Maybe automated preparation cannot actually go as far as this, but it can go
at least some of the way, and as far as it can go is very useful.

In fact, the illustrations in Figure 3.7 do roughly correspond with the ways in which
different tools separate the data. They are not precisely accurate because each vendor
modifies “pure” algorithms in order to gain some particular advantage in performance. It is
still worthwhile considering where each sits, since the underlying method will greatly affect
what can be expected to be learned from each tool.

3.2.2 Decision Trees

Decision trees use a method of logical conjunctions to define regions of state space.
These logical conjunctions can be represented in the form of “If . . . then” rules. Generally
a decision tree considers variables individually, one at a time. It starts by finding the
variable that best divides state space and creating a “rule” to specify the split. The
decision tree algorithm finds for each subset of the instances another splitting rule. This
continues until the triggering of some stopping criterion. Figure 3.8 illustrates a small
portion of this process.
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Figure 3.8 A decision tree cutting state space.

Due to the nature of the splitting rules, it can easily be seen that the splits have to be
parallel to one of the axes of state space. The rules can cut out smaller and smaller
pieces of state space, but always parallel to the axes.

3.2.3 Decision Lists

Decision lists also generate “If . . . then” rules, and graphically appear similar to decision
trees. However, decision trees consider the subpopulation of the “left” and “right” splits
separately and further split them. Decision lists typically find a rule to well characterize



some small portion of the population that is then removed from further consideration. At
that point it seeks another rule for some portion of the remaining instances. Figure 3.9
shows how this might be done.

Figure 3.9 A decision list inducing rules that cover portions of the remaining data
until all instances are accounted for.

(Although this is only the most cursory look at basic algorithms, it must be noted that
many practical tree and list algorithms at least incorporate techniques for allowing the cuts
to be other than parallel to the axes.)

3.2.4 Neural Networks

Neural networks allow state space to be cut into segments with cuts that are not parallel to
the axes. This is done by having the network learn a series of “weights” at each of the
“nodes.” The result of this learning is that the network produces gradients, or sloping lines,
to segment state space. In fact, more complex forms of neural networks can learn to fit
curved lines through state space, as shown in Figure 3.10. This allows remarkable
flexibility in finding ways to build optimum segmentation. Far from requiring the cuts to be
parallel to the axes, they don’t even have to be straight.
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Figure 3.10 Neural network training.

As the cuts become less linear, and not parallel to the axes, it becomes more and more
difficult to express the rules in the form of logical conjunctions—the “If . . . then” rules. The
expression of the relationships becomes more like fairly complex mathematical equations.
A statistician might say they resemble “regression” equations, and indeed they do.

(Chapter 10 takes a considerably more detailed look at neural networks, although not for
the purposes of predictive or inferential modeling.)

3.2.5 Evolution Programs

In fact, using a technique called evolution programming, it is possible to perform a type of
regression known as symbolic regression. It has little in common with the process of
finding regression equations that is used in statistical analysis, but it does allow for the
discovery of particularly difficult relationships. It is possible to use this technique to
discover the equation that would be needed to draw the curve in Figure 3.7(e).

3.2.6 Modeling Data with the Tools

There are more techniques available than those listed here; however, these are fairly
representative of the techniques used in data mining tools available today. Demonstration
versions of commercial tools based on some of these ideas are available on the CD-ROM
accompanying this book. They all extend the basic ideas in ways the vendor feels
enhances performance of the basic algorithm. These tools are included as they generally
will benefit from having the data prepared in different ways.

Considered at a high level, modeling tools separate data using one of two approaches.
The first way that tools use is to make a number of cuts in the data set, separating the



total data set into pieces. This cutting continues until some stopping criterion is met. The
second way is to fit a flexible surface, or at least a higher-dimensional extension of one (a
manifold), between the data points so as to separate them. It is important to note that in
practice it is probably impossible, with the information contained in the data set, to
separate all of the points perfectly. Often, perfect separation is not really wanted anyway.
Because of noise, the positioning of many of the points may not be truly representative of
where they would be if it were possible to measure them without error. To find a perfect fit
would be to learn this noise. As discussed earlier, the objective is for the tool to discover
the underlying structure in the data without learning the noise.

The key difference to note between tools is that the discrete tools—those that cut the data
set into discrete areas—are sensitive to differences in the rank, or order, of the values in
the variables. The quantitative differences are not influential. Such tools have advantages
and disadvantages. You will recall from Chapter 2 that a rank listing of the joint distances
between American cities carries enough information to recover their geographical layout
very accurately. So the rank differences do carry a very high information content. Also,
discrete tools are not particularly troubled by outliers since it is the positioning in rank that
is significant to them. An outlier that is in the 1000th-rank position is in that position
whatever its value. On the other hand, discrete tools, not seeing the quantitative
difference between values, cannot examine the fine structure embedded there. If there is
high information content in the quantitative differences between values, a tool able to
model continuous values is heeded. Continuous tools can extract both quantitative and
qualitative (or rank) information, but are very sensitive to various kinds of distortion in the
data set, such as outliers. The choice of tool depends very much on the nature of the data
coupled with the requirements of the problem.

The simplified examples shown in Figure 3.7 assume that the data is to be used to predict
an output that is in one of two states—O or X. Typically, tools that use linear cuts do have
to divide the data into such binary predictions. If a continuous variable needs to be
predicted, the range of the variable has to be divided into discrete pieces, and a separate
model built for predicting if the range is within a particular subrange. Tools that can
produce nonlinear cuts can also produce the equations to make continuous predictions.
This means that the output range does not have to be chopped up in the way that the
linear cutting tools require.

These issues will be discussed again more fully later. It is also important to reiterate that,
in practice, mining tool manufacturers have made various modifications so that the
precise compromises made for each tool have to be individually considered.

3.2.7 Predictions and Rules

Tool selection has an important impact on exactly which techniques are applied to the
unprepared data. All of the techniques described here produce output in one of two
forms—predictions or rules. Data modeling tools end up expressing their learning either
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as a predicted number, a predicted categorical, or as a set of rules that can be used to
separate the data in useful ways.

For instance, suppose that it is required as part of a solution to model the most likely value
of the mortgage rate. The mortgage rate is probably best regarded as a continuous
variable. Since a prediction of a continuous variable is needed, it indicates that the most
appropriate tool to use for the model would be one that is capable of continuous
predictions. Such a tool would probably produce some sort of equation to express the
relationship of input values to the predicted value. Since a continuous value is required as
output, it is advantageous, and works best, when the input values are also continuous.
Thus, indications about the type of tools and some of the data preparation decisions are
already made when the solution is selected.

Having decided on a predicted mortgage rate, perhaps it is required to make a model to
determine if a particular prospective customer is or is not likely to respond to a solicitation
with this rate. For this solution it might be most appropriate to use a model with a binary,
yes/no output. The most appropriate tool is some sort of classifier that will classify records
into the yes/no dichotomy required. Preparing data for a yes/no dichotomy may benefit
from techniques such as binning that enhance the ability of many tools to separate the
data. Binning is a technique of lumping small ranges of values together into categories, or
“bins,” for the purpose of reducing the variability (removing some of the fine structure) in a
data set. For instance, customer information response cards typically ask for household
income using “from-to” ranges in which household income falls. Those categories are
“bins” that group ranges of income. There are circumstances in mining in which this can
be useful.

Continuous and dichotomous modeling methods can be used for more than just making
predictions. When building models to understand what is “driving” certain effects in the
data set, the models are often used to answer questions about what features are
important in particular areas of state space. Such modeling techniques are used to
answer questions like “What are the underlying factors associated with fraudulent
transactions in the branch offices?” Since the affecting factors may possibly be different
from area to area of state space, it is important to use preparation techniques that retain
as much of the fine structure—that is, the detailed fluctuations in the data set—over the
full range of variability of the variables.

Looking for affecting factors is a form of inferential modeling. Examination of what is
common to sets of rules is one way to discover the common themes present in particular
situations, such as the branch office fraud alluded to above. The ability to give clear
reasons for action are particularly important in several situations, such as credit approval
or denial, where there is a legal requirement for explanation to be available. Generation of
such rules can also be expressed, say, as SQL statements, if it is needed to extract parts
of a data set. Perhaps a mailing list is required for all people meeting particular criteria.
What is important here is to focus on how the required output affects the preparation of
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the input data, rather than the use to which the solution will be put.

3.2.8 Choosing Techniques

In summary, the effect that the choice of modeling tools has on data preparation is
determined by the tool’s characteristics. Is the tool better able to model continuous or
categorical data? Since actual tools are all modifications of “pure” algorithms, this is a
question that is hard to answer in its general form. Each tool has to be evaluated
individually. Practically speaking, it is probably best to try several preparation techniques,
preparing the data as continuous and also using several binning options to create
categorized data. However, it is also important to use a mining tool that produces output
appropriate to the needs of the solution. If the solution required calls for a categorical
prediction, the tool needs to be able to produce such a solution and will probably benefit
from categorical training, test, and execution data. The data preparation techniques
discussed in this book are designed to allow preparation of the data set in a variety of
ways. They allow the data to be manipulated as needed, so the miner can focus attention
on deciding which are the appropriate techniques and tools to use in a particular situation.

3.2.9 Missing Data and Modeling Tools

Missing values form a very important issue in preparing data and were discussed in
Chapter 2. Whenever there are missing values, it is vital that something be done about
them. There are several methods for determining a suitable replacement value, but under
no circumstances should the missing values be ignored or discarded. Some tools,
particularly those that handle categorical values well, such as decision trees, are said to
handle missing values too. Some really can; others can’t. Some discrete-type modeling
tools can actually elegantly ignore missing values, while others regard a missing value as
just another categorical value, which is not really a satisfactory approach. Other tools,
such as neural networks, require that each input be given a numeric value and any record
that has a missing value has to be either completely ignored, or some default for the
missing value must be created.

There are going to be problems with whatever default replacement approach is taken—very
often major problems. At the very least, left untreated except by the default solution, missing
values cause considerable distortion to the fabric of the data set. Not all missing values, for
instance, can be assumed to represent the same value. Yet that is what a decision tree does
if it assigns missing values to a separate category—assumes that they all have the same
measured value. Similar distortions occur if some default numerical value is assigned.
Clearly, a better solution needs to be found. Several choices are available, and the pros and
cons of each method are discussed in detail in Chapter 8. For the time being, note that this is
one of the issues that must be dealt with effectively for the best models to be built.

3.3 Stages of Data Preparation
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Data preparation involves two sets of preparatory activities. The first are nonautomated
activities that are procedural, or activities that result in a decision about the approach that
the miner decides to take. There are many activities and decisions to be made in this
stage that can be described as “basic preparation,” and they are discussed in detail in the
next chapter. The second set of activities are automated preparation activities. Detailed
descriptions of the techniques used in the automated preparation stage, the
demonstration code, and the process and decision points that go into data preparation
round out the remaining chapters. What follows is a brief overview of the eight stages:

1. Accessing the data

2. Auditing the data

3. Enhancing and enriching the data

4. Looking for sampling bias

5. Determining data structure

6. Building the PIE

7. Surveying the data

©

Modeling the data

3.3.1 Stage 1: Accessing the Data

The starting point for any data preparation project is to locate the data. This is sometimes
easier said than done! There are a considerable variety of issues that may hinder access
to the nominated data, ranging from legal to connectivity. Some of these commonly
encountered issues are reviewed later, but a comprehensive review of all issues is almost
impossible, simply because every project provides unique circumstances. Nonetheless,
locating and securing the source of data supply and ensuring adequate access is not only
the first step, it is absolutely essential.

You might say, “Well, | have part of the problem licked because | have access to a data
warehouse.” It is a fact that data warehouses are becoming repositories of choice. More
and more it is a warehouse that is to be mined. However, a warehouse is by no means
essential in order to mine data. In fact, a warehouse can be positively detrimental to the
mining effort, depending on how the data was loaded. Warehouses also have other
drawbacks, a significant one being that they are often created with a particular structure to
reflect some specific view of the enterprise. This imposed structure can color all modeling
results if care is not taken to avoid bias.
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3.3.2 Stage 2: Auditing the Data

Assuming that suitable data is available, the first set of basic issues that have to be
addressed concern

* The source of supply
* The quantity of data
» The quality of the data

Building robust models requires data that is sufficient in quantity, and of high enough
quality to create the needed model. A data audit provides a methodology for determining
the status of the data set and estimates its adequacy for building the model. The reality is
that the data audit does not so much assure that the model will be able to be built, but at
least assures that the minimum requirements have been met.

Auditing requires examining small samples of the data and assessing the fields for a
variety of features, such as number of fields, content of each field, source of each field,
maximum and minimum values, number of discrete values, and many other basic metrics.
When the data has been assessed for quantity and quality, a key question to ask is, Is
there a justifiable reason to suppose that this data has the potential to provide the
required solution to the problem? Here is a critical place to remove the expectation of
magic. Wishful thinking and unsupported hopes that the data set that happens to be
available will actually hold something of value seldom results in a satisfactory model. The
answer to whether the hopes for a solution are in fact justified lies not in the data, but in
the hopes! An important part of the audit, a nontechnical part, is to determine the true
feasibility of delivering value with the resources available. Are there, in fact, good reasons
for thinking that the actual data available can meet the challenge?

3.3.3 Stage 3: Enhancing and Enriching the Data

With a completed audit in hand, there is at least some firm idea of the adequacy of the
data. If the audit revealed that the data does not really support the hopes founded on it, it
may be possible to supplement the data set in various ways. Adding data is a common
way to increase the information content. Many credit card issuers, for instance, will
purchase information from outside agencies. Using this purchased data allows them to
better assess the creditworthiness of their existing customers, or of prospects who are not
yet their customers.

There are several ways in which the existing data can be manipulated to extend its

usefulness. Such manipulation, for example, is to calculate price/earnings (P/E) ratios for
modeling the value of share prices. So-called “fundamentalist” investors feel that this ratio
has predictive value. They may be right. If they are, you may ask, “Since the price and the
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earnings are present in the source data, how would providing information about the P/E
ratio help?” First, the P/E ratio represents an insight into the domain about what is
important. This insight adds information to the modeling tool’s input. Second, presenting
this precalculated information saves the modeling tool from having to learn division!
Modeling tools can and do learn multiplicative relationships. Indeed, they can learn
relationships considerably more complicated than that. However, it takes time and system
resources to discover any relationship. Adding enough domain knowledge and learning
assistance about important features can boost performance and cut development time
dramatically. In some cases, it turns the inability to make any model into the ability to
make useful models.

3.3.4 Stage 4: Looking for Sampling Bias

Sampling bias presents some particularly thorny problems. There are some automated
methods for helping to detect sampling bias, but no automated method can match
reasoned thought. There are many methods of sampling, and sampling is always
necessary for reasons discussed in Chapter 5. Sampling is the process of taking a small
piece of a larger data set in such a way that the small piece accurately reflects the
relationships in the larger data set. The problem is that the true relationships that exist in
the fullest possible data set (called the population) may, for a variety of reasons, be
unknowable. That means that it is impossible to actually check to see if the sample is
representative of the population in fact. It is critical to bend every effort to making sure that
the data captured is as representative of the true state of affairs as possible.

While sampling is discussed in many statistical texts, miners face problems not addressed
in such texts. It is generally assumed that the analyst (statistician/modeler) has some
control over how the data is generated and collected. If not the analyst, at least the creator
or collector of the data may be assumed to have exercised suitable control to avoid
sampling bias. Miners, however, sometimes face collections of data that were almost
certainly gathered for purposes unknown, by processes unsure, but that are now
expected to assist in delivering answers to questions unthought of at the time. With the
provenance of the data unknown, it is very difficult to assess what biases are present in
the data, and that, if uncorrected, will produce erroneous and inapplicable models.

3.3.5 Stage 5: Determining Data Structure (Super-, Macro-,
and Micro-)

Structure refers to the way in which the variables in a data set relate to each other. It is
this structure that mining sets out to explore. Bias, mentioned above, stresses the natural
structure of a data set so that the distorted data is less representative of the real world
than unbiased data. But structure itself has various forms: super, macro, and micro.

Superstructure refers to the scaffolding erected to capture the data and form a data set.
The superstructure is consciously and deliberately created and is easy to see. When the
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data set was created, decisions had to be made as to exactly which measurements were
to be captured, measured in which ways, and stored in which formats. Point-of-sale
(POS) data, for instance, captures information about a purchasing event at the point that
the sale takes place. A vast wealth of possible information could be captured at this point,
but capturing it all would swamp the system. Thus, POS information typically does not
include any information about the weather, the length of the checkout line, local traffic
information affecting access to the store, or the sort of bag the consumer chose for
carrying away purchases. This kind of information may be useful and informative, but the
structure created to capture data has no place to put it.

Macrostructure concerns the formatting of the variables. For example, granularity is a
macro structural feature. Granularity refers to the amount of detail captured in any
measurement—time to the nearest minute, the nearest hour, or simply differentiating
morning, afternoon, and night, for instance. Decisions about macro structure have an
important impact on the amount of information that a data set carries, which, in turn, has a
very significant effect on the resolution of any model built using that data set. However,
macro structure is not part of the scaffolding consciously erected to hold data, but is
inherent in the nature of the measurements.

Microstructure, also referred to as fine structure, describes the ways in which the
variables that have been captured relate to each other. It is this structure that modeling
explores. A basic assessment of the state of the micro structure can form a useful part of
the data audit (Stage 2 above). This brief examination is a simple assessment of the
complexity of the variables’ interrelationships. Lack of complexity does not prevent
building successful predictive models. However, if complex and unexpected results are
desired, additional data will probably be needed.

3.3.6 Stage 6: Building the PIE

The first five steps very largely require assessing and understanding the data that is
available. Detailed scrutiny of the data does several things:

It helps determine the possibility, or necessity, of adjusting or transforming the data.

It establishes reasonable expectations of achieving a solution.

It determines the general quality, or validity, of the data.

It reveals the relevance of the data to the task at hand.

Many of these activities require the application of thought and insight rather than of
automated tools. Of course, much of the assessment is supported by information gained
by application of data preparation and other discovery tools, but the result is information
that affects decisions about how to prepare and use the data.
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By this stage, the data’s limitations are known, at least insofar as they can be. Decisions
have been made based on the information discovered. Fully automated techniques for
preparing the data (such as those on the CD-ROM accompanying this book) can now be
used.

The decisions made so far determine the sequence of operations. In a production
environment, the data set may be in any machine-accessible form. For ease of discussion
and explanation, it will be assumed that the data is in the form of a flat file. Also, for ease
of illustration, each operation is discussed sequentially. In practice the techniques are not
likely to be applied exactly as described. It is far easier to aggregate information that will
be used by several subsequent stages during one pass through the file. This description
is intended as thematic, to provide an overview and introduction to preparation activities.

Data Issue: Representative Samples

A perennial problem is determining how much data is needed for modeling. One tenet of
data mining is “all of the data, all of the time.” That is a fine principle, and if it can be
achieved, a worthwhile objective. However, for various reasons it is not a practical
solution. Even if as much data as possible is to be examined, survey and modeling still
require at least three data sets—a training set, a test set, and an execution set. Each data
set needs to be representative. Feature enhancement, discussed in Chapters 4 and 10,
may require a concentration of instances exhibiting some particular feature. Such a
concentration can only be made if a subset of data is extracted from the main data set. So
there is always a need to decide how large a data set is required to be an accurate
reflection of the data’s fine structure.

In this case, when building the PIE, it is critical that it is representative of the fine structure.
Every effort must be made to ensure that the PIE itself does not introduce bias! Without
checking the whole population of instances, which may be an impossibility, there is no
way to be 100% certain that any particular sample is, in fact, representative. However, it is
possible to be some specified amount less than 100% certain, say, 99% or 95% certain. It
is these certainty measures that allow samples to be taken. Selecting a suitable level of
certainty is an arbitrary decision.

Data Issue: Categorical Values

Categoricals are “numerated,” or assigned appropriate numbers. Even if, in the final
prepared data, the categoricals are to be modeled as categorical values, they are still
numerated for estimating missing values.

Chapter 2 contains an example showing that categoricals have a natural ordering that
needs to be preserved. It is an ordering that actually exists in the world and is reflected in
the categorical measurements. When building predictive or inferential models, it is critical
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that the natural order of the categorical values be preserved insofar as that is possible.
Changing this natural ordering is imposing a structure. Even imposing a random structure
loses information carried by the categorical measurement. If it is not random, the situation
is worse because it introduces a pattern not present in the world.

The exact method of numeration depends on the structure of the data set. In a mixed
numeric/categorical data set, the numeric values are used to reflect their order into the
categoricals. This is by far the most successful method, as the numeric values have an
order and magnitude spacing. In comprehensive data sets, this allows a fair recovery of
the appropriate ordering. In fact, it is interesting to convert a variable that is actually
numeric into a categorical value and see the correct ordering and separation recovered.

Data sets that consist entirely of categorical measurements are slightly more problematic.
It is certainly possible to recover appropriate orderings of the categoricals. The problem is
that without numeric variables in the data set, the recovered values are not anchored to
real-world phenomena. The numeration is fine for modeling and has in practice produced
useful models. It is, however, a dangerous practice to use the numerated orderings to
infer anything absolute about the meaning of the magnitudes. The relationships of the
variables, one to another, hold true, but are not anchored back to the real world in the way
that numerical values are.

It is important to note that no automated method of recovering order is likely to be as
accurate as that provided by domain knowledge. Any data set is but a pale reflection of
the real world. A domain expert draws on a vastly broader range of knowledge of the
world than can be captured in any data set. So, wherever possible, ordered categorical
values should be placed in their appropriate ordering as ordinal values. However, as it is
often the case when modeling data that there is no domain expert available, or that no
ordinal ranking is apparent, the techniques used here have been effective.

Data Issue: Normalization

Several types of normalization are very useful when modeling. The normalization
discussed throughout this book has nothing in common with the sort of normalization
used in a database. Recall that the assumption for this discussion is that the data is
present as a single table. Putting data into its various normal forms in a database requires
use of multiple tables. The form of normalization discussed here requires changing the
instance values in specific and clearly defined ways to expose information content within
the data and the data set. Although only introduced here, the exact normalization
methods are discussed in detail in Chapter 7.

Some tools, such as neural networks, require range normalization. Other tools do not
require normalization, but do benefit from having normalized data. Once again, as with
other issues, it is preferable for the miner to take control of the normalization process.
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Variables in the data set should be normalized both across range and in distribution.
There is also very much to be learned from examining the results of normalization, which
is briefly looked at in Chapter 7. In addition to range normalization, distribution
normalization deals with many problems, such as removing much of the distortion of
outliers and enhancing linear predictability.

Data Issue: Missing and Empty Values

Dealing with missing and empty values is very important. Unfortunately, there is no
automated technique for differentiating between missing and empty values. If done at all,
the miner has to differentiate manually, entering categorical codes denoting whether the
value is missing or empty. If it can be done, this can produce useful results. Usually it
can’t be, or at any rate isn’'t, done. Empty and missing values simply have to be treated
equally.

All modeling tools have some means of dealing with missing values, even if it is to ignore
any instance that contains a missing value. Other strategies include assigning some fixed
value to all missing values of a particular variable, or building some estimate of what the
missing value might have been, based on the values of the other variables that are
present. There are problems with all of these approaches as each represents some form
of compromise.

In some modeling applications, there is high information content in noting the patterns of
variables that are missing. In one case this proved to be the most predictive variable!
When missing values are replaced, unless otherwise captured, information about the
pattern of values that are missing is lost. A pseudo-categorical is created to capture this
information that has a unique value for each missing value pattern. Only after this
information has been captured are the values replaced. Chapter 8 discusses the issues
and choices.

Data Issue: Displacement Series

At this point in the preparation process the data is understood, enhanced, enriched,
adequately sampled, fully numerated, normalized in two dimensions (range and
distribution), and balanced. If the data set is a displacement series (time series are the
most common), the data set is treated with various specialized preparatory techniques.
The most important action here, one that cannot be automated safely, requires inspection
of the data by the miner. Detrending of displacement series can be a ruinous activity to
information content if in fact the data has no real trend! Caution is an important
watchword. Here the miner must make a nhumber of decisions and perhaps smooth and/or
filter to prepare the data. Chapter 9 covers the issues.

(At this point the PIE is built. This can take one of several forms—computer program,
mathematical equations, or program code. The demonstration program and code included
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on the CD-ROM that accompanies this book produce parameters in a file that a separate
program reads to determine how to prepare raw data. The previous activities have
concentrated on preparing variables. That is to say, each variable has been considered in
isolation from its relationship with other variables. With the variables prepared, the next
step is to prepare data sets, which is to say, to consider the data as a whole.)

Data Set Issue: Reducing Width

Data sets for mining can be thought of as being made from a two-dimensional table with
columns representing variable measurements, and rows representing instances, or
records. Width describes the number of columns, whereas depth describes the number of
rows.

One of the knottiest problems facing a miner deals with width. More variables presumably
carry more information. But too many variables can bring any computational algorithm to
its knees. This is referred to as the combinatorial explosion (discussed in Chapter 2). The
number of relationships between variables increases multiplicatively as the variable count
increases; that is, with 10 variables the first variable has to be compared with 9 neighbors,
the second with 8 (the second was already compared with the first, so that doesn’t have to
be done again), and so on. The number of interactionsis9x8x7x6..., whichis
362,880 comparisons. With 13 variables the number of interactions is up to nearly 40
million. By 15 variables it is at nearly 9 billion. Most algorithms have a variety of ways to
reduce the combinatorial complexity of the modeling task, but too many variables can
eventually defeat any method.

Thus it is that the miner may well want to reduce the number of columns of data in a data
set, if it's possible to do so without reducing its information content. There are several
ways to do this if required, some more arbitrary than others. Chapter 10 discusses the
pros and cons of several methods.

Data Set Issue: Reducing Depth

Depth does not have quite the devastating impact that width can have. However, while
there is a genuine case in data mining for “all of the data, all of the time,” there are
occasions when that is not required. There is still a need for assurance that the subset of
data modeled does in fact reflect all of the relationships that exist in the full data set. This
requires another look at sampling. This time the sampling has to consider the interactions
between the variables, not just the variability of individual variables considered alone.

Data Set/Data Survey Issue: Well- and lll-Formed Manifolds

This is really the first data survey step as well as the last data preparation step. The data
survey, discussed briefly in Chapter 11, deals with deciding what is in the data set prior to
modeling. However, it forms the last part of data preparation too because if there are
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problems with the shape of the manifold, it may be possible to manipulate the data to
ameliorate some of them. The survey is not concerned with manipulating data, but with
giving the miner information that will help with the modeling.

As the last step in data preparation, this look at the manifold seeks to determine if there
are problems that can be eliminated by manipulation. If the manifold is folded, for
instance, there will be problems. In two dimensions a fold might look like an “S.” A vertical
line drawn through the “S” will cut it in three places. The vertical line will represent a single
value of one variable for which three values of the other variable existed. The problem
here is that there is no additional information available to decide which of the three values
will be appropriate. If, as in Figure 3.11, there is some way of “rotating” the “S” through 90
degrees, the problem might be solved. It is these sorts of problems, and others together
with possible solutions, that are sought in this stage.
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Figure 3.11 Deliberately introduced and controlled distortion of the manifold can
remove problems.

3.3.7 Stage 7: Surveying the Data

The data survey examines and reports on the general properties of the manifold in state
space. In a fairly literal sense it produces a map of the properties of the manifold, focusing
on the properties that the miner finds most useful and important. It cannot be an actual
map if, as is almost invariably the case, state space exists in more than three dimensions.
The modeler is interested in knowing many features, such as the relative density of points
in state space, naturally occurring clusters, uncorrectable distortions and where they
occur, areas of particular relative sparsity, how well defined the manifold is (its
“fuzzyness”), and a host of other features. Unfortunately, it is impossible, within the
confines of this book, to examine the data survey in any detail at all. Chapter 11 discusses
the survey mainly from the perspective of data preparation, discussing briefly some other
aspects. Inasmuch as information discovered in the data survey affects the way data is
prepared, it forms a part of the data preparation process.

3.3.8 Stage 8: Modeling the Data



The whole purpose of preparation and surveying is to understand the data. Often,
understanding needs to be turned into an active or passive model. As with the data survey,
modeling is a topic too broad to cover here. Some deficiencies and problems only appear
when modeling is attempted. Inasmuch as these promote efforts to prepare the data
differently in an attempt to ameliorate the problems, modeling too has some role in data
preparation. Chapter 12 looks at modeling in terms of how building the models interacts with
data preparation and how to use the prepared data effectively.

3.4 Andthe Resultls...?

Having toured the territory, even briefly, this may seem like a considerable effort, both
computationally and in human time, effort, and expertise. Do the results justify the effort?
Clearly, some minimal data preparation has to be done for any modeling tool. Neural
networks, for instance, require all of the inputs to be numerated and range normalized.
Other technigues require other minimal preparation. The question may be better framed in
terms of the benefit to be gained by taking the extra steps beyond the minimum.

Most tools are described as being able to learn complex relationships between variables.
The problem is to have them learn the “true” relationships before they learn noise. This is
the purpose of data preparation: to transform data sets so that their information content is
best exposed to the mining tool. It is also critical that if no good can be done in a particular
data set, at least no harm be done. In the data sets provided on the CD-ROM included
with this book, most are in at least mineable condition with only minimal additional
preparation. Comparing the performance of the same tools on the same data sets in both
their minimally prepared and fully prepared states gives a fair indication of what can be
expected. Chapter 12 looks at this comparison.

There are some data sets in which there is no improvement in the prediction error rate. In
these cases it is important to note that neither is there any degradation! The error rate of
prediction is unaffected. This means that at least no harm is done. In most cases there is
improvement—in some cases a small amount, in other cases much more. Since the
actual performance is so data dependent, it is hard to say what effect will be found in any
particular case. Error rates are also materially affected by the type of
prediction—classification and accuracy may be very differently impacted using the same
model and the same data set. (See the examples in Chapter 12.) In most cases, however
error rate is determined, there is usually a significant improvement in model performance
when the models are built and executed on prepared data.

However, there is far more to data preparation than just error rate improvement. Variable
reduction has often sped mining time 10 to 100 times over unprepared data. Moreover,
some data sets were so dirty and distorted prior to preparation that they were effectively
unusable. The data preparation techniques made the data at least useable, which was a
very considerable gain in itself. Not least is the enormous insight gained into the data
before modeling begins. This insight can be more valuable than any improvement in
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modeling performance. This is where the preparation of the miner brings the benefit that
the miner, through insight, builds better models than without the insight. And the effect of
that is impossible to quantify.

Considering that application of these techniques can reduce the error rate in a model, reduce
model building time, and yield enormous insight into the data, it is at least partly the miner's
call as to where the most important benefits accrue. This brief tour of the landscape has
pointed out the terrain. The remaining chapters look in detail at preparing data and
addressing the issues raised here.
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Chapter 4: Getting the Data—Basic

Preparation

Overview

Data preparation requires two different types of activities: first, finding and assembling the
data set, and second, manipulating the data to enhance its utility for mining. The first
activity involves the miner in many procedural and administrative activities. The second
requires appropriately applying automated tools. However, manipulating the data cannot
begin until the data to be used is identified and assembled and its basic structure and
features are understood. In this chapter we look at the process of finding and assembling
the data and assessing the basic characteristics of the data set. This lays the groundwork
for understanding how to best manipulate the data for mining.

What does this groundwork consist of? As the ancient Chinese proverb says: “A journey
of a thousand miles begins with a single step.” Basic data preparation requires three such
steps: data discovery, data characterization, and data set assembly.

» Data discovery consists of discovering and actually locating the data to be used.

+ Data characterization describes the data in ways useful to the miner and begins the
process of understanding what is in the data—that is, is it reliable and suitable for the
purpose?

» Data set assembly builds a standard representation for the incoming data so that it can
be mined—taking data found to be reliable and suitable and, usually by building a table,
preparing it for adjustment and actual mining.

These three stages produce the data assay. The first meaning of the word “assay” in the
Oxford English Dictionary is “the trying in order to test the virtue, fitness, etc. (of a person
or thing).” This is the exact intent of the data assay, to try (test or examine) the data to
determine its fitness for mining. The assay produces detailed knowledge, and usually a
report, of the quality, problems, shortcomings, and suitability of the data for mining.
Although simple to state, assaying data is not always easy or straightforward. In practice it
is frequently extremely time-consuming. In many real-world projects, this stage is the
most difficult and time-consuming of the whole project. At other times, the basic
preparation is relatively straightforward, quick, and easy.

As an example, imagine that First National Bank of Anywhere (FNBA) decides to run a
credit card marketing campaign to solicit new customers. (This example is based on an
actual mining project.) The marketing solicitations are made to “affinity groups,” that is,



groups of people that share some experience or interest, such as having attended a
particular college or belonging to a particular country club. FNBA buys lists of names and
addresses of such groups and decides to use data mining to build market segmentation
and customer response models to optimize the return from the campaign. As the
campaign progresses, the models will have to be updated to reflect changing market
conditions and response. Various models of different types will be required, although the
details have not yet been pinned down. Figure 4.1 shows an overview of the process.
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Figure 4.1 Simplified credit card direct-mail solicitation showing six different data
feeds. Each data feed arrives from a different source, in a different format, at a
different time and stage in the process.

4.1 Data Discovery

Current mining tools almost always require the data set to be assembled in the form of a
“flat file,” or table. This means that the data is represented entirely in the row and column
format described in Chapter 2. Some mining tools represent that they query databases
and data warehouses directly, but it is the end result of the query, an extracted table, that
is usually mined. This is because data mining operations are column (variable) oriented.
Databases and data warehouses are record (instance) oriented. Directly mining a
warehouse or database places an unsupportable load on the warehouse query software.
This is beginning to change, and some vendors are attempting to build in support for
mining operations. These modifications to the underlying structural operation of accessing
a data warehouse promise to make mining directly from a warehouse more practical at
some future time. Even when this is done, the query load that any mining tool can levy on
the warehouse will still present a considerable problem. For present practical purposes,
the starting point for all current mining operations has to be regarded as a table, or flat file.
“Discovering data” means that the miner needs to determine the original source from
which the table will be built.

The search starts by identifying the data source. The originating data source may be a



transaction processing system fed by an ATM machine or a POS terminal in a store. It
may be some other record-capturing transaction or event. Whatever it is, a record is made
of the original measurements. These are the founding “droplets” of data that start the
process. From here on, each individual droplet of data adds to other droplets, and trickle
adds to trickle until the data forms a stream that flows into a small pool—some sort of data
repository. In the case of FNBA, the pools are moderately large when first encountered:
they are the affinity group membership records.

The affinity group member information is likely stored in a variety of forms. The groups
may well be almost unknown to each other. Some may have membership records stored
on PCs, others on Macs. Some will provide their member lists on floppy disk, some on
8mm tape, some on 4mm tape, some on a Jazz drive, and others on 9-track tape.
Naturally, the format for each, the field layout and nomenclature, will be equally unique.
These are the initial sources of data in the FNBA project. This is not the point of data
creation, but as far as the project is concerned it is the point of first contact with the raw
data. The first need is to note the contact and source information. The FNBA assay starts
literally with names, addresses, contact telephone numbers, media type, transmission
mode, and data format for each source.

4.1.1 Data Access Issues

Before the data can be identified and assessed, however, the miner needs to answer two
major questions: Is the data accessible? and How do | get it?

There are many reasons why data might not be readily accessible. In many organizations,
particularly those without warehouses, data is often not well inventoried or controlled. This
can lead to confusion about what data is actually available.

» Legal issues. There may well be legal barriers to accessing some data, or some parts of
a data set. For example, in the FNBA project it is not legal to have credit information
about identifiable people to whom credit is not actually going to be offered. (The law on
this point is in constant change and the precise details of what is and is not legally
permissible varies from time to time.) In other applications, such as healthcare, there
may be some similar legal restriction or confidentiality requirement for any potential data
stream.

» Departmental access. These restrictions are similar to legal barriers. Particularly in
financial trading companies, data from one operation is held behind a “Chinese Wall” of
privacy from another operation for ethical reasons. Medical and legal data are often
restricted for ethical reasons.

« Political reasons. Data, and particularly its ownership, is often regarded as belonging to
a particular department, maybe one that does not support the mining initiative for any
number of reasons. The proposed data stream, while perhaps physically present, is not



practically accessible. Or perhaps it is accessible, but not in a timely or complete
fashion.

» Data format. For decades, data has been generated and collected in many formats.
Even modern computer systems use many different ways of encoding and storing data.
There are media format differences (9-track magnetic tape, diskettes, tape, etc.) and
format differences (ASCII, EBCDIC, binary packed decimal, etc.) that can complicate
assembling data from disparate sources.

» Connectivity. Accessing data requires that it be available online and connected to the
system that will be used for mining. It is no use having the data available on a
high-density 9-track tape if there is no suitable 9-track tape drive available on the mining
system.

 Architectural reasons. If data is sourced from different database architectures, it may be
extremely difficult, or unacceptably time-consuming, to translate the formats involved.
Date and time information is notoriously difficult to work with. Some architectures simply
have no equivalent data types to other architectures, and unifying the data
representation can be a sizeable problem.

» Timing. The validating event (described in Chapter 2) may not happen at a comparable
time for each stream. For example, merging psychographic data from one source with
current credit information may not produce a useful data set. The credit information may
be accurate as of 30 days ago, whereas the psychographic information is only current
as of six months ago. So it is that the various data streams, possibly using different
production mechanisms, may not be equally current. If a discrepancy is unavoidable, it
needs to at least remain constant—that is, if psychographic information suddenly began
to be current as of three months ago rather than six months ago, the relationships within
the data set would change.

This is not a comprehensive listing of all possible data access issues. Circumstances
differ in each mining application. However, the miner must always identify and note the
details of the accessibility of each data stream, including any restrictions or caveats.

Data sources may be usefully characterized also as internal/external. This can be
important if there is an actual dollar cost to acquiring outside data, or if internal data is
regarded as a confidential asset of the business. It is particularly worth noting that there is
always at least a time and effort cost to acquiring data for modeling. Identifying and
controlling the costs, and getting the maximum economic benefit from each source, can
be as important as any other part of a successful mining project.

FNBA has several primary data sources to define. For each source it is important to
consider each of the access issues. Figure 4.2 shows part of the data assay
documentation for one of the input streams.
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Figure 4.2 Part of the description of one of the input streams for FNBA.

4.2 Data Characterization

After finding the source for all of the possible data streams, the nature of the data streams
has to be characterized, that is, the data that each stream can actually deliver. The miner
already knows the data format; that is to say, the field names and lengths that comprise
the records in the data. That was established when investigating data access. Now each
variable needs to be characterized in a number of ways so that they can be assessed
according to their usefulness for modeling.

Usually, summary information is available about a data set. This information helps the
miner check that the received data actually appears as represented and matches the
summary provided. Most of the remainder of characterization is a matter of looking at
simple frequency distributions and cross-tabs. The purpose of characterization is to
understand the nature of the data, and to avoid the “GI” piece of GIGO.

4.2.1 Detail/Aggregation Level (Granularity)

All variables fall somewhere along a spectrum from detailed (such as transaction records)
to aggregated (such as summaries). As a general rule of thumb, detailed data is preferred
to aggregated data for mining. But the level of aggregation is a continuum. Even detailed
data may actually represent an aggregation. FNBA may be able to obtain outstanding
loan balances from the credit information, but not the patterns of payment that led to those
balances. Describing what a particular variable measures is important. For example, if a
variable is discovered to be highly predictive, during the data modeling process the
strategy for using the predictions will depend on the meaning of the variables involved.

The level of detail, or granularity, available in a data set determines the level of detail that



is possible for the output. Usually, the level of detail in the input streams needs to be at
least one level of aggregation more detailed than the required level of detail in the output.
Knowing the granularity available in the data allows the miner to assess the level of
inference or prediction that the data could potentially support. It is only potential support
because there are many other factors that will influence the quality of a model, but
granularity is particularly important as it sets a lower bound on what is possible.

For instance, the marketing manager at FNBA is interested, in part, in the weekly variance
of predicted approvals to actual approvals. To support this level of detail, the input stream
requires at least daily approval information. With daily approval rates available, the miner
will also be able to build inferential models when the manager wants to discover the
reason for the changing trends.

There are cases where the rule of thumb does not hold, such as predicting Stock Keeping
Units (SKU) sales based on summaries from higher in the hierarchy chain. However, even
when these exceptions do occur, the level of granularity still needs to be known.

4.2.2 Consistency

Inconsistent data can defeat any modeling technique until the inconsistency is discovered
and corrected. A fundamental problem here is that different things may be represented by
the same name in different systems, and the same thing may be represented by different
names in different systems. One data assay for a major metropolitan utility revealed that
almost 90% of the data volume was in fact duplicate. However, it was highly inconsistent
and rationalization itself took a vast effort.

The perspective with which a system of variables (mentioned in Chapter 2) is built has a
huge effect on what is intended by the labels attached to the data. Each system is built for
a specific purpose, almost certainly different from the purposes of other systems. Variable
content, however labeled, is defined by the purpose of the system of which it is a part. The
clearest illustration of this type of inconsistency comes from considering the definition of
an employee from the perspective of different systems. To a payroll system, an employee
is anyone who receives a paycheck. The same company’s personnel system regards an
employee as anyone who has an employee number. However, are temporary staff, who
have employee numbers for identification purposes, employees to the payroll system?
Not if their paychecks come from an external temporary agency. So to ask the two
systems “How many employees are there?” will produce two different, but potentially
completely accurate answers.

Problems with data consistency also exist when data originates from a single application
system. Take the experience of an insurance company in California that offers car
insurance. A field identifying “auto_type” seems innocent enough, but it turns out that the
labels entered into the system—*Merc,” “Mercedes,” “M-Benz,” and “Mrcds,” to mention
only a few examples—all represent the same manufacturer.



4.2.3 Pollution

Data pollution can occur for a variety of reasons. One of the most common is when users
attempt to stretch a system beyond its original intended functionality. In the FNBA data,
for instance, the miner might find “B” in the “gender” field. The “B” doesn’t stand for “Boy,”
however, but for “Business.” Originally, the system was built to support personal cards,
but when corporately held credit cards were issued, there was no place to indicate that
the responsible party was a genderless entity.

Pollution can came from other sources. Sometimes fields contain unidentifiable garbage.
Perhaps during copying, the format was incorrectly specified and the content from one
field was accidentally transposed into another. One such case involved a file specified as
a comma-delimited file. Unfortunately, the addresses in the field “address” occasionally
contained commas, and the data was imported into offset fields that differed from record
to record. Since only a few of the addresses contained embedded commas, visual
inspection of parts of many thousands of records revealed no problem. However, it was
impossible to attain the totals expected. Tracking down the problem took considerable
time and effort.

Human resistance is another source of data pollution. While data fields are often
optimistically included to capture what could be very valuable information, they can be
blank, incomplete, or just plain inaccurate. One automobile manufacturer had a very
promising looking data set. All kinds of demographic information appeared to be captured
such as family size, hobbies, and many others. Although this was information of great
value to marketing, the dealer at the point of sale saw this data-gathering exercise as a
hindrance to the sales process. Usually the sales people discovered some combination of
entries that satisfied the system and allowed them to move ahead with the real business
at hand. This was fine for the sales process, but did the data that they captured represent
the customer base? Hardly.

4.2.4 Objects

Chapter 2 explained that the world can be seen as consisting of objects about which
measurements are taken. Those measurements form the data that is being characterized,
while the objects are a more or less subjective abstraction. The precise nature of the
object being measured needs to be understood. For instance, “consumer spending” and
“consumer buying patterns” seem to be very similar. But one may focus on the total dollar
spending by consumers, the other on product types that consumers seek. The information
captured may or may not be similar, but the miner needs to understand why the
information was captured in the first place and for what specific purpose. This perspective
may color the data, just as was described for employees above.

It is not necessary for the miner to build entity-relationship diagrams, or use one of the



other data modeling methodologies now available. Just understand the data, get
whatever insight is possible, and understand the purpose for collecting it.

4.2.5 Relationship

With multiple data input streams, defining the relationship between streams is important.
This relationship is easily specified as a common key that defines the correct association
between instances in the input streams, thus allowing them to be merged. Because of the
problems with possible inconsistency and pollution, merging the streams is not
necessarily as easy to do as it is to describe! Because keys may be missing, itis
important to check that the summaries for the assembled data set reflect the expected
summary statistics for each individual stream. This is really the only way to be sure that
the data is assembled as required.

Note that the data streams cannot be regarded as tables because of the potentially huge
differences in format, media, and so on. Nonetheless, anyone who knows SQL is familiar
with many of the issues in discovering the correct relationships. For instance, what should
be done when one stream has keys not found in the other stream? What about duplicate
keys in one stream without corresponding duplicates in another—which gets merged with
what? Most of the SQL “join”-type problems are present in establishing the relationship
between streams—along with a few additional ones thrown in for good measure.

4.2.6 Domain

Each variable consists of a particular domain, or range of permissible values. Summary
statistics and frequency counts will reveal any erroneous values outside of the domain.
However, some variables only have valid values in some conditional domain. Medical and
insurance data typically has many conditional domains in which the values in one field,
say, “diagnosis,” are conditioned by values in another field, say, “gender.” That is to say,
there are some diagnoses that are valid only for patients of one particular gender.

Business or procedural rules enforce other conditional domains. For example, fraud
investigations may not be conducted for claims of less than $1000. A variable indicating
that a fraud investigation was triggered should never be true for claims of less than $1000.

Perhaps the miner doesn’t know that such business rules exist. There are automated
tools that can examine data and extract business rules and exceptions by examining data.
A demonstration version of one such tool, WizRule, is included on the CD-ROM with this
book. Such a rule report can be very valuable in determining domain consistency.
Example 2 later in this chapter shows the use of this tool.

4.2.7 Defaults

Many data capturing programs include default values for some of the variables. Such



default values may or may not cause a problem for the miner, but it is necessary to be
aware of the values if possible. A default value may also be conditional, depending on the
values of other entries for the actual default entered. Such conditional defaults can create
seemingly significant patterns for the miner to discover when, in fact, they simply
represent a lack of data rather than a positive presence of data. The patterns may be
meaningful for predictive or inferential models, but if generated from the default rules
inside the data capture system, they will have to be carefully evaluated since such
patterns are often of limited value.

4.2.8 Integrity

Checking integrity evaluates the relationships permitted between the variables. For
instance, an employee may have several cars, but is unlikely to be permitted to have
multiple employee numbers or multiple spouses. Each field needs to be evaluated to
determine the bounds of its integrity and if they are breached.

Thinking of integrity in terms of an acceptable range of values leads to the consideration
of outliers, that is, values potentially out of bounds. But outliers need to be treated
carefully, particularly in insurance and financial data sets. Modeling insurance data, as an
example, frequently involves dealing with what look like outliers, but are in fact perfectly
valid values. In fact, the outlier might represent exactly what is most sought, representing
a massive claim far from the value of the rest. Fraud too frequently looks like outlying data
since the vast majority of transactions are not fraudulent. The relatively few fraudulent
transactions may seem like sparsely occurring outlying values.

4.2.9 Concurrency

When merging separate data streams, it may well be that the time of data capture is
different from stream to stream. While this is partly a data access issue and is discussed
in “Data Access Issues” above, it also needs to be considered and documented when
characterizing the data streams.

4.2.10 Duplicate or Redundant Variables

Redundant data can be easily merged from different streams or may be present in one
stream. Redundancy occurs when essentially identical information is entered in multiple
variables, such as “date_of birth” and “age.” Another example is “price_per_unit,”
“‘number_purchased,” and “total_price.” If the information is not actually identical, the
worst damage is likely to be only that it takes a longer time to build the models. However,
most modeling techniques are affected more by the number of variables than by the
number of instances. Removing redundant variables, particularly if there are many of
them, will increase modeling speed.

If, by accident, two variables should happen to carry identical values, some modeling



techniques—specifically, regression-based methods—have extreme problems digesting
such data. If they are not suitably protected, they may cause the algorithm to “crash.” Such
colinearity can cause major problems for matrix-based methods (implemented by some
neural network algorithms, for instance) as well as regression-based methods. On the other
hand, if two variables are almost colinear, it is often useful to create a new variable that
expresses the difference between the nearly colinear variables.

4.3 Data Set Assembly

At this point, the miner should know a considerable amount about the input streams and
the data in them. Before the assay can continue, the data needs to be assembled into the
table format of rows and columns that will be used for mining. This may be a simple task
or a very considerable undertaking, depending on the content of the streams. One
particular type of transformation that the miner often uses, and that can cause many
challenges, is a reverse pivot.

4.3.1 Reverse Pivoting

Often, what needs to be modeled cannot be derived from the existing transaction data. If
the transactions were credit card purchases, for example, the purchasing behavior of the
cardholders may need to be modeled. The principal object that needs to be modeled,
then, is the cardholder. Each transaction is associated with a particular account number
unique to the cardholder. In order to describe the cardholder, all of the transactions for
each particular cardholder have to be associated and translated into derived fields (or
features) describing cardholder activity. The miner, perhaps advised by a domain expert,
has to determine the appropriate derived fields that will contribute to building useful
models.

Figure 4.3 shows an example of a reverse pivot. Suppose a bank wants to model
customer activity using transaction records. Any customer banking activity is associated
with an account number that is recorded in the transaction. In the figure, the individual
transaction records, represented by the table on the left, are aggregated into their
appropriate feature (Date, Account Number, etc.) in the constructed Customer Record.
The Customer Record contains only one entry per customer. All of the transactions that a
customer makes in a period are aggregated into that customer’s record. Transactions of
different types, such as loan activity, checking activity, and ATM activity are represented.
Each of the aggregations represents some selected level of detail. For instance, within
ATM activity in a customer record, the activity is recorded by dollar volume and number of
transactions within a period. This is represented by the expansion of one of the
aggregation areas in the customer record. The “Pn” represents a selected period, with “#”
the number of transactions and “$” the dollar volume for the period. Such reverse pivots
can aggregate activity into many hundreds of features.
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Figure 4.3 lllustrating the effect of a reverse pivot operation.

One company had many point-of-sale (POS) transactions and wanted to discover the
main factors driving catalog orders. The POS transactions recorded date and time,
department, dollar amount, and tender type in addition to the account number. These
transactions were reverse pivoted to describe customer activity. But what were the
appropriate derived features? Did time of day matter? Weekends? Public holidays? If so,
how were they best described? In fact, many derived features proved important, such as
the time in days to or from particular public holidays (such as Christmas) or from local
paydays, the order in which departments were visited, the frequency of visits, the
frequency of visits to particular departments, and the total amount spent in particular
departments. Other features, such as tender type, returns to particular departments, and
total dollar returns, were insignificant.

4.3.2 Feature Extraction

Discussing reverse pivoting leads to the consideration of feature extraction. By choosing
to extract particular features, the miner determines how the data is presented to the
mining tool. Essentially, the miner must judge what features might be predictive. For this
reason, reverse pivoting cannot become a fully automated feature of data preparation.
Exactly which features from the multitudinous possibilities are likely to be of use is a
judgment call based on circumstance. Once the miner decides which features are
potentially useful, then it is possible to automate the process of aggregating their contents
from the transaction records.

Feature extraction is not limited to the reverse pivot. Features derived from other
combinations of variables may be used to replace the source variables and so reduce the
dimensionality of the data set. Even if not used to reduce dimensionality, derived features
can add information that speeds the modeling process and reduces susceptibility to noise.
Chapter 2 discussed the use of feature extraction as a way of helping expose the
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information content in a data set.

Physical models frequently require feature extraction. The reason for this is that when
physical processes are measured, it is likely that very little changes from one stage to the
next. Imagine monitoring the weather measured at hourly intervals. Probably the
barometric pressure, wind speed, and direction change little in an hour. Interestingly,
when the changes are rapid, they signify changing weather patterns. The feature of
interest then is the amount of change in the measurements happening from hour to hour,
rather than the absolute level of the measurement alone.

4.3.3 Physical or Behavioral Data Sets

There is a marked difference in the character of a physical data set as opposed to a
behavioral data set. Physical data sets measure mainly physical characteristics about the
world: temperature, pressure, flow rate, rainfall, density, speed, hours run, and so on.
Physical systems generally tend to produce data that can be easily characterized
according to the range and distribution of measurements. While the interactions between
the variables may be complex or nonlinear, they tend to be fairly consistent. Behavioral
data, on the other hand, is very often inconsistent, frequently with missing or incomplete
values. Often a very large sample of behavioral data is needed to ensure a representative
sample.

Industrial automation typically produces physical data sets that measure physical
processes. But there are many examples of modeling physical data sets for business
reasons. Modeling a truck fleet to determine optimum maintenance periods and to predict
maintenance requirements also uses a physical data set. The stock market, on the other
hand, is a fine example of a behavioral data set. The market reflects the aggregate result
of millions of individual decisions, each made from individual motivations for each buyer
or seller. A response model for a marketing program or an inferential model for fraud
would both be built using behavioral data sets.

4.3.4 Explanatory Structure

Devising useful features to extract requires domain knowledge. Inventing features that
might be useful without some underlying idea of why such a feature, or set of features,
might be useful is seldom of value. More than that, whenever data is collected and used
for a mining project, the miner needs to have some underlying idea, rationale, or theory as
to why that particular data set can address the problem area. This idea, rationale, or
theory forms the explanatory structure for the data set. It explains how the variables are
expected to relate to each other, and how the data set as a whole relates to the problem.
It establishes a reason for why the selected data set is appropriate to use.

Such an explanatory structure should be checked against the data, or the data against the
explanation, as a form of “sanity check.” The question to ask is, Does the data work in the
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way proposed? Or does this model make sense in the context of this data?

Checking that the explanatory structure actually holds as expected for the data available
is the final stage in the assay process. Many tools can be used for this purpose. Some of
the most useful are the wide array of powerful and flexible OLAP (On-Line Analytical
Processing) tools that are now available. These make it very easy to interactively examine
an assembled data set. While such tools do not build models, they have powerful data
manipulation and visualization features.

4.3.5 Data Enhancement or Enrichment

Although the assay ends with validating the explanatory structure, it may turn out that the
data set as assembled is not sufficient. FNBA, for instance, might decide that affinity
group membership information is not enough to make credit-offering decisions. They
could add credit histories to the original information. This additional information actually
forms another data stream and enriches the original data. Enrichment is the process of
adding external data to the data set.

Note that data enhancement is sometimes confused with enrichment. Enhancement
means embellishing or expanding the existing data set without adding external sources.
Feature extraction is one way of enhancing data. Another method is introducing bias for a
particular purpose. Adding bias introduces a perspective to a data set; that is, the
information in the data set is more readily perceived from a particular point of view or for a
particular purpose. A data set with a perspective may or may not retain its value for other
purposes. Bias, as used here, simply means that some effect has distorted the
measurements.

Consider how FNBA could enhance the data by adding a perspective to the data set. It is
likely that response to a random FNBA mailing would be about 3%, a typical response
rate for an unsolicited mailing. Building a response model with this level of response
would present a problem for some techniques such as a neural network. Looking at the
response data from the perspective of responders would involve increasing the
concentration from 3% to, say, 30%. This has to be done carefully to try to avoid
introducing any bias other than the desired effect. (Chapter 10 discusses this in more
detail.) Increasing the density of responders is an example of enhancing the data. No
external data is added, but the existing data is restructured to be more useful in a
particular situation.

Another form of data enhancement is data multiplication. When modeling events that
rarely occur, it may not be possible to increase the density of the rate of occurrence of the
event enough to build good models. For example, if modeling catastrophic failure of some
physical process, say, a nuclear power plant, or indicators predicting terrorist attacks on
commercial aircraft, there is very little data about such events. What data there is cannot
be concentrated enough to build a representative training data set. In this case it is
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possible to multiply the few examples of the phenomena that are available by carefully
adding constructed noise to them. (See Chapter 10.)

Proposed enhancement or enrichment strategies are often noted in the assay, although
they do not form an integral part of it.

4.3.6 Sampling Bias

Undetected sampling bias can cause the best-laid plans, and the most carefully
constructed and tested model, to founder on the rocks of reality. The key word here is
‘undetected.”

The goal of the U.S. census, for instance, is to produce an unbiased survey of the
population by requiring that everyone in the U.S. be counted. No guessing, no estimation,
no statistical sampling; just get out and count them. The main problem is that this is not
possible. For one thing, the census cannot identify people who have no fixed address:
they are hard to find and very easily slip through the census takers’ net. Whatever
characteristics these people would contribute to U.S. demographic figures are simply
missing. Suppose, simply for the sake of example, that each of these people has an
extremely low income. If they were included in the census, the “average” income for the
population would be lower than is actually captured.

Telephone opinion polls suffer from the same problem. They can only reach people who
have telephones for a start. When reached, only those willing to answer the pollster’s
guestions actually do so. Are the opinions of people who own telephones different from
those who do not? Are the opinions of those willing to give an opinion over the telephone
different from those who are not? Who knows? If the answer to either question is “Yes,”
then the opinions reflected in the survey do not in fact represent the population as a
whole.

Is this bias important? It may be critical. If unknown bias exists, it is a more or less
unjustified assumption that the data reflects the real world, and particularly that it has any
bearing on the issue in question. Any model built on such assumptions reflects only the
distorted data, and when applied to an undistorted world, the results are not likely to be as
anticipated.

Sampling bias is in fact impossible to detect using only the data set itself as a reference.
There are automated methods of deriving measurements about the data set indicating the
possible presence of sampling bias, but such measurements are no more than indicators.
These methods are discussed in Chapter 11, which deals with the data survey. The assay
cannot use these automated techniques since the data survey requires a fully assembled
and prepared data set. This does not exist when the assay is being made.

At this stage, using the explanatory structure for the data, along with whatever domain
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knowledge is available, the miner needs to discover and explicate any known bias or biases
that affected the collection of the data. Biasing the data set is sometimes desirable, even
necessary. It is critical to note intentional biases and to seek out other possible sources of
bias.

4.4 Example 1. CREDIT

The purpose of the data assay, then, is to check that the data is coherent, sufficient, can
be assembled into the needed format, and makes sense within a proposed framework.
What does this look like in practice?

For FNBA, much of the data comes in the form of credit histories purchased from credit
bureaus. During the solicitation campaign, FNBA contacts the targeted market by mail
and telephone. The prospective credit card user either responds to the invitation to take a
credit card or does not respond. One of the data input streams is (or includes) a flag
indicating if the targeted person responded or not. Therefore, the initial model for the
campaign is a predictive model that builds a profile of people who are most likely to
respond. This allows the marketing efforts to be focused on only that segment of the
population that is most likely to want the FNBA credit card with the offered terms and
conditions.

4.4.1 Looking at the Variables

As a result of the campaign, various data streams are assembled into a table format for
mining. (The file CREDIT that is used in this example is included on the accompanying
CD-ROM. Table 4.1 shows entries for 41 fields. In practice, there will usually be far more
data, in both number of fields and number of records, than are shown in this example.
There is plenty of data here for a sample assay.)

TABLE 4.1 Status report for the CREDIT file.

FIELD  MAX MIN DISTINCT EMPTY  CONF REQ VAR LIN VAR-
TYPE

AGE 57.0 35.0 3 0 0.96 280 0.8 0.9 N

_INFERR

BCBAL  24251.0 0.0 3803 211 0.95 1192 251.5 0.8 N

BCLIMIT  46435.0 0.0 2347 151 0.95 843 424.5 0.9 N
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BCOPEN

BEACON
C

BUYER

CHILDREN

CRITERIA

DAS

DOB

_MONTH

DOB

_YEAR

EQBAL

0.0

804.0

1.0

513.0

12.0

70.0

67950.0

EQCURBAL 220000.0

EQHIGHBAL 237000.0

EQLIMIT

EST

_INC_C

HOME
_ED

HOME
_INC

HOME

_VALUE

ICURBAL

IHIGHBAL

67950.0

87500.0

160.0

150.0

531.0

126424.0

116545.0

0.0

670.0

0.0

0.0

1.0

-202.0

0.0

0.0

0.0

0.0

0.0

0.0

43000.0

0.0

0.0

0.0

0.0

0.0

124

604

14

42

80

179

178

45

91

191

4322

4184

59

8912

285

73

66

66

73

1075

573

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.96

0.96

59

545

353

515

60

437

9697

879

75

67

67

75

262

853

1298

870

2263

1192

0.0

1.6

0.1

0.0

0.0

10.3

0.5

0.0

0.0

0.0

0.0

1514.0

3.5

2.6

397.4

951.3

0.0

1.0

0.7

0.8

0.0

1.0

0.6

1.0

1.0

0.0

0.0

1.0

0.7

0.9

0.9

0.9

0.9



LST 99.0

_R_OPEN

MARRIED 0.0

MOF 976.0

MTCURBAL 578000.0

MTHIGHBAL 579000.0

OWN 0.0

_HOME

PRCNT 86.0

_PROF

PRCNT 99.0

_WHIT

RBAL 78928.0

RBALNO 14.0

RBAL 9.0

_LMIT

RLIMIT 113800.0

ROPEN 17.0

SEX 0.0

TBALNO 370260.0

TOPEN 17.0

UNSECBAL 23917.0

UNSECLIMIT 39395.0

YEARS_RES 15.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

100

528

3973

1742

66

58

5066

14

10

6067

17

7375

18

2275

1596

17

433

365

18

11

781

906

21

0.96

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.97

0.95

0.95

0.95

0.96

0.95

0.95

0.95

0.95

0.95

0.95

482

258

951

919

779

60

579

568
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642

618

563

908
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852

617

1349

1571
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3.6

0.2

3.8

3801.7

4019.7

0.0

0.8

3.3
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0.1

0.1

796.3

0.1

0.2

2383.7

0.1

420.1

387.9

0.4

0.9

0.0

0.9

0.0

1.0

0.6

0.8

0.9

0.8

0.9

0.9

0.0

0.7

0.9

0.8

0.9
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_Q_MVP 0.0 0.0 207 0 0.95 1086 0.4 0.1 Cc

How is this data assayed? Start looking at the basic statistics for the file. Table 4.1 shows
a statistics file produced by the data preparation software on the accompanying CD-ROM
for the file CREDIT. How does this file help?

First, the column headings indicate the following measurements about the variables:

* FIELD. The name of the field.

* MAX. The maximum value sampled for numeric variables.

* MIN. The minimum value sampled for numeric variables.

» DISTINCT. The number of distinct values for the variable in the sample. For example, if
the field “months” was recorded with standardized three-letter abbreviations, there are a
maximum of 12 valid, distinct values that the field can contain. A missing value counts
toward the total number of distinct values, so the field “months” can have 13 distinct
values including the value “missing.” More than 13 values clearly indicates that
erroneous entries are polluting the data.

* EMPTY. The number of records with missing values.

» CONF. The confidence level that the variability was captured. (Confidence levels, and
how they are discovered and used, are covered in Chapter 5 and are not used in the
assay.)

* REQ. The minimum number of records required to establish the confidence level. (See
Chapter 5.)

* VAR. A measure of the variability in a variable. (See Chapter 5.)

» LIN. A measure of interstitial linearity (again, discussed in Chapter 5) and used in the
assay. Interstitial linearity is one measure used to indicate possible problems with a
variable, including monotonicity.

* VARTYPE. The type of variable detected. “N” indicates numeric, “C” indicates
character, “E” indicates empty. (The demonstration code will only recognize these three

types.)

Now, consider what can be learned about a few of the fields:



AGE_INFERR. This has three discrete values, and every field has one of the three
values. This is a numeric variable.

BCOPEN. This is a completely empty variable; that is, none of the records has an entry
in this field. Thus it has one distinct value (missing) in all of the records.

BEACON_C. As a rule of thumb, if the linearity of a variable (LIN) is above 0.98, it is
worth checking if the variable is monotonic. (As it happens it isn’t in this case, but
knowing that requires domain knowledge.)

CRITERIA. This is shown as a numeric variable having one DISTINCT value and no
variance (indicated by the 0.0 entry in VAR). This means that while all of the values are
populated, they all have the same value. So this is actually a constant, not a variable,
and it should be removed.

EQBAL. What is going on here? It is shown as empty (“E” in VARTYPE) and yet it
contains 80 DISTINCT values! This is a feature of the sampling process. As shown in
REQ, it required 75 samples to establish the confidence level needed. Out of those 75
sampled, 73 were EMPTY, which was sufficient to establish the required level of
confidence that it was indeed empty below the required threshold. From that point on,
the variable was no longer sampled. This speeds the sampling process. Other variables
required far more samples to establish their required confidence level. At the end of the
sampling process, the data preparation software builds a fully populated sample file with
prepared data. When the full sample was taken, the full range of what was found in
EQBAL was noted. The 80 in DISTINCT indicates that although the variable was
populated at too low a level for use at the required confidence level, it still did have
some very sparse content and that sparse content did have 80 distinct values. However,
since it was too empty to use, it is not included in the prepared data.

DOB_MONTH. This variable sits almost on the edge of falling below the selected
sparsity threshold. It is not quite 95% empty, the level required for rejection in this
example, but it is 92% (8912/9697) empty. Because of the emptiness and distortion, the
system required 785 (9697 — 8912) nonempty samples to capture its variability. Even if
the miner elected to use this field in the final model, there is still the question of why
there are 14 months. To discover what is possibly wrong here, another report produced
by the demonstration software is needed, the “Complete Content” report. This is a very
large report listing, among other things, all of the values discovered in the sample along
with their frequencies. Table 4.2 shows the part of the Complete Content report that
covers DOB_MONTH, the part of the interest here. From inspection of the CONTENT it
seems obvious that “00” serves as a surrogate for a missing value. Adding the 646 “00”
with the 8912 that are missing, this takes the variable below the sparsity threshold
selected and the variable should be discarded.

TABLE 4.2 Part of the Complete Content report for the CREDIT data.
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FIELD

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

DOB_MONTH

CONTENT

00

01

02

03

04

05

06

07

08

09

10

11

12

CCOUNT

8912

646

12

10

15

14

11

10

13

10

15

13

« HOME_VALUE. There are no empty values. Nonetheless, it does not seem likely that

0.0, shown in MIN as the minimum value, is a reasonable home valuation! There are

191 DISTINCT values, but how many are “0.0”? The appropriate part of the Complete

Content report (Table 4.3) again shows what is happening. Once again it may seem

obvious that the value 000 is a surrogate of a missing value. It may be beneficial to

replace the 000 with a blank so that the system will treat it as a missing value rather

than treating it as if it had a valid value of 000. On the other hand, it may be that a



renter, not owning a home, is shown as having a 000 home value. In that case, the
value acts as a “rent/own” flag, having a completely different meaning and perhaps a
different significance. Only domain knowledge can really answer this question.

TABLE 4.3 Part of the Complete Content report showing the first few values of
HOME_VALUE.

FIELD CONTENT CCOUNT
HOME_VALUE 000 284
HOME_VALUE 027 3
HOME_VALUE 028 3
HOME_VALUE 029 3
HOME_VALUE 030 3
HOME_VALUE 031 2
HOME_VALUE 032 5

4.4.2 Relationships between Variables

Each field, or variable, raises various questions similar to those just discussed. Is this
range of values reasonable? Is the distribution of those values reasonable? Should the
variable be kept or removed? Just the basic report of frequencies can point to a number of
guestions, some of which can only be answered by understanding the domain. Similarly,
the relationship between variables also needs to be considered.

In every data mining application, the data set used for mining should have some
underlying rationale for its use. Each of the variables used should have some expected
relationship with other variables. These expected relationships need to be confirmed
during the assay. Before building predictive or inferential models, the miner needs at least
some assurance that the data represents an expected reflection of the real world. An
excellent tool to use for this exploration and confirmation is a single-variable CHAID
analysis. Any of the plethora of OLAP tools may also provide the needed confirmation or
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denial between variable relationships.

CHAID is an acronym for chi-square automatic interaction detection. CHAID, as its name
suggests, detects interactions between variables. It is a method that partitions the values
of one variable based on significant interactions between that variable and another one.
KnowledgeSEEKER, a commercially available tree tool, uses the CHAID algorithm.
Instead of letting it grow trees when used as an assaying tool, it is used to make
single-variable analyses. In other words, after selecting a variable of interest,
KnowledgeSEEKER compares that variable against only one other variable at a time.
When allowed to self-select a variable predictive of another, KnowledgeSEEKER selects
the one with the highest detected interaction. If two selected variables are to be
compared, that can be done as well.

Using KnowledgeSEEKER to explore and confirm the internal dynamics of the CREDIT
data set is revealing. As a single example, consider the variable AGE_INFERR (i.e.,
inferred age). If the data set truly reflects the world, it should be expected to strongly
correlate with the variable DOB_YEAR.

Figure 4.4(a) shows what happened when KnowledgeSEEKER found the most highly
interacting variable for AGE_INFERR. It discovered DOB_YEAR as expected. Figure
4.4(b) graphs the interaction, and it can easily be seen that while the match is not perfect,
the three estimated ages do fit the year of birth very closely. But this leads to other
guestions: Why are both measures in the data set, and are they both needed? This
seems to be a redundant pair, one of which may be beneficially eliminated. But is that
really so? And if it is, which should be kept? As with so many things in life, the answer is,
that depends! Only by possessing domain knowledge, and by examining the differences
between the two variables and the objectives, can the miner arrive at a good answer.
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Figure 4.4 KnowledgeSEEKER tree showing interaction between AGE_INFERR
and the most strongly interacting variable, DOB_YEAR (a). Graphing the detected
interaction between AGE_INFERR and DOB_YEAR (b).

Exploring the data set variable by variable and finding which are the most closely
interacting variables is very revealing. This is an important part of any assay. It is also
important to confirm that any expected relationships, such as, say, between HOME_ED
(the educational level in a home) and PRCNT_PROF (the professional level of the
applicant), do in fact match expectations, even if they are not the most closely interacting.
It seems reasonable to assume that professionals have, in general, a higher level of
education than nonprofessionals. If, for instance, it is not true for this data set, a domain
expert needs to determine if this is an error.

Some data sets are selected for particular purposes and do not in fact represent the general
population. If the bias, or distortion, is intentionally introduced, then exactly why that bias is
considered desirable needs to be made clear. For instance, if the application involves
marketing child-related products, a data set might be selected that has a far higher
predominance of child-bearing families than normally occur. This deliberately introduced
distortion needs to be noted.

4.5 Example 2: SHOE

A national shoe chain wants to model customer profiles in order to better understand their
market. More than 26,000 customer-purchase profiles are collected from their national
chain of shoe stores. Their first question should be, Does the collected information help us
understand customer motivations? The first step in answering this question is to assay the
data. (This sample data set is also included on the accompanying CD-ROM.)

4.5.1 Looking at the Variables



Table 4.4 shows the variable status report from the demonstration preparation software
for the SHOE data set.

TABLE 4.4 Variable Status report for the file SHOE.

FIELD MAX MIN DISTINCT EMPTY CONF REQ VAR LIN VAR-

TYPE
AGE 500 190 6 89 095 736 052 096 N
CITY 0.0 0.0 1150 0 095 659 354 067 C
GENDER 0.0 0.0 5 6 095 356 0.16 001 C
MILES 510 00 9 322 095 846 085 092 N
_WEEK

PURCHASENU2.0 10 2 0 095 1152 0.02 040 N
RACES 100 00 7 1480 095 2315 013 083 N
_YEAR

SHOECODE 0.0 0.0 611 1 095 378 219 057 C
SOURCE 0.0 0.0 18 0 095 659 0.18 002 C
STATE 0.0 0.0 54 0 095 910 045 005 C
STORECD 0.0 0.0 564 51 095 389 210 050 C
STYLE 0.0 0.0 89 111 095 691 048 009 C

TRIATHLETEO0.0 0.0 3 62 095 321 021 001 C

YEARSRUNNI10.0 0.0 7 321 095 1113 0.16 080 N

ZIP3 0.0 0.0 513 0 095 224 228 069 C

_Q_MVP 00 00 66 0 095 1035 025 005 C



Note that there are apparently five DISTINCT values for GENDER, which indicates a
possible problem. A look at the appropriate part of the Complete Content report (Table
4.5) shows that the problem is not significant. In fact, in only one case is the gender
inappropriately given as “A,” which is almost certainly a simple error in entry. The entry
will be better treated as missing.

TABLE 4.5 Complete Content report for the SHOE data set.

FIELD CONTENT CCOUNT
GENDER 45
GENDER A 1
GENDER F 907
GENDER M 1155
GENDER U 207

Any file might contain various exception conditions that are not captured in the basic
statistical information about the variables. To discover these exception conditions, the
miner needs a different sort of tool, one that can discover rules characterizing the data
and reveal exceptions to the discovered rules. WizRule was used to evaluate the SHOE
file and discovered many apparent inconsistencies.

Figure 4.5 shows one example: the “Spelling Report” screen generated for this data set. It
discovered that the city name “Rochester” occurs in the file 409 times and that the name
“Rocherster” is enough like it that it seems likely (to WizRule) that it is an error. Figure 4.6
shows another example. This is part of the “Rule Report” generated for the file. Rule 1
seems to have discovered possible erroneous values for the field TRIATHLETE, and it
lists the record numbers in which the exception occurs.
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Figure 4.5 WizRule Spelling Report for the table SHOE. WizRule has discovered
409 instances of “Rochester” and concludes that the value “Rocherster” (shown in
the left window) is similar enough that it is likely to be an error.
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Figure 4.6 WizRule Rule Report for the SHOE file. Rule 1 has discovered four

possible instance value errors in the TRIATHLETE field.

The reports produced by WizRule characterize the data and the data set and may raise
many questions about it. Actually deciding what is an appropriate course of action

obviously requires domain knowledge. It is often the case that not much can be done to
remedy the problems discovered. This does not mean that discovering the problem has
no value. On the contrary, knowing that there is a potential problem that can’t be fixed is

very important to judging the value of the data.

4.5.2 Relationships between Variables



When the variables are investigated using the single-variable CHAID technique, one
relationship stands out. Figure 4.7 shows a graphical output from KnowledgeSEEKER
when investigating SOURCE. Its main interaction is with a variable _Q_MVP. Thisis a
variable that does not exist in the original data set. The data preparation software creates
this variable and captures information about the missing value patterns. For each pattern
of missing values in the data set, the data preparation software creates a unique value
and enters the value in the _Q_MVP field. This information is very useful indeed. Often
the particular pattern of missing values can be highly predictive. Chapter 8 discusses
missing values in more detail.
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Figure 4.7 Graph showing the interaction between the variable SOURCE and
the variable most interacting with it, _Q_MVP, in the file SHOE.

In this case it is clear that certain patterns are very highly associated with particular
SOURCE codes. Is this significant? To know that requires domain knowledge. What is
important about discovering this interaction is to try to account for it, or if an underlying
explanation cannot be immediately discovered, it needs to be reported in the assay
documentation.

4.6 The Data Assay

So far, various components and issues of the data assay have been discussed. The
assay literally assesses the quality or worth of the data for mining. Note, however, that
during the assay there was no discussion of what was to be modeled. The focus of the
assay is entirely on how to get the data and to determine if the data suits the purpose. It is
quite likely that issues are raised about the data during the assay that could not be
answered. It may be that one variable appears to be outside its reasonable limits, or that
an expected interaction between variables wasn’t found. Whatever is found forms the
result of the assay. It delineates what is known and what is not known and identifies
problems with the data.



Creating a report about the state of the data is helpful. This report is unique to each data
set and may be quite detailed and lengthy. The main purpose of the assay, however, is
not to produce a voluminous report, but for the miner to begin to understand where the
data comes from, what is in the data, and what issues remain to be established—in other
words, to determine the general quality of the data. This forms the foundation for all
preparation and mining work that follows. Most of the work of the assay involves the miner
directly finding and manipulating the data, rather than using automated preparation tools.
Much of the exploratory work carried out during the assay is to discover sources and
confirm expectations. This requires domain expertise, and the miner will usually spend
time either with a domain expert or learning sufficient domain knowledge to understand
the data.

Once the assay is completed, the mining data set, or sets, can be assembled. Given
assembled data sets, much preparatory work still remains to be done before the data is in
optimum shape for mining. There remain many data problems to discover and resolve.
However, much of the remaining preparation can be carried out by the appropriate
application of automated tools. Deciding which tools are appropriate, and understanding
their effect and when and how to use them, is the focus of the remaining chapters.



Chapter 5: Sampling, Variability, and

Confidence

Sampling, or First Catch Your Hare!

Mrs. Beaton’s famous English cookbook is alleged to have contained a recipe for Jugged
Hare that started, “First. Catch your hare.” It is too good a line to pass up, true or not. If
you want the dish, catching the hare is the place to start. If you want to mine data,
catching the “hare” in the data is the place to start. So what is the “hare” in data? The hare
is the information content enfolded into the data set. Just as hare is the essence of the
recipe for Jugged Hare, so information is the essence of the recipe for building training
and test data sets.

Clearly, what is needed is enough data so that all of the relationships at all
levels—superstructure, macrostructure, and microstructure—are captured. An easy
answer would seem to be to use all the data. After all, with all of the data being used, it is
a sure thing that any relationship of interest that the data contains is there to be found.
Unfortunately, there are problems with the idea of using all of the data.

5.1.1 How Much Data?

One problem with trying to use all of the data, perhaps the most common problem, is
simply that all of the data is not available. It is usual to call the whole of data the
population. Strictly speaking, the data is not the population; the data is simply a set of
measurements about the population of objects. Nonetheless, for convenience it is simply
easier to talk about a population and understand that what is being discussed is the data,
not the objects. When referring to the objects of measurement, it is easy enough to make
it clear that the objects themselves are being discussed.

Suppose that a model is to be built about global forestry in which data is measured about
individual trees. The population is at least all of the trees in the world. It may be,
depending on the actual area of interest, all of the trees that have ever lived, or even all of
the trees that could possibly live. Whatever the exact extent of the population, it is clearly
unreasonable to think that it is even close to possible to have data about the whole
population.

Another problem occurs when there is simply too much data. If a model of credit card
transactions is proposed, most of these do actually exist on computers somewhere. But
even if a computer exists that could house and process such a data set, simply
accumulating all of the records would be at least ridiculously difficult if not downright
impossible.



Currency of records also presents difficulties. In the case of the credit card transactions,
even with the data coming in fast and furious, there would be no practical way to keep the
data set being modeled reflecting the current state of the world’s, or even the nation’s,
transactions.

For these reasons, and for any other reason that prevents having access to data about
the whole population, it is necessary to deal with data that represents only some part of
the population. Such data is called a sample.

Even if the whole of the data is available, it is still usually necessary to sample the data
when building models. Many modeling processes require a set of data from which to build
the model and another set of data on which to test it. Some modeling processes, such as
certain decision tree algorithms, require three data sets—one to build the tree, one to
prune the tree, and one to test the final result. In order to build a valid model, it is
absolutely essential that each of the samples reflects the full set of relationships that are
present in the whole population. If this is not the case, the model does not reflect what will
be found in the population. Such a model, when used, will give inaccurate or misleading
results.

So, sampling is a necessary evil. However, when preparing the data for modeling, the
problem is not quite so great as when actually building the model itself. At least not in the
early stages. Preparing the variables requires only that sufficient information about each
individual variable be captured. Building data mining models requires that the data set
used for modeling captures the full range of interactions between the variables, which is
considered later, in Chapter 10. For now the focus is on capturing the variations that occur
within each variable.

5.1.2 Variability

Each variable has features, many of which were discussed in Chapter 2. However, the
main feature is that a variable can take on a variety of values, which is why it is called a
variable! The actual values that a variable can have contain some sort of pattern and will
be distributed across the variable’s range in some particular way. It may be, for example,
that for some parts of the range of values there are many instances bunched together,
while for other parts there are very few instances, and that area of the range is particularly
sparsely populated. Another variable may take on only a limited number of values, maybe
only 5 or 10. Limited-value distribution is often a feature of categorical variables.

Suppose, for instance, that in a sample representative of the population, a random
selection of 80 values of a numeric variable are taken as follows:

49, 63, 44, 25, 16, 34, 62, 55, 40, 31, 44, 37, 48, 65, 83, 53, 39, 15, 25, 52
68, 35, 64, 71, 43, 76, 39, 61, 51, 30, 32, 74, 28, 64, 46, 31, 79, 69, 38, 69



53, 32, 69, 39, 32, 67, 17, 52, 64, 64, 25, 28, 64, 65, 70, 44, 43,72, 37, 31
67, 69, 64, 74, 32, 25, 65, 39, 75, 36, 26, 59, 28, 23, 40, 56, 77, 68, 46, 48

What exactly can we make of them? Is there any pattern evident? If there is, it is certainly

hard to see. Perhaps if they are put into some sort of order, a pattern might be easier to

see:

15, 16, 17, 23, 25, 25, 25, 25, 26, 28, 28, 28, 30, 31, 31, 31, 32, 32, 32, 32
34, 35, 36, 37, 37, 38, 39, 39, 39, 39, 40, 40, 43, 43, 44, 44, 44, 46, 46, 48
48, 49, 51, 52, 52, 53, 53, 55, 56, 59, 61, 62, 63, 64, 64, 64, 64, 64, 64, 65
65, 65, 67, 67, 68, 68, 69, 69, 69, 69, 70, 71, 72, 74, 74, 75, 76, 77, 79, 83

Maybe there is some sort of pattern here, but it is hard to tell exactly what it is or to

describe it very well. Certainly it seems that some numbers turn up more often than

others, but exactly what is going on is hard to tell.

Perhaps it would be easier to see any pattern if it were displayed graphically. Since the

lowest number in the sample is 15, and the highest 83, that is the range of this sample. A

histogram is a type of graph that uses columns to represent counts of features. If the

sample is displayed as a histogram, some sort of pattern is easier to see, and Figure 5.1

shows a histogram of this sample. Each column in Figure 5.1 shows, by its height, the

number of instances of a particular value. Each column represents one particular value.

The first column on the left, for example, represents the value 15, and the column height

indicates that there is one of this value in the sample.
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Figure 5.1 Histogram of a numeric variable sample. The column positions

represent the magnitude of each of the values. The height of each column
represents the count of instance values of the appropriate measured value.

The histogram in Figure 5.1 certainly makes some sort of pattern easier to see, but

because of the number of columns, it is still hard to detect an overall pattern. Grouping the



values together, shown in Figure 5.2, might make it easier to see a pattern. In this
histogram each column represents the count of instances that are in a particular range.
The leftmost column has a zero height, and a range of 0 to 9.99 (less than 10). The next
column has a range from 10 to less than 20, and a height of 3. This second column
aggregates the values 15, 16, and 17, which are all there are in the range of the column.
In this figure the pattern is easier to see than in the previous figure.
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Figure 5.2 A histogram with vertical columns representing the count for a range
of values.

Another way to see the distribution pattern is to use a graph that uses a continuous line,
called a curve, instead of columns. Figure 5.3 shows a distribution curve that uses each
value, just as in Figure 5.1. Again, the curve is very jagged. It would be easier to see the
nature of the distribution if the curve were smoother. Curves can be easily smoothed, and
Figure 5.4 shows the curve using two smoothing methods. One method (shown with the
unbroken line) uses the average of three values; the other (shown with the dashed line)
uses the average of five values. Smoothing does make the pattern easier to see, but it
seems to be a slightly different pattern that shows up with each method. Which is the
“correct” pattern shape for this distribution, if any?
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Figure 5.3 Sample value counts individually plotted and shown by a continuous
line instead of using columns.
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Figure 5.4 Results of two “smoothing methods, both using the average of a
number of instance values. The solid line uses the average of three values, and
the dashed line uses the average of five values.

There are two problems here. Recall that if this sample is indeed representative of the
population, and for the purposes of this discussion we will assume that it is, then any other
representative random sample drawn from the same population will show these patterns.

The first problem is that until a representative sample is obtained, and known to be
representative, it is impossible to know if the pattern in some particular random sample
does, in fact, represent the “true” variability of the population. In other words, if the true
population distribution pattern is unknown, how can we know how similar the sample
distribution curve is to the true population distribution curve?

The second problem is that, while it is obvious that there is some sort of pattern to a
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distribution, various ways of looking at it seem to produce slightly different patterns. Which
of all these shapes, if any, is the right one to use?

5.1.3 Converging on a Representative Sample

The first problem, getting a representative sample, can be addressed by a phenomenon
called convergence. Taking a sample starts by selecting instance values from a
population, one at a time and at random. The sample starts at size 0. For any sample size
a distribution curve can be created for the sample, similar to those shown in the earlier
figures. In fact, although tedious for a human being, the distribution curve can be
recalculated every time an instance value is added to the sample.

Suppose that the sample distribution curve is recalculated with each additional instance
added. What will it look like? At first, when the number of instances in the sample is low,
each addition will make a big impact on the shape of the curve. Every new instance added
will make the curve ‘jump” up quite noticeably. Aimost every instance value added to the
sample will make a large change in the shape of the distribution curve. After a while,
however, when the number of instances in the sample is modestly large, the overall shape
of the curve will have settled down and will change little in shape as new instances are
added. It will continue to increase in height because with more points in the sample, there
are more points under any particular part of the curve. When there are a large number of
instances in the sample, adding another instance barely makes any difference at all to the
overall shape. The important point here is that the overall shape of the curve will settle
down at some point.

This “settling down” of the overall curve shape is the key. As more instances are added,
the actual shape of the curve becomes more like some final shape. It may never quite get
there, but it gets closer and closer to settling into this final, unchanging shape. The curve
can be thought of as “approaching” this ultimate shape. Things are said to converge when
they come together, and in this sense the sample distribution curve converges with the
final shape that the curve would have if some impossibly large number of instances were
added. This impossibly large number of instances, of course, is the population. So the
distribution curve in any sample converges with the distribution curve of the population as
instances selected at random are added to the sample.

In fact, when capturing a sample, what is measured is not the shape of the curve, but the
variability of the sample. However, the distribution curve shape is produced by the
variability, so both measures represent very much the same underlying phenomenon.
(And to understand what is happening, distribution curves are easier to imagine than
variability.)

5.1.4 Measuring Variability

The other problem mentioned was that the distribution curve changes shape with the
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width of the columns, or the smoothing method. This problem is not so easy to address.
What is really required instead of using column widths or smoothing is some method of
measuring variability that does not need any arbitrary decision at all. Ideally, we need
some method that simply allows the numbers sampled to be “plugged in,” and out comes
some indication of the variability of the sample.

Statisticians have had to grapple with the problem of variability over many years and have
found several measures for describing the characteristics of variables. Detailed
discussion is beyond the scope of this book, but can be found in many statistical works,
including those on business statistics. What they have come up with is a description of the
variability, or variance, of a variable that captures the necessary variability information
without being sensitive to column width or smoothing.

In many statistical texts, variability is very often described in terms of how far the
individual instances of the sample are from the mean of the sample. Itis, in fact, a sort of
“average” distance of the instance values from the mean. It is this measure, or one
derived from it, that will be used to measure variability. The measure is called the
standard deviation. We need to look at it from a slightly different perspective than is
usually found in statistics texts.

5.1.5 Variability and Deviation

Deviation is simply the name for what was described above as “a sort of average distance
of instance values from the mean.” Given the same set of 80 numbers that were used
before, the mean, often called the arithmetic average, or just average for short, is
approximately 49.16. In order to find the distance of the instance values from the mean, it
is only necessary to subtract the one from the other. To take the first five numbers as an
example:

49 - 49.16 = -0.16

63 —-49.16 = 13.84

44 - 49.16 = -5.16

25-49.16 =-24.16

16 — 49.16 = -33.16
Unfortunately, the “-”
being subtracted, the sum of all of the differences will add up to 0. That is what the mean
is! Somehow it is necessary to make the “~” signs disappear, or at least to nullify their

signs make matters somewhat awkward. Since it is the mean that is

effect. For various reasons, in the days before computers, when calculations were all
done by hand (perish the thought!), the easiest way for mathematicians to deal with the
problem was not to simply ignore the “~” sign. Since “negative times negative is a
positive,” as you may recall from school, squaring, or multiplying a number by itself,
solves the problem. So finding the variance of just the first five numbers: The mean of only
the first five numbers is



(49 + 63 + 44 + 25 + 16)/5=39.4
S0 squaring the instance value minus the mean:

(49 -39.4)= 9.62= 92.16
(63 — 39.4)* = 23.6? = 556.96
(44 —39.42= 4.62= 21.16
(25 — 39.4)2 = —14.42 = 207.36
(16 — 39.4)2 = —23.42 = 547.56

and since the variance is the mean of these differences:
(92.16 + 556.96 + 21.16 + 207.36 + 547.56)/5 = 285.04

This number, 285.04, is the mean of the squares of the differences. It is therefore a
variance of 285.04 square units. If these numbers represent some item of interest, say,
percentage return on investments, it turns out to be hard to know exactly what a variance
of 285.04 square percent actually means. Square percentage is not a very familiar or
meaningful measure in general. In order to make the measure more meaningful in
everyday terms, it is usual to take the square root, the opposite of squaring, which would
give 16.88. For this example, this would now represent a much more meaningful variance
of 16.88 percent.

The square root of the variance is called the standard deviation. The standard deviation is
a very useful thing to know. There is a neat, mathematical notation for doing all of the
things just illustrated:

Standard deviation = V(Zlx - m)iin - 1))

where

N means to take the square root of everything under it
S means to sum everything in the brackets following it
X is the instance value

m is the mean

n is the number of instances

(For various technical reasons that we don’t need to get into here, when the number is
divided by n, it is known as the standard deviation of the population, and when divided by



n — 1, as the standard deviation of the sample. For large humbers of instances, which will
usually be dealt with in data mining, the difference is miniscule.)

There is another formula for finding the value of the standard deviation that can be found
in any elementary work on statistics. It is the mathematical equivalent of the formula
shown above, but gives a different perspective and reveals something else that is going
on inside this formula—something that is very important a little later in the data
preparation process:

s = V(E — nm?)/(n — 1))

What appears in this formula is “Sx?,” which is the sum of the instance values squared.
Notice also that “nhm?,” which is the number of instances multiplied by the mean, squared.
Since the mean is just the sum of the x values divided by the number of values (or Sx/n),
the formula could be rewritten as

5= W((Za® = (m{Zapm)P)in— 1)

But notice that n(Sx/n) is the same as Sx, so the formula becomes

s = V(T2 — Ex)2V/(n - 1))

(being careful to note that Sx2 means to add all the values of x squared, whereas (Sx)?
means to take the sum of the unsquared x values and square the total).

This formula means that the standard deviation can be determined from three separate
pieces of information:

1. The sum of x?, that is, adding up all squares of the instance values
2. The sum of x, that is, adding up all of the instance values
3. The number of instances

The standard deviation can be regarded as exploring the relationship among the sum of
the squares of the instance values, the sum of the instance values, and the number of
instances. The important point here is that in a sample that contains a variety of different
values, the exact ratio of the sum of the numbers to the sum of the squares of the
numbers is very sensitive to the exact proportion of numbers of different sizes in the
sample. This sensitivity is reflected in the variance as measured by the standard
deviation.



Figure 5.5 shows distribution curves for three separate samples, each from a different
population. The range for each sample is 0—-100. The linear (or rectangular) distribution
sample is a random sample drawn from a population in which each number 0—100 has an
equal chance of appearing. This sample is evidently not large enough to capture this
distribution well! The bimodal sample was drawn from a population with two “humps” that
do show up in this limited sample. The normal sample was drawn from a population with a
normal distribution—one that would resemble the “bell curve” if a large enough sample
was taken. The mean and standard deviation for each of these samples is shown in Table
5.1.
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Figure 5.5 Distribution curves for samples drawn from three populations.

TABLE 5.1 Sample statistics for three distributions.

Sample Mean Standard
distribution deviation
Linear 47.96 29.03
Bimodal 49.16 17.52
Normal 52.39 11.82

The standard deviation figures indicate that the linear distribution has the highest
variance, which is not surprising as it would be expected to have the greatest average
distance between the sample mean and the instance values. The normal distribution



sample is the most bunched together around its sample mean and has the least standard
deviation. The bimodal is more bunched than the linear, and less than the normal, and its
standard deviation indicates this, as expected.

Standard deviation is a way to determine the variability of a sample that only needs to have
the instance values of the sample. It results in a number that represents how the instance
values are scattered about the average value of the sample.

5.2 Confidence

Now that we have an unambiguous way of measuring variability, actually capturing it
requires enough instances of the variable so that the variability in the sample matches the
variability in the population. Doing so captures all of the structure in the variable.
However, it is only possible to be absolutely 100% certain that all of the variability in a
variable has been captured if all of the population is included in the sample! But as we've
already discussed, that is at best undesirable, and at worst impossible. Conundrum.

Since sampling the whole population may be impossible, and in any case cannot be
achieved when it is required to split a collected data set into separate pieces, the miner
needs an alternative. That alternative is to establish some acceptable degree of
confidence that the variability of a variable is captured.

For instance, it is common for statisticians to use 95% as a satisfactory level of
confidence. There is certainly nothing magical about that number. A 95% confidence
means, for instance, that a judgment will be wrong 1 time in 20. That is because, since it is
right 95 times in 100, it must be wrong 5 times in 100. And 5 times in 100 turns out to be 1
time in 20. The 95% confidence interval is widely used only because it is found to be
generally useful in practice. “Useful in practice” is one of the most important metrics in
both statistical analysis and data mining.

It is this concept of “level of confidence” that allows sampling of data sets to be made. If
the miner decided to use only a 100% confidence level, it is clear that the only way that
this can be done is to use the whole data set complete as a sample. A 100% sample is
hardly a sample in the normal use of the word. However, there is a remarkable reduction
in the amount of data needed if only a 99.99% confidence is selected, and more again for
a 95% confidence.

A level of confidence in this context means that, for instance, it is 95% certain that the
variability of a particular variable has been captured. Or, again, 1 time in 20 the full variability
of the variable would not have been captured at the 95% confidence level, but some lesser
level of variability instead. The exact level of confidence may not be important. Capturing
enough of the variability is vital.

5.3 Variability of Numeric Variables



Variability of numeric variables is measured differently from the variability of nonnumeric
variables. When writing computer code, or describing algorithms, it is easy to abbreviate
numeric and nonnumeric to the point of confusion—*‘Num” and “Non.” To make the
difference easier to describe, it is preferable to use distinctive abbreviations. This
distinction is easy when using “Alpha” for nominals or categoricals, which are measured in
nonnumeric scales, and “Numeric” for variables measured using numeric scales. Where
convenient to avoid confusion, that nomenclature is used here.

Variability of numeric variables has been well described in statistical literature, and the
previous sections discussing variability and the standard deviation provide a conceptual
overview.

Confidence in variability capture increases with sample size. Recall that as a sample size
gets larger, so the sample distribution curve converges with the population distribution
curve. They may never actually be identical until the sample includes the whole
population, but the sample size can, in principle, be increased until the two curves
become as similar as desired. If we knew the shape of the population distribution curve, it
would be easy to compare the sample distribution curve to it to tell how well the sample
had captured the variability. Unfortunately, that is almost always impossible. However, it is
possible to measure the rate of change of a sample distribution curve as instance values
are added to the sample. When it changes very little with each addition, we can be
confident that it is closer to the final shape than when it changes faster. But how
confident? How can this rate of change be turned into a measure of confidence that
variability has been captured?

5.3.1 Variability and Sampling

But wait! There is a critical assumption here. The assumption is that a larger sample is in
fact more representative of the population as a whole than a smaller one. This is not
necessarily the case. In the forestry example, if only the oldest trees were chosen, or only
those in North America, for instance, taking a larger sample would not be representative.
There are several ways to assure that the sample is representative, but the only one that
can be assured not to introduce some bias is random sampling. A random sample
requires that any instance of the population is just as likely to be a member of the sample
as any other member of the population. With this assumption in place, larger samples will,
on average, better represent the variability of the population.

It is important to note here that there are various biases that can be inadvertently
introduced into a sample drawn from a population against which random sampling
provides no protection whatsoever. Various aspects of sampling bias are discussed in
Chapters 4 and 10. However, what a data miner starts with as a source data set is almost
always a sample and not the population. When preparing variables, we cannot be sure
that the original data is bias free. Fortunately, at this stage, there is no need to be. (By
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Chapter 10 this is a major concern, but not here.) What is of concern is that the sample
taken to evaluate variable variability is representative of the original data sample. Random
sampling does that. If the original data set represents a biased sample, that is evaluated
partly in the data assay (Chapter 4), again when the data set itself is prepared (Chapter
10), and again during the data survey (Chapter 11). All that is of concern here is that, on a
variable-by-variable basis, the variability present in the source data set is, to some
selected level of confidence, present in the sample extracted for preparation.

5.3.2 Variability and Convergence

Differently sized, randomly selected samples from the same population will have different
variability measures. As a larger and larger random sample is taken, the variability of the
sample tends to fluctuate less and less between the smaller and larger samples. This
reduction in the amount of fluctuation between successive samples as sample size
increases makes the number measuring variability converge toward a particular value.

It is this property of convergence that allows the miner to determine a degree of
confidence about the level of variability of a particular variable. As the sample size
increases, the average amount of variability difference for each additional instance
becomes less and less. Eventually the miner can know, with any arbitrary degree of
certainty, that more instances of data will not change the variability by more than a
particular amount.

Figure 5.6 shows what happens to the standard deviation, measured up the side of the
graph, as the number of instances in the sample increases, which is measured along the
bottom of the graph. The numbers used to create this graph are from a data set provided
on the CD-ROM called CREDIT. This data set contains a variable DAS that is used
through the rest of the chapter to explore variability capture.
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Figure 5.6 Measuring variability DAS in the CREDIT data set. Each sample

contains one more instance than the previous sample. As the sample size
increases, the variability seems to approach, or converge, toward about 130.
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Figure 5.6 shows incremental samples, starting with a sample size of 0, and increasing
the sample size by one each time. The graph shows the variability in the first 100
samples. Simply by looking at the graph, intuition suggests that the variability will end up
somewhere about 130, no matter how many more instances are considered. Another way
of saying this is that it has converged at about 130. It may be that intuition suggests this to
be the case. The problem now is to quantify and justify exactly how confident it is possible
to be. There are two things about which to express a level of confidence—first, to specify
exactly the expected limits of variability, and second, to specify how confident is it
possible to be that the variability actually will stay within the limits.

The essence of capturing variability is to continue to add samples until both of those
confidence measures can be made at the required level—whatever that level may be.
However, before considering the problem of justifying and quantifying confidence, the next
step is to examine capturing variability in alpha-type variables.

5.4 Variability and Confidence in Alpha Variables

So far, much of this discussion has described variability as measured in numeric
variables. Data mining often involves dealing with variables measured in nonnumeric
ways. Sometimes the symbolic representation of the variable may be numeric, but the
variable still is being measured nominally—such as SIC and ZIP codes.

Measuring variability in these alpha-type variables is every bit as important as in
numerical variables. (Recall this is not a new variable type, just a clearer name for
gualitative variables—nominals and categoricals—to save confusion.)

A measure of variability in alpha variables needs to work similarly to that for numeric
variables. That is to say, increases in sample size must lead to convergence of variability.
This convergence is similar in nature to that of numerical variables. So using such a
method, together with standard deviation for numeric variables, gives measures of
variability that can be used to sample both alpha and numeric variables. How does such a
method work?

Clearly there are some alpha variables that have an almost infinite number of
categories—people’s names, for instance. Each name is an alpha variable (a nominal in
the terminology used in Chapter 2), and there are a great many people each with different
names!

For the sake of simplicity of explanation, assume that only a limited number of alpha
labels exist in a variable scale. Then the explanation will be expanded to cover alpha
variables with very high numbers of distinct values.



In a particular population of alpha variables there will be a specific number of instances of
each of the values. It is possible in principle to count the number of instances of each
value of the variable and determine what percentage of the time each value occurs. This
is exactly similar to counting how often each numeric instance value occurred when
creating the histogram in Figure 5.1. Thus if, in some particular sample, “A” occurred 124
times, “B” 62 times, and “C” 99 times, then the ratio of occurrence, one to the others, is as
shown in Table 5.2.

TABLE 5.2 Sample value frequency counts.

Sample Mean Standard
distribution deviation
A 124 43.51
B 62 21.75
C 99 34.74
Total 285 100.00

If the population is sampled randomly, this proportion will not be immediately apparent.
However, as the sample size increases, the relative proportion will become more and
more nearly what is present in the population; that is, it converges to match that of the
population. This is altogether similar to the way that the numeric variable variability
converges. The main difference here is that since the values are alpha, not numeric,
standard deviation can’t be calculated.

Instead of determining variability using standard deviation, which measures the way
numeric values are distributed about the mean, alpha variability measures the rate of
change of the relative proportion of the values discovered. This rate of change is
analogous to the rate of change in variability for numerics. Establishing a selected degree
of confidence that the relative proportion of alpha values will not change, within certain
limits, is analogous to capturing variability for a numeric variable.

5.4.1 Ordering and Rate of Discovery

One solution to capturing the variability of alpha variables might be to assign numbers to



each alpha and use those arbitrarily assigned numbers in the usual standard deviation
formula. There are several problems with this approach. For one thing, it assumes that
each alpha value is equidistant from one another. For another, it arbitrarily assigns an
ordering to the alphas, which may or may not be significant in the variability calculation,
but certainly doesn’t exist in the real world for alphas other than ordinals. There are other
problems so far as variability capture goes also, but the main one for sampling is that it
gives no clue whether all of the unique alpha values have been seen, nor what chance
there is of finding a new one if sampling continues. What is needed is some method that
avoids these particular problems.

Numeric variables all have a fixed ordering. They also have fixed distances between
values. (The number “1” is a fixed distance from “10"—9 units.) These fixed relationships
allow a determination of the range of values in any numeric distribution (described further
in Chapter 7). So for numeric variables, it is a fairly easy matter to determine the chance
that new values will turn up in further sampling that are outside of the range so far
sampled.

Alphas have no such fixed relationship to one another, nor is there any order for the alpha
values (at this stage). So what is the assurance that the variability of an alpha variable has
been captured, unless we know how likely it is that some so far unencountered value will
turn up in further sampling? And therein lies the answer—measuring the rate of discovery
of new alpha values.

As the sample size increases, so the rate of discovery (ROD) of new values falls. At first,
when the sample size is low, new values are often discovered. As the sampling goes on,
the rate of discovery falls, converging toward 0. In any fixed population of alphas, no
matter how large, the more values seen, the less new ones there are to see. The chance
of seeing a new value is exactly proportional to the number of unencountered values in
the population.

For some alphas, such as binary variables, ROD falls quickly toward 0, and it is soon easy to
be confident (to any needed level of confidence) that new values are very unlikely. With
other alphas—such as, say, a comprehensive list of cities in the U.S.—the probability would
fall more slowly. However, in sampling alphas, because ROD changes, the miner can
estimate to any required degree of confidence the chance that new alpha values will turn up.
This in turn allows an estimate not only of the variability of an alpha, but of the
comprehensiveness of the sample in terms of discovering all the alpha labels.

5.5 Measuring Confidence

Measuring confidence is a critical part of sampling data. The actual level of confidence
selected is quite arbitrary. It is selected by the miner or domain expert to represent some
level of confidence in the results that is appropriate. But whatever level is chosen, it is so
important in sampling that it demands closer inspection as to what it means in practice,



and why it has to be selected arbitrarily.

5.5.1 Modeling and Confidence with the Whole Population

If the whole population of instances were available, predictive modeling would be quite
unnecessary. So would sampling. If the population really is available, all that needs to be
done to “predict” the value of some variable, given the values of others, is to look up the
appropriate case in the population. If the population is truly present, it is possible to find an
instance of measurements that represents the exact instance being predicted—not just
one similar or close to it.

Inferential modeling would still be of use to discover what was in the data. It might provide
a useful model of a very large data set and give useful insights into related structures. No
training and test sets would be needed, however, because, since the population is
completely represented, it would not be possible to overtrain. Overtraining occurs when
the model learns idiosyncrasies present in the training set but not in the whole population.
Given that the whole population is present for training, anything that is learned is, by
definition, present in the population. (An example of this is shown in Chapter 11.)

With the whole population present, sampling becomes a much easier task. If the
population were too large to model, a sample would be useful for training. A sample of
some particular proportion of the population, taken at random, has statistically well known
properties. If it is known that some event happens in, say, a 10% random sample with a
particular frequency, it is quite easy to determine what level of confidence this implies
about the frequency of the event in the population. When the population is not available,
and even the size of the population is quite unknown, no such estimates can be made.
This is almost always the case in modeling.

Because the population is not available, it is impossible to give any level of confidence in
any result, based on the data itself. All levels of confidence are based on assumptions
about the data and about the population. All kinds of assumptions are made about the
randomness of the sample and the nature of the data. It is then possible to say that if
these assumptions hold true, then certain results follow. The only way to test the
assumptions, however, is to look at the population, which is the very thing that can’t be
done!

5.5.2 Testing for Confidence

There is another way to justify particular levels of confidence in results. It relies on the
guantitative discriminatory power of tests. If, for instance, book reviewers can consistently
and accurately predict a top 10 best-selling book 10% of the time, clearly they are wrong
90% of the time. If a particular reviewer stated that a particular book just reviewed was
certain to be a best-seller, you would be justified in being skeptical of the claim. In fact,
you would be quite justified in being 10% sure (or confident) that it would be a success,



and 90% confident in its failure. However, if at a convention of book reviewers, every one
of hundreds or thousands of reviewers each separately stated that the book was sure to
be a best-seller, even though each reviewer had only a 10% chance of success, you
would become more and more convinced of the book’s chance of success.

Each reviewer performs an independent reading, or test, of the book. It is this
independence of tests that allows an accumulation of confidence. The question is, how
much additional confidence is justified if two independent tests are made, each with a
10% accuracy of being correct in their result, and both agree? In other words, suppose
that after the first reviewer assured you of the book’s success, a second one did the
same. How much more confident, if at all, are you justified in being as a result of the
second opinion? What happens if there are third and fourth confirming opinions? How
much additional confidence are you justified in feeling?

At the beginning you are 100% skeptical. The first reviewer’s judgment persuades you to
an opinion of 10% in favor, 90% against the proposition for top 10 success. If the first
reviewer justified a 10/90% split, surely the second does too, but how does this change
the level of confidence you are justified in feeling?

Table 5.3 shows that after the first reviewer’s assessment, you assigned 10% confidence
to success and 90% to skepticism. The second opinion (test) should also justify the
assignment of an additional 10%. However, you are now only 90% skeptical, so it is 10%
of that 90% that needs to be transferred, which amounts to an additional 9% confidence.
Two independent opinions justify a 19% confidence that the book will be a best-seller.
Similar reasoning applies to opinions 3, 4, 5, and 6. More and more positive opinions
further reinforce your justified confidence of success. With an indefinite amount of
opinions (tests) available, you can continue to get opinions until any particular level of
confidence in success is justified.

TABLE 5.3 Reviewer assurance charges confidence level.

Reviewer Start Transfer Confidence Your remaining
number level amount of success skeptical balance
(start
level x10%)

1 100% 10 10 90

2 90% 9 9 81



3 81% 8.1 27.1 72.9

4 72.9% 7.29 34.39 65.61
5 65.61% 6.561 40.951 59.049
6 59.049% 5.9049% 46.8559 53.1441

Of course, a negative opinion would increase your skepticism and decrease your
confidence in success. Unfortunately, without more information it is impossible to say by
how much you are justified in revising your opinion. Why?

Suppose each reviewer reads all available books and predicts the fate of all of them. One
month 100 books are available, 10 are (by definition) on the top 10 list. The reviewer
predicts 10 as best-sellers and 90 as non-best-sellers. Being consistently 10% accurate,
one of those predicted to be on the best-seller list was on it, 9 were not. Table 5.4 shows
the reviewer’s hit rate this month.

TABLE 5.4 Results of the book reviewer’s predictions for month 1.

Month 1 Best-seller Non-best seller
Predicted bestseller 1 9
Predicted non-best-seller 9 81

Since one of the 10 best-sellers was predicted correctly, we see a 10% rate of accuracy.
There were also 90 predicted to be non-best-sellers, of which 81 were predicted correctly
as non-best-sellers. (81 out of 90 = 81/90 = 90% incorrectly predicted.)

In month 2 there were 200 books published. The reviewer read them all and made 10
best-seller predictions. Once again, a 10% correct prediction was achieved, as Table 5.5

shows.

TABLE 5.5 Results of the book reviewer’s predictions for month 2.



Month 1 Best-seller Non-best seller

Predicted bestseller 1 9

Predicted non-best-seller 9 181

Once again, there are 10 best-sellers and one was correctly predicted for a correct pick
rate of 10%. However, there were 190 books predicted to be non-best-sellers this month,
of which 181 were correctly predicted because they weren’t best-sellers. However, 181
out of 190 is a correct prediction rate for non-best-sellers of 95.26%!

What is going on here? The problem is that predicting best-sellers and predicting
non-best-sellers are not two sides of the same problem, although they look like they might
be. The chances of being right about best-sellers are not the opposite of the chances of
being right about non-best-sellers. This is because of the old bugaboo of knowledge of the
size of the population. What changed here is the size of the population from 100 to 200.
The number of best-sellers is always 10 because they are defined as being the 10
best-selling books. The number of non-best-sellers depends entirely on how many books
are published that month.

However (and this is a very important point), deciding how much confidence can be
justified after a given number of tests depends only on the success ratio of the tests. This
means that if the success/fail ratio of the test is known, or assumed, knowledge of the size
of the population is not needed in order to establish a level of confidence. With this
knowledge it is possible to construct a test that doesn’t depend on the size of the
population, but only on the consecutive number of confirmatory tests.

The confidence generated in the example is based on predicting best-sellers. The number
of best-sellers is a purely arbitrary number. It was just chosen to suit the needs of the
selector. After all, it could have been the top 12, or 17, or any other number. The term
“best-seller” was defined to suit someone’s convenience. It is very likely that the success
of reviewers in picking best-sellers would change if the definition of what constituted a
best-seller changed. The point here is that if the chosen assumptions meet the needs of
whoever selected them, then a rational assessment of confidence can be made based on
those assumptions.

5.5.3 Confidence Tests and Variability



The consequence for determining variability of a variable is that the modeler must make
assumptions that meet the modeler’s needs. Choosing a 95% level of confidence implies
saying, among other things, “If this test is wrong 95% of the time, how many times must
independent tests confirm its correctness before the cumulative judgment can be
accepted as correct at least 95% of the time?”

In practical terms (using the 95% level of confidence for this discussion), this implies
several consequences. Key, based on the level of confidence, is that a single test for
convergence of variability is incorrect 95% of the time and correct 5% of the time. From
that it is possible to rationally accumulate confidence in a continuing series of positive
results. (Positive results indicate variability convergence.) After some unbroken series of
positive results, a level of confidence is accumulated that exceeds 95%. When that
happens you can be sure that accepting the convergence as complete will only be a

mistake 1 time in 20, or less.

At the end, the result is a very simple formula that is transformed a little and used in the
demonstration software to know when enough is enough. That is,

s=et

where

s = Justified level of skepticism

e = Error rate

t = Number of positive tests

Results of this formula, using the 90% confidence level from the best-seller example, are
given in Table 5.6.

TABLE 5.6 Results of the book reviewer’s predictions for month 2.

Skepticism Error rate Number of tests

0.9 0.9 1

0.81 0.9 2



0.729 0.9 3

0.6561 0.9 4
0.59049 0.9 5
0.531441 0.9 6

This is the same series of numbers shown in the “Your remaining skeptical balance”
column in Table 5.3 except that these are expressed as decimals rather than
percentages.

Of course, this diminishing level of skepticism indicates the confidence that you are
wrong. The confidence that you are right is what is left after subtracting the confidence
that you are wrong! The confidence level in being right is, therefore,

c=1-¢
where
¢ = Confidence
e = Error rate
t = Number of positive tests

The Supplemental Material section at the end of this chapter briefly shows the
transformation from this statement into one that allows the number of consecutive true tests
to be directly found from the error rate. It is this version of the formula that is used in the
demonstration software. However, for those who need only to understand the concepts and
issues, that section may be safely skipped.

5.6 Confidence in Capturing Variability

Capturing the variability of a variable means, in practice, determining to a selected level of
confidence that the measured variability of a sample is similar to that of the population,
within specified limits. The measure of sample variability closeness to population
variability is measured by convergence in increasingly larger samples. In other words,
converged variability means that the amount of variability remains within particular limits
for enough independent tests to be convincing that the convergence is real. When the
variability is converged, we are justified in accepting, to a certain level of confidence, that



the variability is captured. This leads to two questions. First, exactly what is measured to
determine convergence, and second, what are the “particular limits” and how they are
discovered?

On the accompanying CD-ROM there is a data set CREDIT. This includes a sample of
real-world credit information. One of the fields in that data set is “DAS,” which is a
particular credit score rating. All of the data used in this example is available on the
CD-ROM, but since the sample is built by random selection, it is very unlikely that the
results shown here will be duplicated exactly in any subsequent sample. The chance of a
random sampling procedure encountering exactly the same sequence of instance values
is very, very low. (If it weren't, it would be of little value as a “random” sequence!)
However, the results do remain consistent in that they converge to the same variability
level, for a given degree of confidence, but the precise path to get there may vary a little.

5.6.1 A Brief Introduction to the Normal Distribution

Capturing variability relies on assuming normality in the distribution of the test results, and
using the known statistical properties of the normal distribution. The assumption of
normality of the distribution of the test results is particularly important in estimating the
probability that variability has actually converged. A brief and nontechnical examination of
some facets of the normal distribution is needed before looking at variability capture.

The normal distribution is well studied, and its properties are well known. Detailed
discussion of this distribution, and justification for some of the assertions made here, can
be found in almost any statistical text, including those on business statistics. Specifically,
the distribution of values within the range of a normally distributed variable form a very
specific pattern. When variables’ values are distributed in this way, the standard deviation
can be used to discover exactly how likely it is that any particular instance value will be
found. To put it another way, given a normally distributed sample of a particular number of
instances, it is possible to say how many instances are likely to fall between any two
values.

As an example, about 68% of the instance values of a normally distributed variable fall
inside the boundary values set at the mean-plus-1 standard deviation and the
mean-minus-1 standard deviation. This is normally expressed as m £ s, where m is the
mean and s the standard deviation. It is also known, for instance, that about 95.5% of the
sample’s instance values will lie within m + 2s, and 99.7% within m % 3s.

What this means is that if the distance and direction from the mean is known in standard
deviation units for any two values, it is possible to determine precisely the probability of
discovering instance values in that range. For instance, using tables found in any
elementary statistics text, it is easy to discover that for a value of the mean-minus-1
standard deviation, approximately 0.1587 (i.e., about 16%) of the instances lie in the
direction away from the mean, and therefore 0.8413 (about 84%) lie in the other direction.



The normal curve shown in Figure 5.7 plots values in the sample along the horizontal axis
(labeled Standard deviation) and the probability of finding a value on the vertical axis. In a
normally distributed sample of numbers, any value has some probability of occurring, but
with a vanishingly small probability as the distance of the values moves far from the
mean. The curve is centered on the sample mean and is usually measured in standard
deviation units from the mean. The total area under the curve corresponds to a probability
of 100% for finding a value in the distribution. The chance of finding a specific value
corresponds to the area under the curve for that value. It is easier to imagine finding a
value in some interval between two values.
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Figure 5.7 Normal distribution curve with values plotted for standard deviation
(x-axis) and probability of finding a value (y-axis).

This figure shows the normal curve with the interval between —1 and —0.8 standard
deviations. It can be found, by looking in standard deviation tables, that approximately
15.87% of the instance values lie to the left of the mean-minus-1 standard deviation line,
78.81% lie to the right of the —0.8 standard deviation line, which leaves 5.32% of the
distribution between the two (100% — 78.81% — 15.78% = 5.32%). So, for instance, if it
were known that some feature fell between these two limits consistently, then the feature
is “pinned down” with a 94.68% confidence (100% — 5.32% = 94.68%).

5.6.2 Normally Distributed Probabilities

Measuring such probabilities using normally distributed phenomena is only important, of
course, if the phenomena are indeed normally distributed.

Looking back at Figure 5.6 will very clearly show that the variability is not normally
distributed, nor even is the convergence. Fortunately, the changes in convergence, that
is, the size of the change in variance from one increment to the next increment, can easily
be adjusted to resemble a normal distribution. This statement can be theoretically
supported, but it is easy to intuitively see that this is reasonable.

Early in the convergence cycle, the changes tend to be large compared to later changes.



This is true no matter how long the convergence cycle continues. This means that the
proportion of relatively small changes always predominates. In turn, this leads to the
conclusion that the more instances that are considered, the more the later changes in
variance cluster about the mean. Relatively large changes in variance, both positive and
negative, are much less likely than small changes. And that is exactly what the normal
distribution describes.

To be sure, this is only a descriptive insight, not proof. Unfortunately, proof of this takes us
beyond the scope of this book. The Further Reading section at the end of this book has
pointers to where to look for further exploration of this and many other areas.

It must be noted that the variance distribution is not actually normal since convergence
can continue arbitrarily long, which can make the number of small changes in variability
far outweigh the large changes. Figure 5.8 shows part of the distribution for the first 100
samples of DAS variance. This distribution is hardly normal! However, although outside
the scope of this conceptual introduction, adjustment for the reduction in change of size of
variance with the sample is fairly straightforward. Figure 5.9 shows the effect of making
the adjustment, which approximately normalizes the distribution of changes in
variance—sufficient to make the assumptions for testing for convergence workably valid.
Figure 5.9 shows the distribution for 1000 variability samples.
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Figure 5.8 The actual distribution of the changes in variability of DAS for the first
100 samples shown in Figure 5.6.
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Figure 5.9 The variability of DAS for a 1000-instance sample when adjusted for
sample size.

5.6.3 Capturing Normally Distributed Probabilities: An
Example

After much preamble, we are at last ready to actually capture DAS variability. Recall that
Figure 5.6 showed how the variance of DAS changes as additional instances are
sampled. The variance rises very swiftly in the early instances, but settles down
(converges) to remain, after 100 samples, somewhere about 130. Figure 5.10 shows the
process of capturing variability for DAS. At first glance there is a lot on this graph! In order
to get everything onto the same graph together, the figure shows the values “normalized”
to fit into a range between 0 and 1. This is only for the purposes of displaying everything
on the graph.
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Figure 5.10 Various features shown on a common scale so that their
relationships are more easily seen.



This example uses a 95% confidence level, which requires that the variability be inside
0.05 (or 5%) of its range for 59 consecutive tests. In this example, the sampling is
continued long after variability was captured to see if the confidence was justified. A total
of 1000 instance-value samples are used.

As the variance settles down, the confidence level that the variability has been captured
rises closer to “1,” which would indicate 100% confidence. When the confidence of
capture reaches 0.95, in actual data preparation, the needed confidence level is reached
and sampling of this variable can stop. It means that at that point there is a 95%
confidence that at least 95% of the variability has been captured.

Because the example does not stop there, the variability pops out of limits from time to
time. Does this mean that the measurement of variability failed? When the variability first
reached the 0.95 confidence level, the variability was 127.04. After all 1000 samples were
completed, the variability was at 121.18. The second variance figure is 4.6% distant from
the first time the required confidence level was reached. The variance did indeed stay
within 5% for the measured period. Perhaps it might have moved further distant if more
instances had been sampled, or perhaps it might have moved closer. The measurement
was made at the 95% confidence interval for a 95% variability capture. So far as was
measured, this confidence level remains justified.

5.6.4 Capturing Confidence, Capturing Variance

This is a complex subject, and it is easy to confuse what actually has been captured here.
In the example the 95% level was used. The difficulty is in distinguishing between
capturing 95% of the DAS variability, and having a 95% confidence that the variability is
captured. Shouldn’t the 95% confidence interval of capturing 95% of the variability really
indicate a 0.95 x 0.95 = 0.9025 confidence?

The problem here is the difficulty of comparing apples and oranges. Capturing 95% of the
variability is not the same as having 95% confidence that it is captured. An example might
help to clarify.

If you have an interest-bearing bank account, you have some degree of assurance, based
on past history, that the interest rate will not vary more than a certain amount over a given
time. Let’s assume that you think it will vary less than 5% from where it is now over the
next six months. You could be said to be quite certain that you have locked in at least 95%
of the current interest rate. But how certain are you? Perhaps, for the sake of this
discussion, you can justify a 95% confidence level in your opinion.

So, you are 95% confident of capturing 95% of the current interest rate. By some strange
coincidence, those are the numbers that we had in capturing the variability! Ask this:
because 0.95 x 0.95 = 0.9025, does this mean that you are really 90.25% confident?
Does it mean the interest rate is only 90.25% of what you thought it was? No. It means



only that you are 95% confident of getting 95% of the present interest rate.

Remember that the 95% intervals were arbitrarily chosen. There is no inherent or intrinsic
connection between them, nor any necessity that they be at the same level. For convenience
in writing the demonstration software accompanying the book, they are taken to be the
same. You could make changes, however, to choose other levels, such as being 99%
certain that 80% of the variability has been captured. These are arbitrary choices of the user.

5.7 Problems and Shortcomings of Taking Samples Using
Variability

The discussion so far has established the need for sampling, for using measurement of
variability as a means to decide how much data is enough, and the use of confidence
measures to determine what constitutes enough. Taken together, this provides a firm
foundation to begin to determine how much data is enough. Although the basic method
has now been established, there are a number of practical issues that need to be
addressed before attempting to implement this methodology.

5.7.1 Missing Values

Missing or empty values present a problem. What value, if any, should be in the place of
the missing value cannot yet be determined.

The practical answer for determining variability is that missing values are simply ignored
as if they did not exist. Simply put, a missing value does not count as an instance of data,
and the variability calculation is made using only those instances that have a measured
value.

This implies that, for numerical variables particularly, the difference between a missing
value and the value 0 must be distinguished. In some database programs and data
warehouses, it is possible to distinguish variables that have not been assigned values.
The demonstration program works with data in character-only format (.txt files) and
regards values of all space as missing.

The second problem with missing values is deciding at what threshold of density the
variable is not worth bothering with. As a practical choice, the demonstration program
uses the confidence level here as a density measure. A 95% confidence level will
generate a minimum density requirement of 5% (100 — 95). This is very low, and in
practice such low-density variables probably contribute little information of value. It's
probably better to remove them. The program does, however, measure the density of all
variables. The cutoff occurs when an appropriate confidence level can be established that
the variable is below the minimum density. For the 95% confidence level, this translates
into being 95% certain that the variable is less than 5% populated.



5.7.2 Constants (Variables with Only One Value)

A problem similar in some respects to missing values is that of variables that are in fact
constants. That is to say, they contain only a single value. These should be removed
before sampling begins. However, they are easy to overlook. Perhaps the sample is about
people who are now divorced. From a broader population it is easy to extract all those
who are presently divorced. However, if there is a field answering the question “Was this
person ever married?” or “Is the tax return filed jointly?” obviously the answer to the first
guestion has to be “Yes.” It’s hard to get divorced if you've never married. Equally,
divorced people do not file joint tax returns.

For whatever reason, variables with only one value do creep unwittingly into data sets for
preparation. The demonstration program will flag them as such when the appropriate level
of confidence has been reached that there is no variability in the variable.

5.7.3 Problems with Sampling

Sampling inherently has limitations. The whole idea of sampling is that the variability is
captured without inspecting all of the data. The sample specifically does not examine all of
the values present in the data set—that is the whole point of sampling.

A problem arises with alpha variables. The demonstration software does achieve a
satisfactory representative sampling of the categorical values. However, not all the
distinct values are necessarily captured. The PIE only knows how to translate those
values that it has encountered in the data. (How to determine what particular value a
given categorical should be assigned is explained in Chapter 6.) There is no way to tell
how to translate values for the alpha values that exist in the data but were not
encountered in the sample.

This is not a problem with alpha variables having a small and restricted number of values
they can assume. With a restricted number of possible discrete values, sampling will find
them all. The exact number sampled depends on the selected confidence level. Many
real-world data sets contain categorical fields demonstrating the limitations of sampling
high discrete-count categorical variables. (Try the data set SHOE on the CD-ROM.)

In general, names and addresses are pretty hopeless. There are simply too many of
them. If ZIP codes are used and turn out to be too numerous, it is often helpful to try
limiting the numbers by using just the three-digit ZIP. SIC codes have similar problems.

The demonstration code does not have the ability to be forced to comprehensively sample
alpha variables. Such a modification would be easy to make, but there are drawbacks.

The higher sampling rate can be forced by placing higher levels of confidence on selected
variables. If it is known that there are high rates of categorical variable incidence, and that
the sample data actually contains a complete and representative distribution of them, this



will force the data preparation program to sample most or all of any number of distinct
values. This feature should be used cautiously as very high confidence on high
distinct-value count variables may require enormous amounts of data.

5.7.4 Monotonic Variable Detection

Monotonic variables are those that increase continuously, usually with time. Indeed, time
increment variables are often monotonic if both time and date are included. Julian dates,
which is a system of measurement using the number of days and fractions of days
elapsed from a specified starting point (rather like Star Trek’s star dates) are a perfect
example of monotonic variables.

There are many other examples, such as serial numbers, order numbers, invoice
numbers, membership numbers, account numbers, ISBN numbers, and a host of others.
What they all have in common is that they increase without bound. There are many ways
of dealing with these and either encoding or recoding them. This is discussed in Chapter
9. Suitably prepared, they are no longer monotonic. Here the focus is on how best to deal
with the issue if monotonic variables accidentally slip into the data set.

The problem for variability capture is that only those values present in the sample
available to the miner can be accessed. In any limited number of instances there will be
some maximum and some minimum for each variable, including the monotonic variables.
The full range will be sampled with any required degree of accuracy. The problem is that
as soon as actual data for modeling is used from some other source, the monotonic
variable will very likely take on values outside the range sampled. Even if the range of
new variables is inside the range sampled, the distribution will likely be totally different
than that in the original sample. Any modeled inferences or relationships made that rely
on this data will be invalid.

This is a very tricky problem to detect. It is in the nature of monotonic variables to have a
trend. That is, there is a natural ordering of one following another in sequence. However,
one founding pillar of sampling is random sampling. Random sampling destroys any
order. Even if random sampling were to be selectively abandoned, it does no good, for the
values of any variable can be ordered if so desired. Such an ordering, however, is likely to
be totally artificial and meaningless. There is simply no general way, from internal
evidence inside any data set, to distinguish between a natural order and an artificially
imposed one.

Two methods are used to provide an indication of possible monotonicity in variables. Itis
the nature of random sampling that neither each alone, nor both together, are perfect.
They do, however, in practice provide warning and guidance that there may be something
odd about a particular variable. There is a colloquial expression, to be “saved by the
bell’—and these are two bells that may save much trouble: interstitial linearity and rate of
discovery.



5.7.5 Interstitial Linearity

Interstitial linearity is the first method that helps signal the possibility of monotonicity.
Interstices are internal spaces. Interstitial linearity measures the consistency of spaces
between values of a variable. When the spaces are similar in size, interstitial linearity is
high.

Monotonic variables are frequently generated as series of numbers increasing by some
constant amount. Time ticks, for instance, may increase by some set amount of seconds,
minutes, hours, or days. Serial numbers frequently increment by one at each step. This
uniform increment, or some residual trace of it, is often found in the sample presented for
modeling. Random sampling of such a series produces a subseries of numbers that also
tend, on average, to have uniform interstitial spacing. This creates a distribution of
numbers that tend to have a uniform density in all parts of their range. This type of
distribution is known as a linear distribution or a rectangular distribution. Measuring how
closely the distribution of variables approximates a linear distribution, then, can lead to an
indication of monotonicity.

The demonstration software checks each variable for interstitial linearity. There are many
perfectly valid variables that show high degrees of interstitial linearity. The measure varies
between 0 and 1, with 1 being a perfectly linear distribution. If any variable has an
interstitial linearity greater than 0.98, it is usually worth particular scrutiny.

5.7.6 Rate of Discovery

It is in the nature of monotonic variables that all of the instance values are unique. During
sampling of such variables, a new instance value is discovered with every instance. (In
fact, errors in data entry, or other problems, may make this not quite true, but the
discovery rate will be very close to 100%.) A discovery rate of close to 100% can be
indicative of monotonicity.

There are, of course, many variables that are not monotonic but have unique instance
values, at least in the sample available. Men’s height measured to the nearest millimeter, for
instance, would not be monotonic, but would likely have unique instance values for quite a
large number of instances. However, such a variable would almost certainly not show
interstitial linearity. Taken together, these measures can be useful in practice in discovering
problems early.

5.8 Confidence and Instance Count

This chapter discussed using confidence as a means of estimating how many instance
values are needed to capture variability. However, it is quite easy to turn this measure
around, as it were, and give a confidence measure for some preselected number of instance



values. It is quite possible to select a confidence level that the data simply cannot support.
For instance, selecting a 99.5% confidence level may very well need more instances than
the miner has available. In this case, the demonstration code estimates what level of
confidence is justified for the instances available. In a small data set, selecting a 99.99%
confidence level forces the sampling method to take all of the data, since such a high
confidence of capture can almost never be justified. The actual confidence level justified is in
the Variable Status report (mentioned in Chapter 4).

5.9 Summary

This chapter has looked at how to decide how much data the miner needs to make sure
that variables have their variability represented. Variability must be captured as it
represents the information content of a variable, which it is critically important to preserve.
We are almost never completely assured that the variability has been captured, but it is
possible to justify a degree of confidence. Data sets can be sampled because confidence
levels of less than 100% work very well in real-world problems—which is fortunate since
perfect confidence is almost always impossible to have! (Even if unlimited amounts of
data are available, the world is still an uncertain place. See Chapter 2.) We can either
select enough data to establish the needed level of confidence, or determine how much
confidence is justified in a limited data set on hand. Selecting the appropriate level of
confidence requires problem and domain knowledge, and cannot be automatically
determined. Confidence decisions must be made by the problem owner, problem holder,
domain expert, and miner.

The next actions need to expose information to modeling tools and fix various problems in
the variables, and in the data set as a whole. The next chapter begins this journey.

Supplemental Material

Confidence Samples

In this section, we will use
¢ = Confidence
e = Error rate
n = Number of tests
s = Skepticism

(Note that the program uses the confidence factor ¢ also as the expected error rate e.

That is to say, if a 0.95 confidence level is required in the result, an assumption is made
that the test may be expected to be wrong at a rate of 0.95 also. Thus, in effect, ¢ = e. This



is an arbitrary assumption, but seems reasonable and simplifies the number of
parameters required.)

The relationship

s=e"

can be transposed to

n = log(s)/log(e)

The easy way to confirm this is to plug in some numbers:

9=3

So the transposition supposes that

2 =1og(9)/log(3)

2 =0.9542/0.4771

which you will find is so.

But

c=1-eg"

since

s=e"

which allows the whole formula for finding the necessary number of tests to be written as

n =log(1 — c)/log(c)

This is a very useful transformation, since it means that the number of confirmations
required can be found directly by calculation.

For the 0.95, or 95%, confidence level (c = 0.95), and using natural logarithms for
example, this becomes



n =log(1 — c)/log(c)

n = 10g(0.05)/10g(0.95)
= -2.9957/-0.0513

n =58.4

This means that 59 tests of convergence agreeing that the variable is converged
establishes the 95% confidence required. (Since “0.4” of a test is impossible, the 58.4 is
increased to the next whole number, 59.)

This relationship is used in the demonstration software to test for convergence of variability.
Essentially, the method is to keep increasing the number of instances in the sample,
checking variability at each step, and wait until the variability is within the error band the
required number of times.

Chapter 6: Handling Nonnumerical Variables

Overview

Given the representative sample, as described in Chapter 5, it may well consist of a
mixture of variable types. Nonnumerical, or alpha, variables present a set of problems
different from those of numerical variables. Chapter 2 briefly examined the different types
of nonnumerical variables, where they were referred to as nominal and categorical.
Distinguishing between the different types of alpha variables is not easy, as they blend
into a continuum. Whenever methods of handling alpha variables are used, they must be
effective at handling all types across the continuum.

The types of problems that have to be handled depend to some extent on the capabilities,
and the needs, of the modeling tools involved. Some tools, such as decision trees, can
handle alpha values in their alpha form. Other tools, such as neural networks, can handle
only a numeric representation of the alpha value. The miner may need to use several
different modeling tools on a data set, each tool having different capabilities and needs.
Whatever techniques are used to prepare the data set, they should not distort its
information content (i.e., add bias). Ideally, the data prepared for one tool should be
useable by any other tool—and should give materially the same results with any tool that
can handle the data.

Since all tools can handle numerical data but some tools cannot handle alpha data, the
miner needs a method of transforming alpha values into appropriate numerical values.



Chapter 2 introduced the idea that the values in a data set reflect some state of the real
world. It also introduced the idea that the ordering of, and spacing between, alpha
variables could be recovered and expressed numerically by looking at the data set as a
whole. This chapter explores how this can be done. The groundwork that is laid here is
needed to cover issues other than just the numeration of alpha values, so rather than
covering the same material more than once, several topics are visited, and ideas
introduced, in slightly more detail than is needed just for dealing with alpha variables.

Four broad topics are discussed in this chapter. The first is the remapping of variable
values, which can apply to both numeric and alpha values, but most often applies to
alphas. The miner has to make decisions about the most appropriate representation of
alpha variables. There are several automated techniques discussed in this chapter for
discovering an appropriate numeric representation of alpha values. Unfortunately, there is
no guarantee that these techniques will find even a good representation, let alone the best
one. They will find the best numerical representation, given the form in which the alpha is
delivered for preparation, and the information in the data set. However, insights and
understanding brought by the miner, or by a domain expert, will almost certainly give a
much better representation. What must be avoided at all costs is an arbitrary assignment
of numbers to alpha labels. The initial stage in numerating alphas is for the miner to
replace them with a numeration that has some rationale, if possible.

The second topic is a more detailed look at state space. Understanding state space is
needed not only for numerating the alphas, but also for conducting the data survey and for
addressing various problems and issues in data mining. Becoming comfortable with the
concept of data existing in state space yields insight into, and a level of comfort in dealing
with, modeling problems.

The third is joint frequency distribution tables. Data sets may be purely numeric, mixed
alpha-numeric, or purely alpha. If the data set is purely numeric, then the techniques of
this chapter are not needed—at least not for numerating alpha values. Data sets
containing exclusively alpha values cannot reflect or be calibrated against associated
numeric values in the data set because there are none. Numerating all alpha values
requires a different technique. The one described here is based on the frequencies of
occurrence of alpha values as expressed in joint frequency distribution tables.

The fourth broad topic is multidimensional scaling (MDS). Chapter 2 also introduced the idea
that some alpha variables are most usefully translated into more than one single numeric
value (ZIP codes into latitude and longitude, for example; see the explanation in Chapter 2).
Taking that idea a step further, some technique is needed to project the values into the
appropriate number of dimensions. The technique is multidimensional scaling. Although
discussed in this chapter as a means to discover the appropriate dimensionality for a
variable, MDS techniques can also be used for reducing the dimensionality of a data set.

6.1 Representing Alphas and Remapping



Exactly how alpha values are best represented depends very much on the needs of the
modeling tool. Function-fitting modeling methods are sensitive to the form of the
representation. These tools use techniques like regression and neural networks and, to
some extent, symbolic regression, evolution programming, and equation evolvers. These
tools yield final output that can be expressed as some form of mathematical equation (i.e.,
X = some combination and manipulation of input values). Other modeling methods, such
as those sensitive mainly to the ordinality patterns in data, are usually less sensitive,
although certainly not entirely insensitive, to representational issues, as they can handle
alpha values directly. These include tools based on techniques like some forms of
decision trees, decision lists, and some nearest-neighbor techniques.

However, all modeling tools used by data miners are sensitive to the one-to-many
problem (introduced in the next section and also revisited in Chapter 11), although there
are different ways of dealing with it. The one-to-many problem afflicts numeric variables
as well as alpha variables. It is introduced here because for some representations it is an
important consideration when remapping the alpha labels. If this problem does exist in an
alpha variable, remapping using domain knowledge may prove to be the easiest way to
deal with the problem.

There is an empirical way—a rule of thumb—for finding out if any particular remapping is
both an improvement and robust. Try it! That is, build a few simple models with various
methods. Ensure that at least the remapped values cause no significant degradation in
performance over the default choice of leaving it alone. If in addition to doing no harm, it
does some good, at least sometimes, it is probably worth considering. This empirical test
is true too for the automated techniques described later. They have been chosen because
in general, and with much practical testing, they at least do no harm, and often (usually)
improve performance depending on the modeling tool used.

In general, remapping can be very useful indeed when one or more of these
circumstances is true:

» The information density that can be remapped into a pseudo-variable is high.

» The dimensionality of the model is only modestly increased by remapping.

A rational, or logical, reasoning can be given for the remapping.

The underlying rationale for the model requires that the alpha inputs are to be
represented without implicit ordering.

6.1.1 One-of-n Remapping

Ask a U.S. citizen or longtime resident, “How many states are there?” and you will



probably get the answer “Fifty!” It turns out that for many models that deal with states,
there are a lot more. Canadian provinces get squeezed in, as well as Mexican states, plus
all kinds of errors. (Where, for instance, is IW?) However, sticking with just the 50 U.S.
states, how are these to be represented? In fact, states are usually dealt with quite well by
the automated numeration techniques described later in this chapter. However,
remapping them is a classic example for neural networks and serves as a good general
example of one-of-n remapping. It also demonstrates the problems with this type of
remapping.

A one-of-n representation requires creating a binary-valued pseudo-variable for each
alpha label value. For U.S. states, this involves creating 50 new binary pseudo-variables,
one for each state. The numerical value is set to “1,” indicating the presence of the
relevant particular label value, and “0” otherwise. There are 50 variables, only one of
which is “on” at any one time. Only one “on” of the 50 possible, so “one-of-n” where in this
case “n” is 50.

Using such a representation has advantages and disadvantages. One advantage is that
the mean of each pseudo-variable is proportional to the proportion of the label in the
sample; that is, if 25% of the labels were “CA,” then the mean of the pseudo-variable for
the label “CA” would be 0.25. A useful feature of this is that when “State” is to be
predicted, a model trained on such a representation will produce an output that is the
model’s estimate of the probability of that state being the appropriate choice.

Disadvantages are several:

» Dimensionality is increased considerably. If there are many such remapped
pseudo-variables, there can be an enormous increase in dimensionality that can easily
prevent the miner from building a useful model.

* The density (in the state example) of a particular state may well be very low. If only the
50 U.S. states were used and each was equally represented, each would have a 2%
presence. For many tools, such low levels are almost indistinguishable from 0% for
each state; in other words, such low levels mean that no state can be usefully
distinguished.

» Again, even when the pseudo-variables have reasonable density for modeling, the
various outputs will all be “on” to some degree if they are to be predicted, estimating the
probability that their output is true. This allows ranking the outputs for degree of
probability. While this can be useful, sometimes it is very unhelpful or confusing to know
that there is essentially a 50% chance that the answer is “NY,” and a 50% chance that
the answer is “CA.”

6.1.2 m-of-n Remapping



While the nac«ve one-of-n remapping (one state to one variable) may cause difficulties,
domain knowledge can indicate very useful remappings that significantly enhance the
information content in alpha variables. Since these depend on domain knowledge, they
are necessarily situation specific. However, useful remappings for state may include such
features as creating a pseudo-variable for “North,” one for “South,” another for “East,” one
for “West,” and perhaps others for other features of interest, such as population density or
number of cities in the state. This m-of-n remapping is an advantage if either of two
conditions is met. First, if the total number of additional variables is less than the number
of labels, then m-of-n remapping increases dimensionality less than one-of-n—potentially
a big advantage. Second, if the m-of-n remapping actually adds useful information, either
in fact (by explicating domain knowledge), or by making existing information more
accessible, once again this is an advantage over one-of-n.

This useful remapping technique has more than one of the pseudo-variables “on” for a
single input. In one-of-n, one state switched “on” one variable. In m-of-n, several variables
may be “on.” For instance, a densely populated U.S. state in the northeast activates
several of the pseudo-variables. The pseudo-variables for “North,” “East,” and “Dense
Population” would be “on.” So, for this example, one input label maps to three “on” input
pseudo-variables. There could, of course, be many more than three possible inputs. In
general, m would be “on” of the possible n—so it’s called an m-of-n mapping.

Another example of this remapping technique usefully groups common characteristics.
Such character aggregation codings can be very useful. For instance, instead of listing
the entire content of a grocery store’s produce section using individual alpha labels in a
na«ve one-of-n coding, it may be better to create m-of-n pseudo-variables for “Fruit,”

“Vegetable,” “Root Crop,” “Leafy,” “Short Shelf Life,” and so on. Naturally, the useful
characteristics will vary with the needs of the situation. It is usually necessary to ensure
that the coding produces a unique pattern of pseudo-variable inputs for each alpha
label—that is, for this example, a unique pattern for each item in the produce department.
The domain expert must make sure, for example, either that the label “rutabaga” maps to
a different set of inputs than the label “turnip,” or that mapping to the same input pattern is

acceptable.

6.1.3 Remapping to Eliminate Ordering

Another use for remapping is when it is important that there be no implication of ordering
among the labels. The automated techniques described in this chapter attempt to find an
appropriate ordering and dimensionality of representation for alpha variables. Itis very
often the case that an appropriate ordering does in fact exist. Where it does exist, it
should be preserved and used. However, it is the nature of the algorithms that they will
always find an ordering and some dimensional representation for any alpha variable. It
may be that the domain expert, or the miner, finds it important to represent a particular
variable without ordering. Using remapping achieves model inputs without implicit
ordering.



6.1.4 Remapping One-to-Many Patterns, or Ill-Formed
Problems

The one-to-many problem can defeat any function-fitting modeling tool, and many other
tools too. The problem arises when one input pattern predicts many output patterns.
Since mining tools are often used to predict single values, it is convenient to discuss the
problem in terms of predicting a single output value. However, since it is quite possible for
some tools to predict several output values simultaneously, throughout the following
discussion the single value output used for illustration must be thought of as a surrogate
for any more complex output pattern. This is not a problem limited to alpha variables by
any means. However, since remapping may provide a remedy for the one-to-many
problem, we will look at the problem here.

Many modeling tools look for patterns in the input data that are indicative of particular
output values. The essence of a predictive model is that it can identify particular input
patterns and associate specific output values with them. The output values will always
contain some level of noise, and so a prediction can only be to some degree
approximately accurate. The noise is assumed to be “fuzz” surrounding some actual value
or range of values and is an ineradicable part of the prediction. (See Chapter 2 for a
further discussion of this topic.)

A severe and intractable problem arises when a single input pattern should accurately be
associated with two or more discrete output values. Figure 6.1 shows a graph of data
points. Modeling these points discovers a function that fits the points very well. The
function is shown in the title of the graph. The fit is very good.
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Figure 6.1 The circles show the location of the data points, and the continuous
line traces the path of the fitted function. The discovered function fits the function
well as there is only a single value of y for every value of x.



Figure 6.2 shows a totally different situation. Here the original curve has been reflected
across the bottom-left, top-right diagonal of the curve, and fitting a function to this curve is
a disaster. Why? Because for much of this curve, there is no single value of y for every
value of x. Take the point x = 0.7, for example. There are three values of y: y = 0.2,y =
0.7, and y = 1.0. For a single value of x there are three values of y—and no way, from just
knowing the value of x, to tell them apart. This makes it impossible to fit a function to this
curve. The best that a function-fitting modeling tool can do is to find a function that
somehow fits. The one used in this example found as its best approximation a function
that can hardly be said to describe the curve very well.
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Figure 6.2 The solid line shows the best-fit function that one modeling tool could
discover to fit the curve illustrated by the circles. When a curve has multiple
predicted (y) values for the input value (x), no function can fit the curve.

In Figure 6.2 the input “pattern” (here a single number) is the x value. The output pattern
is the y value. This illustrates the situation in data sets where, for some part of the range,
the input pattern genuinely maps to multiple output patterns. One input, many outputs,
hence the name one-to-many. Note that the problem is not noise or uncertainty in
knowing the value of the output. The output values of y for any input values of x are clearly
specified and can be seen on the graph. It’s just that sometimes there is more than one
output value associated with an input value. The problem is not that the “true” value lies
somewhere between the multiple outputs, but that a function can only give a single output
value (or pattern) for a unique input value (or pattern).

Does this problem occur in practice? Do data miners really have to deal with it? The curve
shown in Figure 6.1 is a normalized, and for demonstration purposes, somewhat cleaned
up, profit curve. The x value corresponds to product price, the y value to level of profit. As
price increases, so does profit for awhile. At some critical point, as price increases, profit
falls. Presumably, more customers are put off by the higher price than are offset by the
higher profit margin, so overall profit falls. At some point the overall profit rises again with
increase in price. Again presumably, enough people still see value in the product at the



higher price to keep buying it so that the increase in price generates more overall profit.
Figure 6.1 illustrates the answer to the question What level of profit can | expect at each
price level over a range?

Figure 6.2 has price on the y-axis and profit on the x-axis, and illustrates the answer to the
guestion What price should | set to generate a specific level of profit? The difficulty is that,
in this example, there are multiple prices that correspond to some specific levels of profit.
Many, if not most, current modeling tools cannot answer this question in the situation
illustrated.

There are a number of places in the process where this problem can be fixed, if it is
detected. And that is a very big if! It is often very hard to determine areas of multivalued
output. Miners, when modeling, can overcome the problem using a number of techniques.
The data survey (Chapter 11) is the easiest place to detect the problem, if it is not already
known to be a problem. However, if it is recognized, and possible, by far the easiest stage
in which to correct the problem is during data preparation. It requires the acquisition of
some additional information that can distinguish the separate situations. This additional
information can be coded into a variable, say, z. Figure 6.3 shows the curve in three
dimensions. Here it is easy to see that there are unique x and z values for every
point—problem solved!
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Figure 6.3 Adding a third dimension to the curve allows it to be uniquely
characterized by values x and z. If there is additional information allowing the
states to be uniquely defined, this is an easy solution to the problem.

Not quite. In the illustration, the variable z varies with y to make illustrating the point easy.
But because y is unknown at prediction time, so is z. It's a Catch-22! However, if
additional information that can differentiate between the situations is available at
preparation time, it is by far the easiest time to correct the problem.



This book focuses on data preparation. Discussing other ways of fixing the one-to-many
problem is outside the present book’s scope. However, since the topic is not addressed
any further here, a brief word about other ways of attacking the problem may help prevent
anguish!

There is a clue in the way that the problem was introduced for this example. The example
simply reflected a curve that was quite easily represented by a function. If the problem is
recognized, it is sometimes possible to alleviate it by making a sort of reflection in the
appropriate state space. Another possible answer is to introduce a local distortion in state
space that “untwists” the curve so that it is more easily describable. Care must be taken
when using these methods, since they often either require the answer to be known or can
cause more damage than they cure! The data survey, in part, examines the manifold
carefully and should report the location and extent of any such areas in the data. At least
when modeling in such an area of the data, the miner can place a large sign
“Warning—Quicksand!” on the results.

Another possible solution is for the miner to use modeling techniques that can deal with
such curves—that is, techniques that can model surfaces not describable by functions.
There are several such techniques, but regrettably, few are available in commercial
products at this writing. Another approach is to produce separate models, one for each
part of the curve that is describable by a function.

6.1.5 Remapping Circular Discontinuity

Historians and religions have debated whether time is linear or circular. Certainly scientific
time is linear in the sense that it proceeds from some beginning point toward an end. For
miners and modelers, time is often circular. The seasons roll endlessly round, and after
every December comes a January. Even when time appears to be numerically labeled,
usually ordinally, the miner should consider what nature of labeling is required inside the
model.

Because of the circularity of time, specifying timelike labels has particular problems.
Numbering the weeks of the year from “1” to “52” demonstrates the problem. Week 52, on
a seasonal calendar, is right next to week 1, but the numbers are not adjacent. There is
discontinuity between the two numbers. Data that contains annual cycles, but is ordered
as consecutively numbered week labels, will find that the distortion introduced very likely
prevents a modeling tool from discovering any cyclic information.

A preferable labeling might set midsummer as “1” and midwinter as “0.” For 26 weeks the
“Date” flag, a lead variable, might travel from “0” toward “1,” and for the other 26 weeks
from “1” toward “0.” A lag variable is used to unambiguously define the time by reporting
what time it was at some fixed distance in the past. In the example illustrated in Figure
6.4, the lag variable gives the time a quarter of a year ago. These two variables provide
an unambiguous indication of the time. The times shown are for solstices and equinoxes,



but every instant throughout the cycle is defined by a unique pair of values. By using this
representation of lead and lag variables, the model will be able to discover interactions
with annual variations.
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Figure 6.4 An annual “clock.” The time is represented by two variables—one
showing the time now and one showing where the time was a quarter of a year
ago.

Annual variation is not always sufficient. When time is expected to be important in any
model, the miner, or domain expert, should determine what cycles are appropriate and
expected. Then appropriate and meaningful continuous indicators can be built. When
modeling human or animal behavior, various-period circadian rhythms might be
appropriate input variables. Marketing models often use seasonal cycles, but distance in
days from or to a major holiday is also often appropriate. Frequently, a single cyclic time is
not enough, and the model will strongly benefit from having information about multiple
cycles of different duration.

Sometimes the cycle may rise slowly and fall abruptly, like “weeks to Thanksgiving.” The
day after Thanksgiving, the effective number of weeks steps to 52 and counts down from
there. Although the immediately past Thanksgiving may be “0” weeks distant, the salient
point is that once “this” Thanksgiving is past, it is immediately 52 weeks to next
Thanksgiving. In this case the “1” through “52” numeration is appropriate—but it must be
anchored at the appropriate time, Thanksgiving in this case. Anchoring “weeks to
Thanksgiving” on January 1st, or Christmas, say, would considerably reduce the utility of
the ordering.

As with most other alpha labels, appropriate numeration adds to the information available for
modeling. Inappropriate labeling at best makes useful information unavailable, and at worst,
destroys it.



6.2 State Space

State space is a space exactly like any other. It is different from the space normally
perceived in two ways. First, it is not limited to the three dimensions of accustomed space
(or four if you count time). Second, it can be measured along any ordered dimensions that
are convenient.

For instance, choosing a two-dimensional state space, the dimensions could be “inches of
rain” and “week of the year.” Such a state space is easy to visualize and can be easily
drawn on a piece of paper in the form of a graph. Each dimension of space becomes one
of the axes of the graph. One of the interesting things about this particular state space is
that, unlike our three-dimensional world, the values demarking position on a dimension
are bounded; that is to say, they can only take on values from a limited range. In the
normal three-dimensional world, the range of values for the dimensions “length,”
“breadth,” and “height” are unlimited. Length, breadth, or height of an object can be any
value from the very minute—say, the Planck constant (a very minute length indeed)—to
billions of light-years. The familiar space used to hold these objects is essentially
unlimited in extent.

When constructing state space to deal with data sets, the range of dimensional values is
limited. Modeling tools do not deal with monotonic variables, and thus these have to be
transformed into some reexpression of them that covers a limited range. It is not at all a
mathematical requirement that there be a limit to the size of state space, but the spaces
that data miners experience almost always are limited.

6.2.1 Unit State Space

Since the range of values that a dimension can take on are limited, this also limits the
“size” of the dimension. The range of the variable fixes the range of the dimension. Since
the limiting values for the variables are known, all of the dimensions can be normalized.
Normalizing here means that every dimension can be constructed so that its maximum
and minimum values are the same. It is very convenient to construct the range so that the
maximum value is 1 and the minimum 0. The way to do this is very simple. (Methods of
normalizing ranges for numeric variables are discussed in Chapter 7.)

When every dimension in state space is constructed so that the maximum and minimum
values for each range are 1 and 0, respectively, the space is known as unit state
space—"unit” because the length of each “side” is one unit long; “state space” because
each uniquely defined position in the space represents one particular state of the system
of variables. This transformation is no more than a convenience, but making such a
transformation allows many properties of unit state space to be immediately known. For
instance, in a two-dimensional unit state space, the longest straight line that can be
constructed is the corner-to-corner diagonal. State space is constructed so that its
dimensions are all at right angles to each other—thus two-dimensional state space is



rectangular. Two-dimensional unit state space not only is rectangular, but has “sides” of
the same unit length, and so is square. Figure 6.5 shows the corner-to-corner diagonal
line, and it immediately is clear that that the Pythagorean theorem can be used to find the
length of the line, which must be 1.41 units.

1.0 )
= 2, .
frm 8 + I (Pythgo nean) P
0.9 4 R .
Since 1% = 1 .
-
0.8 1 LERSES ’J
”
hmy2 ,
0.7 )
h=1.41 J,
- 0.8 4 .
£ ? -
§ 054 4 Sida b,
- */, 1 unh long
g # y
0.4 ,
-
/
-
0.3 - .
#
i Sie &,
1 rJ Tl |G . Right angle:
& o \\
TR N\
P R

oy 0z 03 04 06 OB OF OB 08 14
D nsacn 2

Figure 6.5 Farthest possible separation in state space.

6.2.2 Pythagoras in State Space

Two-dimensional state space is not significantly different from the space represented on
the surface of a piece of paper. The Pythagorean theorem can be extended to a
three-dimensional space, and in a three-dimensional unit state space, the longest
diagonal line that can be constructed is 1.73 units long. What of four dimensions? In fact,
there is an analog of the Pythagorean theorem that holds for any dimensionality of state
space that miners deal with, regardless of the number of dimensions. It might be stated
as: In any right-angled multiangle, the square on the multidimensional hypotenuse is
equal to the sum of the squares on all the other sides. The length of the longest straight
line that can be constructed in a four-dimensional unit state space is 2, and of a
five-dimensional unit state space, 2.24. It turns out that this is just the square root of the
number of sides, since the square on a unit side, the square of 1, is just 1.

This means that as more dimensions are added, the longest straight line that can be
drawn increases in length. Adding more dimensions literally adds more space. In fact, the
longest straight line that can be drawn in unit state space is always just the square root of
the number of dimensions.

6.2.3 Position in State Space

Instead of just finding the longest line in state space, the Pythagorean theorem can be
used to find the distance between any two points. The position of a point is defined by its



coordinates, which is exactly what the instance values of the variables represent. Each
unique set of values represents a unique position in state space. Figure 6.6 shows how to
discover the distance between two points in a two-dimensional state space. Itis simply a
matter of finding the distance between the points on one axis and then on the other axis,
and then the diagonal length between the two points is the shortest distance between the
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Figure 6.6 Finding the distance between two points in a 2D state space.

Just as with finding the length of the longest straight line that can be drawn in state space,
so too this finding of the distance between two points can be generalized to work in
higher-dimensional state spaces. But each point in state space represents a particular
state of the system of variables, which in turn represent a particular state of the object or
event existing in the real world that was being measured. State space provides a standard
way of measuring and expressing the distance between any states of the system, whether
events or objects.

Using unit state space provides a frame of reference that allows the distance between any
two points in that space to be easily determined. Adding more dimensions, because it
adds more space in which to position points, actually moves them apart. Consider the
points shown in Figure 6.6 that are 0.1 units apart in both dimensions. If another
dimension is added, unless the value of the position on that dimension is identical for both
points, the distance between the points increases. This is a phenomenon that is very
important when modeling data. More dimensions means more sparsity or distance
between the data points in state space. A modeling tool has to search and characterize
state space, and too many dimensions means that the data points disappear into a thin
mist!

6.2.4 Neighbors and Associates



Points in state space that are close to each other are called neighbors. In fact, there is a
data modeling technique called “nearest neighbor” or “k-nearest neighbor” that is based
on this concept. This use of neighbors simply reflects the idea that states of the system
that are close together are more likely to share features in common than system states
further apart. This is only true if the dimensions actually reflect some association between
the states of the system indicated by their positions in state space.

Consider as an example Figure 6.7. This shows a hypothetical relationship in
two-dimensional unit state space between human age and height. Since height changes
as people grow older up to some limiting age, there is an association between the two
dimensions. Neighbors close together in state space tend to share common
characteristics up to the limiting age. After the limiting age—that is, the age at which
humans stop growing taller—there is no particular association between age and height,
except that this range has lower and upper limits. In the age dimension, the lower limit is
the age at which growth stops, and the upper limit is the age at which death occurs. In the
height dimension, after the age at which growth stops, the limits are the extremes of adult
height in the human population. Before growth stops, knowing the value of one dimension
gives an idea of what the value of the other dimension might be. In other words, the
height/age neighborhood can be usefully characterized. After growth stops, the
association is lost.
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Figure 6.7 Showing the relationship between neighbors and association when
there is, and is not, an association between the variables.

This simplified example is interesting because although it is simplified, it is similar to many
practical data characterization problems. For sets of variables other than just human
height and weight, the modeler might be interested in discovering that there are
boundaries. The existence and position of such boundaries might be an unknown piece of
information. The changing nature of a relationship might have to be discovered. It is clear
that for some part of the range of the data in the example, one set of predictions or



inferences can be made, and in another part of the same data set, wholly different
inferences or predictions must be made. This change in the nature of the neighborhood
from place to place can be very important. In two dimensions it is easy to see, but in
high-dimensionality spaces this can be difficult to discover.

6.2.5 Density and Sparsity

Before continuing, a difference in the use of the terms location or position, and points or
data points, needs to be noted.

In any space there are an infinite number of places or positions that can be specified.
Even the plane represented by two-dimensional state space has an infinite number of
positions on it that can be represented. In fact, even on a straight line, between any two
positions there are an infinite number of other positions. This is because it is always
possible to specify a location on a dimension that is between any two other locations. For
instance, between the locations represented by 0.124 and 0.125 are other locations
represented by 0.1241, 0.1242, 0.1243, and so on. This is a property of what is called the
number line. It is always possible to use more precision to specify more locations. The
terms location or position are used to represent a specific place in space.

Data, of course, has values—instance values—that can be represented as specifying a
particular position. The instance values in a data set, representing particular states of the
system, translate into representing particular positions in state space. When a particular
position is actually represented by an instance value, it is referred to as a data point or
point to indicate that this position represents a measured state of the system.

So the terms location and position are used to indicate a specific set of values that might
or might not be represented by an instance value in the data. The terms point and data
point indicate that the location represents recorded instance values and therefore
corresponds to an actual measured state of the system.

Turning now to consider density, in the physical world things that are dense have more
“stuff” in them per unit volume than things that are less dense. So too, some areas of state
space have more data points in them for a given volume than other areas. State space
density can be measured as the number of data points in a specific volume. In a dense
part of state space, any given location has its nearest neighboring points packed around it
more closely than in more sparsely populated parts of state space.

Naturally, in a state space of a fixed number of dimensions, the absolute mean density of
the data points depends on the number of data points present and the size of the space.
The number of dimensions fixes unit state space volume, but the number of data points in
that volume depends only on how much data has been collected. However, given a
representative sample, if there are associations among the dimensions, the relative
density of one part of state space remains in the same relationship to the relative density



of another part of the same space regardless of how many data points are added.

If this is not intuitive, imagine two representative samples drawn from the same
population. Each sample is projected into its own state space. Since the samples are
representative of the same population, both state spaces will have the same dimensions,
normalized to the same values. If this were not so, then the samples would not be truly
representative of the same population. Since both data sets are indeed representative of
the same population, the distributions of the variables are, for all practical purposes,
identical in both samples, as are the joint distributions. Thus, any given specific area
common to both state spaces will have the same proportion of the total number of points
in each space—not necessarily the same actual number of points, as the representative
samples may be of different sizes, but the same relative number of points.

Because both representative data sets drawn from a common population have similar
relative density throughout, adding them together—that is, putting all of the data points
into a common state space—does not change the relative density in the common state
space. As a specific example, if some defined area of both state spaces has a relative
density twice the mean density, when added together, the defined area of the common
state space will also have a density twice the mean—even though the mean will have
changed. Table 6.1 shows an example of this.

TABLE 6.1 State space density.

Mean density Specific area density
Sample 1 20 40
Sample 2 10 20
Combined 30 60

This table shows the actual number of data points in two samples representative of the
same population. The specific area density in each sample is twice the mean density even
though the number of points in each sample is different. When the two samples are
combined, the combined state space still has the same relative specific area density as
each of the original state spaces. So it is that when looking at the density of a particular
volume of space, it is relative density that is most usefully examined.



There are difficulties in determining density just by looking at the number of points in a
given area, particularly if in some places the given volume only has one data point, or
even no data points, in it. If enough data points from a representative sample are added,
eventually any area will have a measurable density. Even a sample of empty space has
some density represented by the points around it. The density at any position also
depends on the size and shape of the area that is chosen to sample the density. For many
purposes this makes it inconvenient to just look at chunks of state space to estimate
density.

Another way of estimating density is to choose a point, or a position, and estimate the
distance from there to each of the nearest data points in each dimension. The mean
distance to neighboring data points serves as a surrogate measurement for density. For
many purposes this is a more convenient measure since every point and position then
has a measurable density. The series of illustrations in Figure 6.8 shows this. The
difficulty, of course, is in determining exactly what constitutes a nearest neighbor, and
how many to use.

Figure 6.8 Estimating density: inside a square (a), rotating the same square (b),
same square moved to an unoccupied area (c), circular area (d), distance to a
number of neighbors (e), and distance to neighboring points from an empty
position (f).

Figure 6.8(a) shows the density inside a square to be 3. The same square in the same
location but rotated slightly could change the apparent density, as shown in Figure 6.8(b).
Figure 6.8(c) shows a square in an unoccupied space, which makes deciding what the
density is, or what it could be if more points were added, problematic. Using a circular
area can still have large jumps in density with a small shift in position, as shown in Figure
6.8(d). Figure 6.8(e) shows that measuring the distance to a number of neighbors gives
each point a unique density. Even an empty position has a measurable density by finding
the distances to neighboring points, as shown in Figure 6.8(f).



A better way of estimating density determines a weighted distance from every point in
state space to every other point. This gives an accurate density measure and produces a
continuous density gradient for all of space. Determining the nature of any location in
space uses the characteristics of every point in space, weighted by their distance. This
method allows every point to “vote” on the characteristics of some selected location in
space according to how near they are, and thus uses the whole data set. Distant points
have little influence on the outcome, while closer points have more influence. This works
well for determining nature and density of a point or location in state space, but it does
necessitate that any new point added requires recalculation of the entire density structure.
For highly populated state spaces, this becomes computationally intensive (slow!).

6.2.6 Nearby and Distant Nearest Neighbors

As with many things in life, making a particular set of choices has trade-offs. So it is with
nearest-neighbor methods. The first compromise requires deciding on the number of
nearby neighbors to actually look at. Figures 6.8(e) and 6.8(f) illustrate five neighbors
near to a point or position. Using nearest neighbors to determine the likely behavior of the
system for some specified location has different needs than using nearest neighbors to
estimate density. When estimating system behavior, using some number of the closest
neighbors in state space may provide the best estimate of system behavior. It usually
does not provide the best estimate of density.

Figure 6.9(a) illustrates why this might be the case. This example shows the use of four
neighbors. The closest neighbors to the point circled are all on one side of the point. Using
only these points to estimate density does not reflect the distance to other surrounding
points. A more intuitive view of density requires finding the nearest neighbors in “all
directions” (or omnidirectionally) around the chosen point. Having only the very closest
selected number of points all biased in direction leads to an overestimate of the
omnidirectional density.
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Figure 6.9 Results of estimating density with nearest neighbors: overestimate
(a), better estimate by looking for nearest neighbors in specific areas (b), and
change in estimate by rotating the axes of same specific areas (c).

One way around this shortcoming is to divide up the area to be searched, and to find a
nearest neighbor in each division, as shown in Figure 6.9(b). Still using four neighbors,
dividing space into quadrants and finding a nearest neighbor in each quadrant leads to a
better estimate of the omnidirectional density. However, no compromise is perfect. As
Figure 6.9(c) shows, rotating the axes of the quadrants can significantly change the
estimated density.

Since “divide and conquer” provides useable estimates of density and serves to identify
nearest neighbors, the demonstration code uses this both for neighbor estimation and as
a quick density estimation method.

6.2.7 Normalizing Measured Point Separation

Using normalized values of dimensions facilitates building a unit state space. This has
some convenient properties. Can distance measured between points be normalized?
State space size (volume) is proportional to the number of dimensions that constitute the
space. In a unit state space, the maximum possible separation between points is
known—the square root of the number of dimensions. Regardless of the number of
dimensions, no two points can be further separated than this distance. Similarly, no two
positions can be closer together than having no separation between them. This means
that the separation between points can be normalized. Any particular separation can be
expressed as a fraction of the maximum possible separation, which comes out as a
number between 0 and 1.

Density is not usually usefully expressed as a normalized quantity. Since it is relative
density that is of interest, density at a point or location is usually expressed relative to the
mean, or average, density. It is always possible for a particular position to be any number
of times more or less dense than the average density, say, 10 or 20 times. It is quite
possible to take the maximum and minimum density values found in a particular state
space and normalize the range, but is it usually more useful to know the density deviation
from the mean value. In any case, as more data points are added, the maximum,
minimum, and mean values will change, requiring recalibration if density is to be
normalized. However, as discussed above, given a representative sample data set,
relative density overall will not change with additional data from the same population.

6.2.8 Contours, Peaks, and Valleys

Instead of simply regarding the points in state space as having a particular density,
imagine that the density value is graduated across the intervening separation. Between a



point of high density and its lower-density neighbor, the density decreases across the
distance from high value to low. State space can be imagined as being permeated by a
continuous gradient of density, perhaps going “down” toward the densest areas, and “up”
toward the least dense areas. This up-and-down orientation conjures up the idea of a
surface of some sort that represents the expression of the gradient. The surface has high
points representing areas of least density and low points representing areas of most
density. The slope of the surface represents the rate of change in density at that position.

Three-dimensional surfaces of this sort, surfaces such as that of the earth’s, can be
mapped topographically. Such maps often show lines that are traced over the surface
marking the positions of a particular constant elevation. Such lines are known as
contours. Other sorts of contours can be traced, for example, along a ridge between two
high points, or along the deepest part of a valley between two low points. A density
surface can also be mapped with a variety of contours analogous to those used on a
topographic map.

6.2.9 Mapping State Space

Exploring features of the density surface can reveal an enormous amount of useful, even
vital information. Exploring the density map forms a significant part of the data survey. For
example, tracing all of the “ridges”—that is, tracing out the contours that wend their way
through the least densely populated areas of state space—Ileads to identifying groups of
natural clusters. Each cluster of points swarms about a point of maximum density.
Keeping in mind that this map ultimately represents some state of an object in the real
world, the mapped clusters show the systems
show evidence of bias in the data collection. Perhaps data about those states was for

L

preferred” states—or do they? Maybe they

some reason preferentially collected, and they predominate simply because they were the
easiest to collect. (Chapter 11 covers the practical application of this more fully. Here we
are just introducing the ideas that will be used later.)

6.2.10 Objects in State Space

Sometimes a more useful metaphor for thinking of the points in state space is as a
geometric object of some sort, even though when more than three dimensions are used it
is hard to imagine such an object. Nonetheless, if the points in state space are thought of
as “corners,” it is possible to join them with the analogs of lines and surfaces.

Three points in a two-dimensional state space could form the corners of a triangle. To
construct the triangle, the points are simply joined by lines. Similarly, in three-dimensional
space, points are joined by planes to form three-dimensional figures.

An interesting feature of the object analogy is that, just as with objects in familiar space,
they can cast “shadows.” In the familiar world, a three-dimensional object illuminated by
the sun casts a two-dimensional shadow. The shadow represents a more or less distorted



image of the object. So itis in state space that higher-dimensional objects can cast
lower-dimensional shadows. This ability of objects to cast shadows is one of the features
used in multidimensional scaling.

6.2.11 Phase Space

Phase space is identical to state space in almost all respects, with a single exception.
Phase space is used to represent features of objects or systems other than their state.
Since a system state is not represented in phase space, the name of the space changes
to reflect that. The reason to introduce what is essentially an identical sort of space to
state space is that when numerating alpha values, a space is needed in which to
represent the distances between the labels. Alpha labels, you will recall, do not represent
states of the system, but values of a particular variable. In order to numerate alpha labels,
or in other words to assign them particular numeric values indicating their order and
spacing, a space has to be created in which the labels can exist. The alpha labels are
arrayed in this space, each with a particular distance and direction from its neighboring
labels. Finding the appropriate place to put the labels in phase space is discussed in the
next section. The point is that when the appropriate positions for the labels are known,
then the appropriate label values can be found.

The most important point to note here is that the name of the space does not change its
properties. It simply identifies if the space is used to hold states of a system of variables
(state space) or some other features (phase space).

Why the name “phase space”? Well, “phase” indicates a relationship between things.
Electrical engineers are familiar with three-phase alternating-current power. This only
means that three power pulses occur in a complete cycle, and that they have a specific,
fixed relationship to each other. As another example, the phases of the moon represent
specific, and changing, relationships between the earth, moon, and sun. So too with
phase space. This is an imaginary space, identical in almost all respects to state space,
except that relationships, or phases, between things are represented.

6.2.12 Mapping Alpha Values

So far, all of the discussion of state space has assumed dimensions that are numerically
scaled and normalized into the range 0 to 1. Where do alpha values fit in here?

Between any two variables, whether alpha or numeric, there is some sort of relationship.
As in the height/age example, characterizing the precise nature of the relationship may be
difficult. In some parts of the range, the variables may allow better or worse inferences
about how the values relate. Nonetheless, it is the existence of a relationship that allows
any inferences to be made. Statistically, the variables may be said to be more or less
independent of each other. If fully independent, it could be said that there is no
relationship. Actually, it is more accurate to say that when variables are independent,



knowing something about the state of one variable tells nothing about the state of the
other. There is still a relationship, but it carries no useful information. As an example of
complete statistical independence, flipping a coin and knowing the result tells you nothing
whatever about the time at which the flip was made.

The system of variables that is used to populate state space is exactly that, a system. A
system has interreacting and interlocking components. The system reflects, more or less,
the real world, and the world is not a purely random phenomenon. The instance values
represent snapshots of parts of the system in action. It may be that the system is not well
understood; indeed, it may be that understanding the system is the whole purpose of the
data exploration enterprise. Nonetheless, a system is not going to have all of its
components independent of each other. If all of the components have no relation
whatsoever to each other, it hardly qualifies as a system!

It is the interrelationship between the alpha values and the system of variables as a whole
that allows their appropriate numeration. Numeration does not recover the actual values
appropriate for an alpha variable, even if there are any. It may very well be that there are
no inherently appropriate actual values. Although cities, for instance, can be ranked (say,
through an opinion poll) for “quality of life,” placed in order, and separated by an
appropriate distance along the ranking, there is no absolute number associated with each
position. The quality-of-life scale might be from 1 to 10, or 1 to 100, or 0 to 1. It could even
be from 37.275 to 18.462, although that would not be intuitive to humans. What is
recoverable is the appropriate order and separation. For convenience, the scale for
recovery is normalized from 0 to 1, which allows them to be conveniently positioned in unit
state space.

6.2.13 Location, Location, Location!

In real estate, location is all. So too when mapping alphas. The points in state space can
be mapped. Alpha variables that are in fact associated with the system of variables can
also be appropriately placed on this map. The values of an alpha variable are labels. The
numeration method associates each label with some appropriate particular “area” on the
state space map. (It is an area in two dimensions, a volume in three dimensions, and
some unnamed analog in more than three. For convenience it is referred to throughout
this explanation as an “area.”) Discovering the appropriate location of the area is the heart
of the method; having done this, the problem then is to turn the high-dimensionality
position into an appropriate number. The techniques for doing that are discussed later in
this chapter in the section on multidimensional scaling.

The simplest state space that can contain two variables is a two-dimensional state space.
If one of the variables is numeric and one alpha, the problem of finding an appropriate
value from multiple numeric dimensions does not exist since there is only a single
dimension of nhumeric value (which means only one number) at any location. While a
single numeric may not provide a particularly robust estimation of appropriate numeration



of alphas, it can provide an easily understood example.

6.2.14 Numerics, Alphas, and the Montreal Canadiens

Table 6.2 shows a list of the team members on the 1997/1998 roster, together with their
height and weight. There is an alpha variable present in this data set—"“Position.”
Unfortunately, if used as an example, when finished there is no way to tell if appropriate
numerical values are assigned since the labels have no inherent ordering. With no
inherent ordering to compare the recovered values against, the results cannot be
checked. A convincing first example needs to be able to be checked for accuracy! So, for
the purpose of explanation, a numerical variable will be labeled with alpha labels. Then,
when values have been “recovered” for these labels, it is easy to compare the original
values with those recovered to see if indeed an appropriate ordering and spacing have
been found. With the underlying principles visible by using an example that numerates
labels derived from what is actually a numeric variable, we can examine the problem of
numerating “Position” as a second example.

TABLE 6.2 Montreal Canadiens roster in order of player weight.

Position Num Name Height Weight Code DoB NmHt

Defense 34 Peter 6.5 235 a 10-Feb-68 1
Popovic

Defense 38 Vladimir 6.3 227 b 30-Aug-68 0.759
Malakhov

Forward 21 Mick 6.08 225 C 14-Sep-66 0.494
Vukota

Forward 23 Turner 6.25 220 d 18-May-72 0.699
Stevenson

Defense 22 Dave 6.17 219 e 27-Jan-67 0.602
Manson

Forward 24 Scott 6.25 219 e 9-Jan-71 0.699
Thornton

Forward 44 Jonas 6.25 215 f 29-Aug-72 0.699
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6.08

6.08

6.17

6.08

6.08

6.17

6.08

6.08

5.92

5.83

215

215

210

205

205

204

202

199

195

194

191

191

188

186

22-Oct-68

22-Apr-68

23-Apr-73

1-Oct-69

11-Mar-71

27-Jan-71

19-May-66

13-Aug-66

13-Sep-74

24-Aug-68

24-Feb-71

17-Dec-67

15-Feb-75

19-Dec-76

0.699

0.494

0.494

0.494

0.494

0.602

0.494

0.494

0.602

0.398

0.494

0.494

0.301

0.193



Forward 8 Mark 5.83 185 t 1-Feb-68 0.193
Recchi

Defense 29 Brett 6 182 u 23-Dec-76 0.398
Clark

Reserve 11 Saku 5.83 182 u 23-Nov-74 0.193
Koivu

Goal 35 Andy 5.67 177 v 18-Feb-60 0
Moog

Goal 41 Jocelyn 5.92 170 w 12-Jan-75 0.301
Thibault

Example 1—A Weighty Problem

For the convenience of the example, the weights of the athletes are labeled from “a”

through “w,” missing out those letters that might be confused with numbers like “I” and “0.”
To make it easier to see what is happening, “a” represents the heaviest weight and “w” the
lightest. The labels could have been assigned arbitrarily; the ordering only helps to show
what is happening. (Note: It causes a problem to assign numeric values to alpha labels
arbitrarily, not vice versa. Alpha labels are, by nature, arbitrary.) The numeric variable
used in this example will be “Height.” To see how well the normalized weights can be
recovered from alpha labels, the weight will be converted to an alpha value. The actual
weights can be compared with the recovered values to determine if the method was

effective.

Table 6.2 shows the names, heights, and weights of the athletes. The heights, the
numeric variable in this example, are shown in feet and decimal fractions of a foot. In
order to construct a unit state space, height has to be normalized, and this is also shown.
Next are the weights in pounds and their associated labels. Since some of the athletes
weigh the same amount, these weights are assigned identical labels.

The athletes’ heights form a one-dimensional state space, which can be easily
represented by an ordered list such as the one in Table 6.3. The column on the left shows
the ordered, normalized heights for each athlete, and the right-hand column shows the
alpha (weight) labels. Some of the labels appear more than once for those athletes having
similar weights. When “projecting” the height values onto the weight labels, since there is
only a single numeric dimension, the values of most of the labels are simply the
normalized height values. Where there are multiple occurrences of labels, the average of



the normalized values is taken. Table 6.4 shows this.

TABLE 6.3 Normalized heights and weight code. Some codes,
such as “f,” are duplicated.

NmHt wC
1 a
0.759 b
0.699 d
0.699 e
0.699 f
0.699 f
0.602 e
0.602 j
0.602 n
0.494 c
0.494 f
0.494 g
0.494 h
0.494 h
0.494 k
0.494 m

0.494 q



0.494 q

0.398 p
0.398 u
0.301 r
0.301 w
0.193 s
0.193 t
0.193 u
0 \Y

TABLE 6.4 Values of the weight codes.

Weight code Code numeration
a 1

b 0.76

c 0.49

d 0.7

e 0.65

f 0.7

g 0.49

h 0.49



j 0.6

k 0.49
m 0.49
n 0.6

p 0.4

q 0.49
r 0.3

S 0.19
t 0.4

u 0.19
\Y 0

w 0.3

Since this simple example has only a single numeric dimension, the appropriate values
are simply the single-dimensional representation in the table. Multidimensional examples
are reduced using the multidimensional scaling techniques discussed later. Note that this
example does not say that the weight labels are assigned the height values. It says
instead that the appropriate normalized numeric value for a weight label is the matching
normalized height value. (True in this case because there is only a single numeric variable
in the system.)

Does this work? Figure 6.10 shows a graph of the actual normalized weights and the
“recovered” normalized values for the labels. The fit is quite good. The correlation
coefficient is about 0.85, where 0 indicates no predictive relationship at all, and 1 indicates
a perfectly predictive relationship. Since this is a very small sample on only one numeric
variable, this is a reasonable fit. It certainly isn’t perfect, but it provides a reasonable and
useful recovery of the appropriate weight label values and intervals. Naturally, with a
larger sample, and with a true system of variables to draw upon, better mappings of
numerating alpha values can be achieved.
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Figure 6.10 Plot of actual weights for Montreal Canadiens versus “recovered”
weights. The fit is moderately good, correlation 0.85, certainly better than arbitrary
assignment of numbers to the labels.

Example 2—Player Position

The variable “Position” is inherently an alpha variable. That is to say, it has no apparent
inherent numeric valuation. It is exactly this sort of variable that requires appropriate
numeration, and it is for these types of variables that numeration techniques are needed.

For ease of explanation, the variable “Position” will be numerated on a two-dimensional
state space built from the normalized values of “Height” and “Weight.”

Plotting all of the height/weight positions shown in Table 6.5 in the state space shows the
pattern, or “shape,” that each of the “Positions” makes. These positions are shown in
Figure 6.11. Each of these shapes is summarized by finding its “center.” There are
several ways of finding a pattern’s central location. One easy method is to find the
average (mean) of the values of each label for each dimension.

TABLE 6.5 Position, normalized heights, and normalized weights for Montreal

Canadiens.
Position Height  Weight Position Height Weight
Defense  1.0000 1.0000 Forward 0.4940 0.5385

Defense  0.7590 0.8769 Forward 0.4940 0.4923



Forward 0.6988 0.7692 Forward 0.4940 0.4462

Forward 0.6988  0.7538 Forward 0.4940 0.3231
Forward 0.6988  0.6923 Forward 0.4940 0.3231
Defense 0.6988  0.6923 Forward 0.3976 0.3692
Defense 0.6024  0.7538 Defense  0.3976 0.1846
Defense 0.6024  0.5231 Forward 0.3012 0.2769
Defense 0.6024  0.3846 Goal 0.3012 0.0000
Forward  0.4940 0.8462 Forward 0.1928 0.2462
Defense 0.4940  0.6923 Forward 0.1928 0.2308
Forward  0.4940 0.6154 Reserve 0.1928 0.1846
Reserve 0.4940  0.5385 Goal 0.0000 0.1077

Montreal Canadiens
State space showing player “positions”
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Figure 6.11 The normalized values of height and weight for each player are
plotted in 2D state space. Each position type is identified. Taking the values for
each alpha label type together, their outline covers an area of state space.

Using the Shape centers from Table 6.6, which are the central positions for each value



(label) of the variable “Position,” the variable Shape can be laid over the state space. The

centers and Shape are shown in Figure 6.12. The Shape in this figure seems to be close

to a straight line. Still, the points do not fall exactly on a straight line, and converting this

Shape into normalized values is discussed in the section about multidimensional scaling,

later in this chapter. The Shape discovered in state space is taken, placed into, and

manipulated in a separate phase space.

TABLE 6.6 “Center” (mean) of each Position label.

Position

Defense

Forward

Reserve

Goal

Wiaight

1.0

0.9
0.8
0.7 4
0.6

0.5
0.4 1
0.3

0.2 -
0.1

Height

0.6446

0.4742

0.3434

0.1506

Montreal Canadiens
Locating “shape” centers in slale space
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Figure 6.12 The “centers” (mean values on both dimensions) of each set of label

values are located in state space. Joining the points makes a “shape.” Here the

shape is nearly straight line.

In this case the labels do nearly fall on a straight line. As this is the case, numerating the



alpha labels can be imagined as starting with one end of the line as “0,” say with “Goal” near
the zero point, and setting the other end of the line, at “Defense,” to “1.” The intervening
values are set in proportion. From looking at the state space map, it seems about right to set
the value of “Reserve” to about 0.4 and “Forward” to about 0.6. Usually, however, Shapes
are not much like a straight line. Also, in higher dimensionalities, finding the appropriate
ordering is more difficult.

6.3 Joint Distribution Tables

A different sort of problem arises if there is no numeric variable present. When there is at
least one numeric variable present, it is used to set an order and spacing for the alpha
variables. Without a numeric variable present, there is nothing to “calibrate” the alpha
variables against. The problem is how to find any sort of logical ordering revealed by the
relationships between the alpha values. The solution comes in steps. The first is to
discover how the alpha values of one variable relate to the alpha values of another
variable, or variables. A useful way to begin this discovery is by using a joint frequency, or
joint distribution, table.

6.3.1 Two-Way Tables

A two-way table shows the joint frequency listing of alpha values between two variables.
As an illustration we will return to the Montreal Canadiens. This time both height and
weight will be turned into categorical values, and from these values a two-way joint
frequency table is constructed. For ease of explanation, the heights are categorized as
“tall,” “average,” and “short.” The weights are categorized as “heavy,” “medium,” and
“light.” The categories are abbreviated “T,” “A,” “S,” and “H,” “M,” “L,” respectively.

The category boundaries are set to divide weight and height into three approximately
equally sized categories as shown in Tables 6.7 and 6.8.

TABLE 6.7 Height category division criteria.

Height Category
X6.22 T
x5.94 and x6.22 A

x5.94 S



TABLE 6.8 Weight category division criteria.

Weight Category
x213.33 H
x191.66 and x213.33 M
x191.66 L

These three categories, or alpha labels, generate a two-way table with nine entries, one
for each combination of labels. The categories for each player are shown in Table 6.9,
and the cross-tabulation table is shown in Table 6.10. Figure 6.13 illustrates the
distribution graphically.

TABLE 6.9 Players’ names, actual height, normalized height, weights, and

categories.

Name Height NmHt Wit CatHt CatWit
Peter Popovic 6.5 1 235 T H
Vladimir Malakhov 6.3 0.759036 227 T H
Turner Stevenson 6.25 0.698795 220 T H
Scott Thornton 6.25 0.698795 219 T H
Jonas Hoglund 6.25 0.698795 215 T H

Stephane Quintal 6.25 0.698795 215 T H



Dave Manson

Patrice Brisebois

Craig Rivet

Mick Vukota

Zarley Zalapski

Patrick Poulin

Martin Rucinsky

Igor Ulanov

Marc Bureau

Shayne Corson

Vincent Damphousse

Brian Savage

Benoit Brunet

Brett Clark

Sebastien Bordeleau

Jocelyn Thibault

Eric Houde

Mark Recchi

Saku Koivu

Andy Moog

TABLE 6.10 Cross-tabulation.
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6.08

6.08

6.08

6.08

5.92

5.92

5.83

5.83

5.83

5.67

0.60241

0.60241

0.60241

0.493976

0.493976

0.493976

0.493976

0.493976

0.493976

0.493976

0.493976

0.493976

0.39759

0.39759

0.301205

0.301205

0.192771

0.192771

0.192771

219

204

195

225

215

210

205
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202

199

191

191

194

182

188

170

186

185

182

177



H M L Total

T 6 0 0 6
A 3 8 3 14
S 0 0 6 6
Total 9 8 9 26
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Figure 6.13 Bivariate histogram showing the joint distributions of the categories
for weight and height of the Canadiens.

Notice that some of the categories overlap each other. It is these overlaps that allow an
appropriate ordering for the categories to be discovered.

In this example, since the meaning of the labels is known, the ordering may appear
intuitive. However, since the labels are arbitrary, and applied meaningfully only for ease in
the example, they can be validly restated. Table 6.11 shows the same information as in
Table 6.10, but with different labels, and reordered. Is it now intuitively easy to see what
the ordering should be?

TABLE 6.11 Restated cross-tabulation.



A B C Total

X 3 3 8 14
Y 0 6 0 6
z 6 0 0 6
Total 9 9 8 26

Table 6.11 contains exactly the same information as Table 6.10, but has made intuitive
ordering difficult or impossible. It is possible to use this information to reconstruct an
appropriate ordering, albeit not intuitively. For ease of understanding the previous labeling
system is used, although the actual labels used, so long as consistently applied, are not
important to recovering an ordering.

Restating the cross-tabulation of Table 6.10 in a different form shows how this recovery
begins. Table 6.12 lists the number of players in each of the possible categories.

TABLE 6.12 Category/count tabulation.

Weight Height Count
H T 6
H A 3
H S 0
M T 0
M A 8



The information in Table 6.12 represents a sort of jigsaw puzzle. Although in this example
the categories in all of the tables are shown appropriately ordered to clarify explanation,
the real situation is that the ordering is unknown and that needs to be discovered. What is
known are the various frequencies for each of the category couplings, which are pairings
here as there are only two variables. From these, the shape of the jigsaw pieces can be
discovered.

Figure 6.14(a) shows the pieces that correspond to Weight = “H.” Altogether there are
nine players with weight “H.” Six of them have height “T,” three of them have height “A,”
and none of them have height “S.” Of the three possible pieces corresponding to H/T,
H/A, and H/S, only the first two have any players in them. The figure shows the two
pieces. Inside each box is a symbol indicating the label and how many players are
accounted for. If the symbols are in brackets, it indicates that only part of the total number
of players in the class are accounted for. Thus in the left-hand box, the top (6H) refers to
six of the players with label “H,” and there remain other players with label “H” not
accounted for. The lower 6T refers to all six players with height label “T.” The dotted lines
at each end of the incomplete classes indicate that they need to be joined to other pieces
containing members of the same class, that is, possessing the same label. The dotted
lines are at each end because they could be joined together at either end. Similar pieces
can be constructed for all of the label classes. These two example pieces can be joined
together to form the piece shown in Figure 6.14(b).
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Figure 6.14 Shapes for all players with weight = “H” (a), two possible assembled
shapes for the 9H/6T/3A categories (b), shapes created for each of the category
combinations (c), fitting the pieces together recovers an appropriate ordering (d),
and showing a straight-forward way of finding a numeration of each variable’s
three segments (e).

Figure 6.14(b) shows the shape of the piece for all players with Weight = “H.” This is built
from the two pieces in Figure 6.14(a). There are nine players with weight “H.” Of these, six
have height “T” and three have height “A.” The appropriate jigsaw piece can be
assembled in two ways; the overlapping “T” and “A” can be moved. Since the nine “H”
(heavy) players cover all of the “T” (tall) players, the “H” and “T” parts are shown drawn
solidly. The three “A” are left as part of some other pairing, and shown dotted. Similar
shapes can be generated for the other category pairings. Figure 6.14(c) shows those.

For convenience, Figure 6.14(c) shows the pieces in position to fit together. In fact, the
top and bottom sections can slide over each other to appropriate positions. Fitting them
together so that the matching pieces adjoin can only be completed in two ways. Both are
identical except that in one “H” and “T” are on the left, with “S” and “L” on the right. The
other configuration is a mirror image.

Fitting the pieces together reveals the appropriate order for the values to be placed in
relation to each other. This is shown in Figure 6.14(d). Which end corresponds to “0” and
which to “1” on a normalized scale is not possible to determine. Since in the example
there are only three values in each variable, numerating them is straightforward. The
values are assigned in the normalized range of 0—1, and values are assigned as shown in
Figure 6.14(e).

Having made an arbitrary decision to assign the value 0 to “H” and “T,” the actual
numerical relationship in this example is now inverted. This means that larger values of
weight and height are estimated as lower normalized values. The relationship remains
intact but the numbers go in the “wrong” direction. Does this matter? Not really. For
modeling purposes it is finding and keeping appropriate relationships that is paramount. If
it ever becomes possible to anchor the estimated values to the real world, the accuracy of
the predictions of real-world values is unaffected by the direction of increase in the
estimates. If the real-world values remain unknown, then, when numeric predictions are
made by the final model, they will be converted back into their appropriate alpha value,
which is internally consistent within the model. The alpha value predictions will be
unaffected by the internal numerical representation used by the model.

Although very simplified, how well does this numeration of the alpha values work? For
convenience Table 6.13 shows the normalized weights and normalized heights with the
estimated valves uninverted. This makes comparison easier.



TABLE 6.13 Comparison of recovered values with normalized values.

Normalized Estimated Normalized Estimated
height height weight weight
1 1 1 1
0.759036 1 0.876923 1
0.698795 1 0.769231 1
0.698795 1 0.753846 1
0.698795 1 0.692308 1
0.698795 1 0.692308 1
0.60241 0.5 0.753846 1
0.60241 0.5 0.523077 0.5
0.60241 0.5 0.384615 0.5
0.493976 0.5 0.846154 1
0.493976 0.5 0.692308 1
0.493976 0.5 0.615385 0.5
0.493976 0.5 0.538462 0.5
0.493976 0.5 0.538462 0.5
0.493976 0.5 0.492308 0.5
0.493976 0.5 0.446154 0.5

0.493976 0.5 0.323077 0



0.493976 0.5 0.323077 0

0.39759 0.5 0.369231 0.5
0.39759 0.5 0.184615 0
0.301205 0 0.276923 0
0.301205 0 0 0
0.192771 0 0.246154 0
0.192771 0 0.230769 0
0.192771 0 0.184615 0
0 0 0.107692 0

6.3.2 More Values, More Variables, and Meaning of the
Numeration

The Montreal Canadiens example is very highly simplified. It has a very small number of
instance values and only three alpha values in each variable. In any practically modelable
data set, there are always far more instances of data available and usually far more
variables and alpha labels to be considered. The numeration process continues using
exactly the same principles as just described. With more data and more variables, the
increased interaction between the variables allows finer discrimination of values to be
made.

What has using this method achieved? Only discovering an appropriate order in which to
place the alpha values. While the ordering is very important, the appropriate distance
between the values has not yet been discovered. In other words, we can, from the
example, determine the appropriate order for the labels of height and weight. We cannot
yet determine if the difference between, say, “H” and “M” is greater or less than the
difference between “M” and “L.” This is true in spite of the fact that “H” is assigned a value
of 1, “M” of 0.5, and “L” of 0. At this juncture, no more can be inferred from the assignment
H=1,M=0.5, L=0than could be inferred fromH=1,M=0.99,L=0,orH=1, M=0.01,
L=0.

Something can be inferred about the values between variables. Namely, when normalized
values are being used, both “H” and “T” should have about the same value, and “M” and
“A” should have about the same value, as should “L” and “S.” This does not suggest that



they share similar values in the real world, only that a consistent internal representation
requires maintenance of the pattern of the relationship between them.

Even though the alpha labels are numerically ordered, it is only the ordering that has
significance, not the value itself. It is sometimes possible to recover information about the
appropriate separation of values in entirely alpha data sets. However, this is not always
the case, as it is entirely possible that there is no meaningful separation between values.
That is the inherent nature of alpha values. Steps toward recovering appropriate
separation of values in entirely alpha data sets, if indeed such meaningful separation
exists, are discussed in the next chapter dealing with normalizing and redistributing
variables.

6.3.3 Dealing with Low-Frequency Alpha Labels and Other
Problems

The joint frequency method of finding appropriate numerical labels for alpha values can
only succeed when there is a sufficient and rich overlap of joint distributions. This is not
always the case for all variables in all data sets. In any real-world data set, there is always
enough richness of interaction among some of the variables that it is possible to numerate
them using the joint frequency table approach. However, it is by no means always the
case that the joint frequency distribution table is well enough populated to allow this
method to work for all variables. In a very large data set, some of the cells, similar to those
illustrated in Figure 6.13, are simply empty. How then to find a suitable numerical
representation for those variables?

The answer lies in the fact that it is always possible to numerate some of the variables using
this method. When such variables have been numerated, then they can be put into a
numerical form of representation. With such a representation available in the data set, it
becomes possible to numerate the remaining variables using the method discussed in the
previous section dealing with state space. The alpha variables amenable to numeration
using the joint frequency table approach are numerated. Then, constructing the manifold in
state space using the numerated variables, values for the remaining variable instance values
can be found.

6.4 Dimensionality

The preceding two parts of this chapter discussed finding an appropriate numerical
representation for an alpha label value. In most cases, the discovered numeric
representation, as so far discussed, is as a location on a manifold in state or phase space.
This representation of the value has to be described as a position in phase space, which
takes as many numbers as there are dimensions. In a 200-dimensional space, it would
take a string of 200 numbers to indicate the value “gender = F,” and another similar string,
with different values, to indicate “gender = M.” While this is a valid representation of the
alpha values, it is hopelessly impractical and totally intractable to model. Adding 200



additional dimensions to the model simply to represent gender is impossible to deal with
practically. The number of dimensions for alpha representation has to be reduced, and
the method used is based on the principles of multidimensional scaling.

This explanation will use a metaphor different from that of a manifold for the points in
phase space. Instead of using density to conjure up the image of a surface, each point will
be regarded as being at the “corner” of a shape. Each line that can be drawn from point to
point is regarded as an “edge” of a figure existing in space. An example is a triangle. The
position of three points in space can be joined with lines, and the three points define the
shape, size, and properties of the triangle.

6.4.1 Multidimensional Scaling

MDS is used specifically to “project” high-dimensionality objects into a lower-dimensional
space, losing as little information as possible in the process. The key idea is that there is
some inherent dimensionality of a representation. While the representation is made in
more dimensions than is needed, not much information is lost. Forcing the representation
into less dimensions than are “natural” for the representation does cause significant loss,
producing “stress.” MDS aims at minimizing this stress, while also minimizing the number
of dimensions the representation needs. As an example of how this is done, we will
attempt to represent a triangle in one dimension—and see what happens.

6.4.2 Squashing a Triangle

A triangle is inherently a 2D object. It can be defined by three points in a state or phase
space. All of the triangular points lie in a plane, which is a 2D surface. When represented
in three dimensions, such as when printed on the page of this book, the triangle has some
minute thickness. However, for practical purposes we ignore the thickness that is actually
present and pretend that the triangle is really 2D. That is to say, mentally we can project
the 3D representation of a triangle into two dimensions with very little loss of information.
We do lose information about the actual triangle, say the thickness of the ink, since there
is no thickness in two dimensions. Also lost is information about the actual flatness, or
roughness, of the surface of the paper.

Since paper cannot be exactly flat in the real world, the printed lines of the triangle are
minutely longer than they would be if the paper were exactly flat. To span the miniature
hills and valleys on the paper’s surface, the line deviates ever so minutely from the
shortest path between the two points. This may add, say, one-thousandth of one percent
to the entire length of the line. This one-thousandth of one percent change in length of the
line when the triangle is projected into 2D space is a measure of the stress, or loss of
information, that occurs in projecting a triangle from three to two dimensions. But what
happens if we try to project a triangle into one dimension? Can it even be done?

Figure 6.15 shows, in part, two right-angled triangles that are identical except for their



orientation. The key feature of the triangles is the spacing between the points defining the
vertices, or “corners.” This information, or as much of it as possible, needs to be
preserved if anything meaningful is to be retained about the triangle.
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Figure 6.15 The triangle on the left undergoes more change than the triangle on
the right when projected into one dimension. Stress, as measured by the change
in perimeter, is 33.3% for the triangle on the left, but only 16.7% for the triangle on
the right.

To project a triangle from three to two dimensions, imagine that the 3D triangle is held up
to an infinitely distant light that casts a 2D shadow of the triangle. This approach is taken
with the triangles in Figure 6.15 when projecting them into one dimension.

Looking at the orientation 1 triangle on the left, the three points a, b, and c cast their
shadows on the 1D line below. Each point is projected directly to the point beneath. When
this is done, point a is alone on the left, and points b and c are directly on top of each
other. What of the original relationship is preserved here?

The original distance between points a and ¢ was 5. The projected distance between the
same points, when on the line, becomes 4. This 5 to 4 change in length means that it is
reduced to 4/5 of its original length, or by 1/5, which equals 20%. This 20% distortion in
the distance between points a and ¢ represents the stress on this distance that has
occurred as a result of the projection.

Each of the distances undergoes some distortion. The largest change is ¢ to b in going
from length 3 to length 0. This amount of change, 3 out of 3 units, represents a 100%
distortion. On the other hand, length a to b experiences a 0% distortion—no difference in
length before and after projection.

The original “perimeter,” the total distance around the “outside” of the figure was



atob=4

btoc=3

ctoa=5

for a total of 12. The perimeter when projected into the 1D line is

atob=4
btoc=0
ctoa=4

for a total of 8.

So the change in perimeter length for this projection is 4, which is the difference of the
before-projection total of 12 and the after-projection total of 8.

The overall stress here, then, is determined by the total amount of change in perimeter
length that happened due to the projection:

change in length = 4

original length = 12

change = 4/12

or 33%. Altogether, then, projecting the triangle with orientation 1 onto a 1D line induced a
33% stress. Is this amount of stress unavoidable?

The triangle in orientation 2 is identical in size and properties to the triangle in orientation
1, except that it was rotated before making the projection. Due to the change in
orientation, points b and c are no longer on top of each other when projected onto the line.
In fact, the triangle in this orientation retains much more of the relationship of the
distances between the points a, b, and c. The a to b distance retains the correct
relationship to the b to c distance, although both distances lose their relationship to the a
to c distance. Nonetheless, the total amount of distortion, or stress, introduced in the
orientation 2 projection is much less than that produced in the orientation 1 projection.
The measurements in Figure 6.15 for orientation 2 show, by reasoning similar to that
above, that this projection produces a stress of 16.7%. In some sense, making the
projection in orientation 2 preserves more of the information about the triangle than using
orientation 1.



The important point about this example is that changing the orientation, that is, rotating
the object in space, changes the amount of stress that a particular projection introduces.
For most such objects this remains true. Finding an optimal orientation to reduce the
stress of projection is important.

6.4.3 Projecting Alpha Values

How does this example relate to dimensionality reduction and appropriate representation
for alpha labels?

When using state space to determine values for alpha labels, the method essentially finds
appropriate locations to place the labels on a high-dimensionality manifold. Each label
value has a more or less unique position on the manifold. Between each of these label
locations is some measurable distance in state space. Using the label positions as points
on the manifold, distances between each of the points can easily be discovered using the
high-dimensional Pythagorean theorem extension. These points, with their distances from
each other, can be plucked off the state space manifold, and the shape represented in a
phase space of the same dimensionality. From here, the principle is to rotate the shape in
its high-dimensional form, projecting it into a lower-dimensionality space until the
minimum stress level for the projection is discovered. When the minimum stress for some
particular lower dimensionality is discovered, if the stress level is still acceptable, a yet
lower dimensionality is tried, until finally, for some particular lower dimensionality, the
stress becomes unacceptably high. The lowest-dimensionality representation that has an
acceptable level of stress is the one deemed appropriate to represent the alpha variable.
(What might constitute an acceptable level of stress is discussed shortly.)

6.4.4 Scree Plots

The idea that stress changes with projection into lower numbers of dimensions can
actually be graphed. If a particular shape is projected into several spaces of different
dimensionality, then the amount of stress present in each space, plotted against the
number of dimensions used for the projection, forms what is known as a scree plot. Figure
6.16 shows just such a plot.

Strecs

Dimensans



Figure 6.16 Ideal scree plot.

Starting with 30 dimensions in Figure 6.16, a high-dimensional figure is projected into
progressively fewer dimensions. Not much change occurs in the level of stress
occasioned by the change in dimensionality until the step from five to four dimensions. At
this step there is a marked change in the level of stress, which increases dramatically with
every reduction from there.

The step from five to four dimensions is called a knee. In dimensionalities higher than this
knee, the object can be accommodated with little distortion (stress). Clearly, four
dimensions are not sufficient to adequately represent the shape. It appears, from this
scree plot, that five is the optimum dimensionality to use. In some sense, a
five-dimensional representation is the best combination of low dimensionality with low
stress.

When it works satisfactorily, finding a knee in a scree plot does provide a good way of
optimizing the dimensionality of a representation. In practice, few scree plots look like
Figure 6.16. Most look more like the ones shown in Figure 6.17. In practice, finding
satisfactory knees in either of these plots is problematic. When satisfactory knees cannot
be found, a workable way to select dimensionality is to select some acceptable level of
stress and use that as a cutoff criterion.
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Figure 6.17 Two more realistic scree plots.

6.6 Summary

This chapter has covered a lot of ground in discussing the need for, and method of,
finding justifiable numeric representations of alpha-valued variables. The concepts of
methods for performing this numeration in mixed alpha-numeric and in entirely alpha data



sets was discussed in detail. In all cases the information carried in the data set was used
to reflect appropriate values and ordering for the individual alpha values.

We started by looking at ways that the miner can apply domain knowledge to remap alpha
values to avoid problems that automated methods cannot solve alone. The conceptual
groundwork of state space was discussed and this metaphor explored for its utility in
representing the measured states of a system of variables, in addition to its value in
numerating alpha variables. We examined the nature and features of the data
representation in state space. Translating the information discovered there into insights
about the data, and the objects the data represents, forms an important part of the data
survey in addition to its use in data preparation. Several practical issues in providing a
working data preparation computer program were also addressed.

In spite of the distance covered here, there remains much to do to the data before it is fully
prepared for surveying and mining.



Chapter 7: Normalizing and Redistributing

Variables

Overview

From this point on in preparing the data, all of the variables in a data set have a numerical
representation. Chapter 6 explained why and how to find a suitable and appropriate
numerical representation for alpha values—that is, the one that either reveals the most
information, or at least does the least damage to existing information. The only time that
an alpha variable’s label values come again to the fore is in the Prepared Information
Environment Output module, when the numerical representations of alpha values have to
be remapped into the appropriate alpha representation. The discussion in most of the rest
of the book assumes that the variables not only have numerical values, but are also
normalized across the range of 0—1. Why and how to normalize the range of a variable is
covered in the first part of this chapter.

In addition to looking at the range of a variable, its distribution may also make problems.
The way a variable’s values are spread, or distributed, across its range is known as its
distribution. Some patterns in a variable’s distribution can cause problems for modeling
tools. These patterns may make it hard or impossible for the modeling tool to fully access
and use the information a variable contains. The second topic in this chapter looks at
normalizing the distribution, which is a way to manipulate a variable’s values to alleviate
some of these problems.

The chapter, then, covers two key topics: normalizing the range of a variable and
normalizing the distribution of a variable. (Neither of these normalization methods have
anything in common with putting data into the multitable structures called “normal form” in a
database, data warehouse, or other data repository.) During the process of manipulation, as
well as exposing information, there is useful insight to be gained about the nature of the
variables and the data. Some of the potential insights are briefly discussed in this chapter,
although the full exploration of these relationships properly forms part of the data survey.

7.1 Normalizing a Variable’s Range

Chapter 6, discussing state space, pointed out that it was convenient to normalize
variable ranges across the span of 0—1. Convenience is not an attribute to be taken
lightly. Using anything less than the most convenient methods hardly contributes to easy
and efficient completion of a task. However, some modeling tools require the range of the
input to be normalized. For example, the neurons in most neural-network-based tools
require data to be close to the range of 0 to 1, or —1 to +1, depending on the type of
neuron. (More on neural networks in Chapter 10.) Most tools that do not actually require



range normalization may benefit from it, sometimes enormously. (Chapter 2 mentioned,
for instance, that exposing information and easing the learning task can reduce an effect
known as feature swamping.)

Normalization methods represent compromises designed to achieve particular ends.
Normalization requires taking values that span one range and representing them in
another range. This requires remapping values from an input range to an output range.
Each method of remapping may introduce various distortions or biases into the data.
Some biases and distortions are deliberately introduced to better expose information
content. Others are unknowingly or accidentally introduced, and damage information
exposure. Some types of bias and distortion introduced in some normalization processes
are beneficial only for particular types of data, or for particular modeling methods.
Automated data preparation must use a method that is generally applicable to any
variable range and type—one that at least does no harm to the information content of the
variable. ldeally, of course, the normalization method should be beneficial.

Any method of addressing the problems has its own trade-offs and introduces biases and
distortions that must be understood. Some commercial tools normalize variables. When
they do, it can cause a problem if the tool uses a default method that the modeler cannot
control. Exactly what might be lost in the normalization, or what distortion might be
introduced, is hard to know if the normalization method is not in the modeler’s control, or
worse, not even known to the modeler. (The neural network model comparison between
prepared data and “unprepared” data in Chapter 12 in part demonstrates this issue.)

Methods of normalization are plentiful. Some do more than one thing at a time. They not
only normalize ranges, but also address various problems in the distribution of a variable.
The data preparation process, as described in this book, deals with distribution problems
as a separate issue (discussed later in this chapter), so normalization methods that adjust
and correct simultaneously for range and distribution problems are not used. As far as
range normalization goes, what the modeler needs is a method that normalizes the range
of a variable, introducing as little distortion as possible, and is tolerant of out-of-range
values.

Range normalization addresses a problem with a variable’s range that arises because the
data used in data preparation is necessarily only a sample of the population. (Chapter 5
discussed sampling.) Because a sample is used, there is a less than 100% confidence
that the sample is fully representative of the population. This implies, among other things,
that there is a less than 100% confidence that the maximum and minimum values of the
range of a variable have been discovered. This in turn implies, with some degree of
confidence, that values larger than the sample maximum, or smaller than the sample
minimum, will turn up in the population—and more importantly, in other samples of the
population. Since values that are outside the limits discovered in a sample are out of the
range of the sample, they are called here out-of-range values. This only indicates that
such values are out of the range discovered in the sample used for data preparation. They



certainly aren’t out of the range of the population, only out of the range established in a
particular sample—the training sample. Dealing with these out-of-range values presents a
problem that has to be addressed. We need to look at what these problems are before
considering how to fix them.

What problems turn up with out-of-range values? The answer to this question depends on
the stage in the data exploration process in which the out-of-range value is encountered.
The stages in which a problem might occur are during modeling: the training stage, the
testing stage, and the execution stage. Preparation and survey won’t come across
out-of-range values as they work with the same sample. The modeling phase might have
problems with out-of-range values, and a brief review of modeling stages will provide a
framework to understand what problems the out-of-range values cause in each stage.

7.1.1 Review of Data Preparation and Modeling (Training,
Testing, and Execution)

Chapter 3 described the creation, use, and purpose of the PIE, which is created during
data preparation. It has two components: the PIE-Input component (PIE-I) that
dynamically takes a training-input or live-input data set and transforms it for use by the
modeling tool, and the PIE-Output component (PIE-O) that takes the output (predictions)
from a model and transforms it back into “real-world” values. A representative sample of
data is required to build the PIE. However, while this representative sample might be the
one also used to build the (predictive, inferential, etc.) model, that is not necessarily so.
The modeler may choose to use a different data set for modeling, from the one used to
build the PIE. Creating the model requires at least training and testing phases, followed by
execution when the model is applied to “live” data.

This means that there are potentially any number of sample data sets. During training,
there is one data set for building the PIE, one (probably the same one) for building a
model, and one (definitely a separate one) for testing the model. At execution time, any
number of data sets may be run through the PIE-I, the model, and the PIE-O in order, say,
to make predictions. For example, in a transaction system scoring individual transactions
for some feature, say, fraud, each transaction counts as an input execution data set. Each
transaction is separately presented to the PIE-I, to the scoring model, the results to the
PIE-O, with the individual output score being finally evaluated, either manually or
automatically. The transactions are not prepared as a batch in advance for modeling all
together, but are individually presented for evaluation as they come in.

When building the PIE, it is easy to discover the maximum and minimum values in the
sample data set. So no out-of-range values can occur when building the PIE. With any
other sample data set, it is always possible to encounter an out-of-range value. Since the
PIE provides the modeling environment, it is the PIE that must deal with the problems.

7.1.2 The Nature and Scope of the Out-of-Range Values



Problem

Since the PIE knows the maximum and minimum values of the data sample, no
out-of-range value can occur at this stage during its construction. However, what the
modeler should ask is, What can | learn about the out-of-range values that are expected
to occur in the population? The PIE is going to have to deal with out-of-range numbers
when they turn up, so it needs to know the expected largest and smallest numbers it will
encounter during execution. It is also useful to know how often an out-of-range number is
likely to be found in the population.

There are two problems with out-of-range numbers. First, the PIE is not going to have any
examples of these values, so it needs to estimate their range and frequency to determine
suitable adjustments that allow for them. They are certain to turn up in the population, and
the PIE will have to deal with them in some way that best preserves the information
environment surrounding the model. The second problem is that the out-of-range values
represent part of the information pattern in the population that the modeling tool is not
going to be exposed to during training. The model can’t see them during training because
they aren’t in the training sample. The modeler needs an estimate of the range and the
proportion of values in the population that are not represented in the sample. This
estimate is needed to help determine the model’s range of applicability and robustness
when it is exposed to real-world data. Clearly, the model cannot be expected to perform
well on patterns that exist in the population when they are not modeled since they aren’t in
the training sample. The extent and prevalence of such patterns need to be as clearly
delimited as possible.

Of course, the modeler, together with the domain expert and problem owner, will try to
choose a level of confidence for selecting the sample that limits the problem to an
acceptable degree. However, until a sample is taken, and the actual distribution of each
variable sampled and profiled, the exact extent of the problem cannot be assessed. In any
case, limiting the problem by setting confidence limits assumes that sufficient data is
available to meet the confidence criteria chosen. When the training data set is limited in
size, it may well be the amount of data available that is the limiting factor. In which case,
the modeler needs to know the limits set by the data available. Unless the population is
available for modeling, this is a problem that simply cannot be avoided.

The information about the model limits due to out-of-range values, although generated
when creating the PIE modules, is generally reported as part of the data survey. It is
important to note that although the information enfolded in the data in the out-of-range
values is properly part of the population, the model will experience the previously unseen
values as noise. Chapter 11 looks briefly at noise maps. A full survey assesses, where
possible, how much noise comes from each measurable source, including out-of-range
values. Unfortunately, space limitations preclude further discussion of methods for
assessing noise contribution due to out-of-range values, and for separating it from noise
from other sources.



7.1.3 Discovering the Range of Values When Building the
PIE

How, then, does the miner determine the range and the frequency of values present in the
population, but not in the sample? Recall that the data sample was determined to
represent the population with a specific level of confidence. That confidence level is
almost always less than 100%. A 95% confidence means that there remains a 5%
confidence—that is, 1 in 20—that the sample is not representative. It doesn’t need
detailed analysis to see that if the range has been captured to a 95% confidence limit,
out-of-range values must be quite commonly expected. Two separate features vary with
the actual confidence level established. The first is the frequency of occurrence of
out-of-range values. The second is the expected maximum and minimum values that exist
in the population. To see that this is so, consider a population of 100 numbers ranging
uniformly from 0 to 99 without duplication. Take a random sample of 10. Consider two
questions: What is the chance of discovering the largest number in the population? and
What is the largest value likely to be?

Probability of Discovery of Largest Value
Since there are 100 numbers, and only one can be the greatest, on any one random pick
there is 1 chance in 100 that the largest number is found. Choosing 10 numbers, each

selected at random, from 100 gives 10 chances in 100 for picking the largest number.

By similar reasoning, the chance of finding the largest value in a random sample of, say,
20, is 20%, as shown in Table 7.1.

TABLE 7.1 Probability of finding largest value for several numbers of picks.

Number of picks Probability in %
1 1

2 2

5 5

10 10

15 15



20 20

Most Likely High and Low Values

But what is the largest value likely to be found? When making the random pick, any
values at all could be chosen, each being equally likely. In this example, 10 numbers from
100 are selected (10% of the population), so every number in the population has a 10%
chance of being chosen. But what is the most likely value to pick?

Imagine if numbers are selected one at a time at random and a running average of the
values picked is kept. Since any number is as likely to be picked as any other, the running
average is simply going to approach the average value of all the numbers in the
population. If picking continues long enough, all of the numbers are chosen with equal
frequency. Added together and divided by the number of picks, the result is the population
average value.

In this example, the mean value of the population is 50. Does this mean that 50 is the
most likely number to pick? Not exactly. There is only a 1% chance of actually choosing
the value 50 in any single pick. If 10% of the population is chosen, the number 50 has a
10% chance of being in the sample. However, what it can be interpreted to mean is that if
the choice of one number at random were repeated many times, the numbers chosen
would seem to cluster around 50. (There would be as many values of 50 and above as
there are below 50, and, on average, they would be as far above as below.) In this sense,
50 indicates the center of the cluster, and so measures the center of the place where the
numbers tend to group together. That, indeed, is why the mean is called a “measure of
central tendency” in statistics.

What happens when two numbers are picked, paying attention to which is larger and
which is smaller? With two numbers selected, it is certain that one is larger than the other
(since the population comprises the numbers 1 through 100 without duplicates). By
reasoning similar to the single-number pick, the upper value will tend to be halfway
between the lower value picked (whatever that is) and the largest number available (100).
Similarly, the lower value will tend to be halfway between the higher value picked
(whatever that is) and the lowest number available (1). So the two numbers picked will
split the range into three parts. Because each value has a tendency to be as far as it can
both from its neighbor, and from the extreme values in the range (1 and 100), the
separations will be equal in size. In other words, the tendency for two numbers will be to
split the range into three equal parts. In this example, for two choices, the expected
values are about 33 and 67.

This reasoning can be extended for any number of picks where the order of the picked



values is noted. The expected values are exactly the points that divide the range inton + 1
equally sized subranges (where n is the number of picks).

Table 7.2 shows the expected high and low values for a selection of numbers of picks. As
the sample size increases, the expected value of the highest value found gets closer and
closer to the maximum value of the population. Similarly, with increased sample size, the
expected value of the lowest value found in the sample approaches the low value in the
population.

TABLE 7.2 Expected values for various choices.

Number of picks Expected low value Expected high value
1 50 50
2 33 67
5 17 83
10 9 91
15 6 94
20 5 95

In the example, the population’s extreme values are 1 and 100. Table 7.2 shows how the
expected high and low values change as the number of picks changes. As the sample
size increases, indicated by the number of picks, so the difference between the expected
values and the extreme values in the population gets smaller. For instance, the
upper-range difference at 10 picks is 100 — 91 = 9, and at 20 picks is 100 — 95 = 5. The
lower range difference at 10 picks is 9 — 1 = 8, and at 20 picks is 5 — 1 = 4. (The apparent
difference in the upper and lower range is due to rounding off the values. The upper and
lower expected values are actually symmetrically located in the range.)

Out-of-Range Values and the PIE

The examples just given are considerably simplified. For real-world variables with
real-world distributions, things are far more complex. Actual probabilities and expected



values depend very much on the true distribution of a variable, among other things. This
is, in any case, complicated by the fact that distributions may change over time. This
example is true for a rectangular distribution (one in which every value that can occur
does so with equal probability) and where no values are duplicated. In the example, the
size of the population was also known, which makes determining probabilities easy.

While the probabilities vary considerably with distribution, population size, and other
factors, the principles do not:

Some maximum and minimum values will be detected in a sample.

» The discovered maximum and minimum define the range of the sample.

* In the population there is always some chance of encountering an out-of-range value.

» Some specific confidence that the sample is representative of the population can be
determined.

The smaller the chance that the sample is representative, the larger the chance of
encountering an out-of-range value, and the larger the gap is likely to be between
sample range limit and the population limit.

That is, the less representative the sample, the more chance there is of encountering an
out-of-range value in the population. And when an out-of-range value is found, the less
representative the sample, the greater the expected difference will be between the
sample maximum or minimum and the out-of-range value.

Knowing the confidence level that the data sample is representative does give some
indication of how likely an out-of-range value is to be found in the population, and how
large the gap between the detected limits and the out-of-range value might be. Having
these estimates enables the normalization process to be adjusted to take account of the
expected frequency of out-of-range values and the expected true range of the population
values. For instance, if the sample confidence is relatively low, then many out-of-range
values covering a large range can be expected. If sample confidence is high, few
out-of-range values will be expected, and those that are will cover a narrower range.

To summarize: The representative sample selected to create the PIE has, for every
variable, high and low values. When building the PIE, no values exceeding this range will
be found, since it is the sample that produced the maximum and minimum values. The
confidence level that the sample is representative gives an indication of the probability of
meeting out-of-range values. The confidence level also indicates the probable size of the
gap between discovered maximum or minimum, and any out-of-range value. With the
frequency of occurrence and the gap size estimated, the normalization process in the PIE
can be constructed accordingly.



7.1.4 Out-of-Range Values When Training

During training, the PIE is already built and in place. The PIE-I takes raw data values from
the training sample and translates them into a prepared state for use by the modeling tool.
What happens when the PIE-I finds an out-of-range value? As yet there has been no
discussion of a method of dealing with out-of-range values. What would happen if out-of
range values are not normalized into a 0-1 range, but passed through outside the
normalized range? That is, an input value larger than the sample maximum would
translate into a value larger than 1, perhaps 1.2. Similarly, input values smaller than the
sample minimum will translate into values less than 0, maybe —0.2. (The purpose of the
discussion, of course, is to examine the problems that could occur to discover how best to
avoid them.)

Consequences of Ignorance |

One “solution” to an out-of-range value (adopted by some commercial modeling tools) is
to simply ignore the whole instance (record) if any one of the values is out-of-range. This
also takes care of the missing-value problem. (Missing values are treated as out-of-range
too.) This effectively reduces the size of the sample by ignoring any data points that do
not fit within the specified parameters. There are two notable problems with this approach.

The first, and less significant, problem is that reducing the number of instances in the
sample reduces the level of confidence that the sample represents the population.
Discarding instances is literally discarding information! Discarding, or ignoring, instances
effectively reduces the size of the training set. A model created using the reduced training
set cannot be as effective as one built with a more representative data set. If this were the
only problem, it is easily remedied by adding more data to the training set if it is available.
Adding more data again increases confidence that the sample is representative. On the
other hand, if more data is not available, it may be that the information in the discarded
instances is much needed, and discarding them is damaging to training.

A second, and potentially more serious problem, is introducing bias. Unless the
out-of-range values occur in a truly random pattern, then obviously they do not occur at
random. If they do not occur at random, then they must occur with some sort of pattern.
Deleting or ignoring out-of-range instances then necessarily removes them according to
some pattern. Removing instances in a pattern prevents the modeling tool from seeing
the pattern. This removal of a pattern from the sample introduces distortion, or bias, to the
sample. The bias can be anything from slightly damaging to disastrous—with no way to
determine which! This problem is so potentially severe and undetectable that attempts
must be made to avoid it at all costs.

Imagine (as really happened) using such a tool for building a model of mortgage
applicants. The training sample had applicants with salaries up to, say, $100,000. When



the model was run, this method ignored all applicants with salaries greater than $100,000.
But the null score was interpreted as no score, and the mortgage company interpreted no
score as a bad score! Until discovered (which didn’t take long), this method of dealing with
out-of-range variables was (to say the least) problematic. In practice, of course, it
rendered the model virtually useless.

Consequences of Ignorance Il

Another approach ignores the fact that the normalized range has been exceeded. It says,
“Let normalized values fall outside the range if necessary.” The assumptions about state
space being unit state space will no longer hold, but this is not always a major concern
since state space may only be a conceptual device for many modeling methods. Most
modeling tools have at least some capacity to handle numbers outside the normalized
range. But how do they handle them? And does it make a difference to the quality of the
model?

Some methods do use a unit state space model. Where this is the case, these will have to
deal with the out-of-limit values in a way that keeps them inside unit state space. One
method is to “clip” the values that fall outside the range. If greater than 1, assign 1. If less
than 0, assign 0. The problem with this method is the underlying assumption that numbers
that fall outside the range are in some way equivalent to numbers that fall at the limit of
the range. This ignores the fact that the numbers falling outside the range are in some
way different and carry information to that effect. This vital information is thrown away.

Worse than throwing information away is what happens to the limit values if there is a
difference that the model should reflect between limit values and out-of-range values. The
limit value’s information content is distorted because the model will not be able to
distinguish between range limit and out-of-range values. The range limit value meaning
will have to be distorted to reflect whatever aggregate meaning the out-of-range values
carry, too. Projecting the information content from several values onto a single value
distorts the information content of the limit value.

For example, if the out-of-range values extend up to 1.2, the range top value of 1 has to
carry an “average” meaning of all the values from 1 to 1.2. Any difference that the model
should reflect when the value is, say, 1.1 is lost, merged, as it were, with the meaning
carried by the range top value of 1. But worse, if the model is predictive, for instance,
when the input value is actually 1, the model will have to predict the “average” response of
values 1 through 1.2.

Once again, the problem of bias shows up. If the occurrence of out-of-range values is not
in fact random, using exactly the same argument as in the previous section, undetectable
bias is introduced into the model. Just as before, the problems this introduces can range
from innocuous to disastrous. Bias can invalidate the best model.



In some models, for instance, fraudulent activity falls into this out-of-range category. It is
the fraudulent activity that may fall out of the modeled range, since new patterns of fraud
constantly evolve. If the fraudulent activity moves some variable instance values out of
their limits, and the model is constrained to ignore it, or to “merge” it with other activity,
this new activity is indicated as equivalent to whatever the model found to be the activity
at the range limit. This may easily be an unjustified assumption.

In one case, this “merging” behavior persuaded one model of insurance claims to assume
that all building fires occurring after 9:30 at night, and started in rear rooms, scored pretty
well as likely arson! In fact, this model made a number of other erratic inferences, all due
to the nature of the insurance claim data set modeled and the tool used.

7.1.5 Out-of-Range Values When Testing

When testing models, many of the same problems occur as when training. Testing
attempts to discover the applicability of, and limits to, the model. Whether or not the
training phase experienced out-of-limit values, if no correction or allowance is made for
them, their presence during testing will be dealt with in a similar, cavalier way. In one way
or another they will be either ignored or clipped. For all of the reasons discussed above,
this will produce a less accurate model output. (The actual output will be numeric,
although the final result might be inferences, predictions, or come in some other form,
depending on the type of model.)

Testing the model in ways that underestimate its limits and utility is not necessarily
damaging, but will lead at least to having less confidence in the model than is perhaps
justified. It will certainly help in making, to some extent, erroneous conclusions about the
range, utility, and applicability of the model.

However, the model might also appear to be better and more robust than is actually the
case. Ignoring instances of data in the test data set because they have out-of-range
values, for instance, clearly means that the model is not tested on them. But these are the
precise areas in which the model might perform most poorly, and its performance in these
areas has to be included in any valid overall performance summary.

7.1.6 Out-of-Range Values When Executing

Execution is the time when a predictive model is predicting, an inferential model is
inferring, a self-adaptive model is adapting, and so on. Whatever else went before, this is
the time when out-of-range values are most likely to appear if they ever will! This is the
phase of the data exploration project when the model is likely to be exposed to copious
guantities of data, and so has the highest expectation that the fullest range of the data will
appear. (It is also the time when real, applicable, and useful results are expected.) For
simplicity of discussion, a predictive model will be assumed. The same principles hold for
any type of model—predictive, inferential, adaptive, and so on.



A model created by training on data biased by removing problematic instances from the
training data will almost certainly still be required to produce predictions for similar
problematic instances in the execution data. If predicting fraud, for instance, all instances
must be examined. If predicting customer segments, all customers must be predicted.
The model is not considered adequate if no predictions are made for instances with
problematic data. (Even people earning more than $100,000 may be good mortgage
risks!) But if out-of-range values were excluded during training, the model was not
exposed to such data during training. There is no reference for making a valid prediction
from such data during the execution phase. In any case, the model will be more or less
biased, having been trained on biased data. The execution data that the model is required
to perform on will not be biased. Whatever bias is included in the model will result in
biased predictions.

If, on the other hand, the out-of-range values were “trimmed” off to the limiting values
during training, when the model does experience such values, they will have to be
trimmed again, leading to poor predictions for any limiting conditions.

Possibly the worst scenario is that untrimmed variable values are allowed into the model.
When this happens, the model is driven outside of the range of data on which it trained. In
this case the model will, of course, produce predictions, but predictions that are based on
no evidence. When the model is driven into areas that are outside the boundaries of the
state space on which it trained, almost no valid predictions can be made. We can
speculate, for instance, about the weight of 20-foot-tall human beings. Whatever
extrapolation we might make, the truth is that there is no evidence to base a prediction on,
for such a creature probably could not exist. Whether or not such a being could exist, and
what its weight might be, is pure speculation. So it is too when a model is driven beyond
the limits on which it trained.

Clipping values leaves the model no way to detect if the instance values are changing—at
least at the limits of behavior. It is often the case that the distribution of the data is not
stationary. Nonstationarity of a distribution simply means that the distribution does not
remain constant, usually over time. The user of the model needs to monitor this, among
many other things, during run time anyway. This is not a part of data preparation, but the
preparation technique should at least provide support to make the monitoring easier.

7.1.7 Scaling Transformations

The discussion so far has looked at the issues surrounding finding the maximum and
minimum values for each variable in a sample. Clearly, knowing the maximum and
minimum values somehow allows the actual value to be scaled, or normalized, into the
range 0-1. A way of doing this is to use a transforming expression that takes the input
value, and, knowing the maximum and minimum values, squashes the input value into the
required output range. An easy way to actually do this is with the linear scaling transform.



The actual expression is very straightforward:

= TNy, . 2y)

MAaX(ty. .. ty) — MIMLy. . .2hy)
where
Vi, is normalized value
v is instance value

This expression takes any value and transforms it into another number. If the input value
is inside the limits, the output will be between 0 and 1. Any value outside the limits will fall
outside the 0-1 range, presenting a modeler with all of the problems just discussed.

Using Linear Scaling for Normalization

Although many of the problems of dealing inadequately with out-of-range values have
been discussed, and the simplest method of normalizing values has been found wanting,
it is still the place to start. Linear scaling is a simple, straightforward technique to use for
normalizing the range of numeric values. Its big advantage is that it introduces no
distortion to the variable distribution. It involves only discovering the maximum and
minimum values for the range of the variable, and then finding where within the range a
particular instance value falls. The formula for achieving this is given above. Given this
formula, any instance value can be plugged in, and a normalized value computed. There
is a one-to-one relationship between the original instance value and the normalized value.
Given two instance values, with the first being twice the second, when they are
normalized, the first normalized value will still be twice the second. This is true wherever
in the range of the variable the two instance values occur.

The relationship between the instance values and the normalized values is called linear
because if the two sets of values are plotted on a graph, the result is a straight line—as
shown in Figure 7.1.
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Figure 7.1 Linear scaling produces a linear relationship between instance values
and normalized values.

Linear scaling works well when the maximum and minimum values are known. During
data preparation, this presents a problem. The maximum and minimum values of the
sample are known, but the true population maximum and minimum may be unknowable.
As just discussed, when using the model with real-world data, it is very likely that instance
values outside the sample range will be encountered. Linear scaling normalization will
translate these values into numbers that fall outside the 0-1 range.

In spite of its shortcomings, which only occur at the limit of the range, linear scaling has a
great strength in that it introduces no distortion in the translated values. Whatever
information is in the original values is preserved unmodified in the normalized values. This
is an important feature that needs to be preserved, if at all possible. If the problems that
occur at the limits can be dealt with, linear scaling works well.

Making Room for Out-of-Range Values

In order to deal with the out-of-range problems, the PIE needs a method of dealing with
the limit problems of linear scaling. The linear scaling transformation gives linear
normalization over all of its range, but must be modified to somehow include out-of-range
values. One way to do this is to reduce the part of the transformed range that holds
in-range values. There is then room to squeeze the out-of-range values into space left at
the upper and lower ends, still leaving some differentiation between them. But how can
this be done? Theoretically, there is some chance, however small, that an arbitrarily far
out-of-range number will be encountered at either end of the range. How can what is
potentially an infinite range of numbers be squashed into a finite part of a 0-1 range,
especially with most of the 0—1 range given over to linear scaling? Fortunately, exactly
such a transform does exist, and it forms the basis of softmax scaling. This key transform
is called the logistic function. Both softmax scaling and the logistic function are examined
shortly. But first, what exactly is it that needs to be done?



The optimal form of normalizing transformation, if it could be guaranteed never to go out
of range, is linear. Of course, that’s just the problem—it can be guaranteed to go out of
range with some degree of confidence. However, if we can measure, or make
assumptions about, the distribution of the variable, we can then make inferences about
the distance between the sample limit and the population limit. Doing this allows choosing
some appropriate part of the range to be linear—and some appropriate part to
accommodate the out-of-range values.

Since the idea is that the translation is linear over some part of the range, the question is,
how much of the range should be linear? The sample being used for building the PIE is
selected with some degree of confidence. It is this confidence that can be used to
determine what part of the 0—1 range is to be held linear. The size of the expected
out-of-range gap is directly proportional to the degree of confidence that there will be
out-of-range values. If, for example, the selected confidence level was 98%, then 98% of
the range 0—1 will be linear. The selected linear part of the range is centered, so that the
linear translation range becomes, for a 98% confidence level, 0.01-0.99. The linear part
of the range is squashed by 2%. The balance from the 98%, or 2%, is evenly spaced at
the top and bottom of the range. This leaves 1% at each end of the range for squeezing in
the out-of-limit numbers. Figure 7.2 illustrates squashing the linear part of the range.

Gaplefilor _—
ovBrTangs values ™

-]
]
-
7
E -
g
=
-~ Gap loft far
o | =" undermanga waluss
Lh T T T T
4 Inpud valus

ol ¥ how Naw ¢ Ol

Rarje Feange

mirimum P e

Figure 7.2 The linear part of the range is “compressed” so that it covers a
smaller part of the output range. The “gaps” left at the top and bottom allow space
in which to compress the out-of-range values.

Squashing the Out-of-Range Numbers

The problem that now remains is to fit the out-of-range numbers, potentially extending to
infinity, into the minute space left for them. Consider the upper limit. First, it is important to



realize that for numbers larger than the limit, the greater a number, the less likely it is that
any such value will be found. When the sample was originally taken, some degree of
confidence was established that the largest value had been found. Larger numbers are
possible, even likely, but, as previously discussed, the greater the difference between the
limit value and any larger value, the less likely it is that it will be encountered.

The transformation is made such that as the difference between the limit and the
out-of-limit value grows, the smaller the increase toward the end of the range. Larger
numbers produce proportionally smaller differences, and an infinitely large number
produces ultimately infinitesimally small differences. In Chapter 6 it was noted that by
increasing precision, it is always possible to indicate more locations on the number line.
This allows an infinite number of out-of-range numbers to be mapped into space left for
them. If such a transform is developed, it can be used to squash the out-of-range values
above and below the linear part into the space left for them.

Looking at the upper range, a mathematical function is needed such that as the difference
between the limit and overlimit values gets larger, the value increases toward, but never
reaches, some boundary. Whatever its limits, the output of the squashing function can
itself then be linearly squashed to fit into the gap left for it. In looking for such a function, a
reciprocal makes a good starting point. A reciprocal of a number is simply one divided by
the number. It starts with a value of one, and as the input number gets larger, the output
value gets smaller and smaller, reaching toward, but never getting to, 0. To have this
transform move in the opposite direction, subtract it from 1. It becomes 1 — 1/v. Table 7.3
shows the output values for various inputs.

TABLE 7.3 Values of upper-range squashing function.

Y v 1-1N
1 1.000 0.000
2 0.500 0.500
3 0.333 0.667
5 0.200 0.800
8 0.125 0.875

13 0.077 0.923



21 0.048 0.952

34 0.029 0.971
55 0.018 0.982
89 0.011 0.989

So 1 - 1/v starts at 0 and moves toward 1, never quite reaching it, regardless of how large
a number is input. This is shown graphically in Figure 7.3(a).
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Figure 7.3 Values of 1 — 1/v for the range of inputs 1 through 100 (a) and values
of 1/ (1+(RangeMin — v)) for the range of inputs —100 through —1(b).

Squashing out-of-range values into the lower space left can use the same transform. This
time the out-of-range difference is discovered (RangeMin — v) and 1 is added to it to
ensure that the difference can never be less than 1. This time v is the lower-range
difference, but Table 7.3, in column 1/v, shows the values for this starting at 1 and
decreasing toward, but never reaching, 0. Figure 7.3(b) shows this graphically. These two
curves, one for the upper out-of-range values and one for the lower out-of-range values,
need to be squashed and attached to the linear part of the transform.

Taking the linear part of the range and adding the upper and lower transforms for the
out-of-range values produces a curve. The result will be a sort of “S” curve that is linear
over most of the range, but squashes the over- and undervalues into the remaining space.
Figure 7.4 shows the same curves squashed into the range. (The amount of the scale



allocated for squashing out-of-range values is highly exaggerated to illustrate the point.)
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Figure 7.4 The transforms for squashing overrange and underrange values are
attached to the linear part of the transform. This composite “S”-shaped transform
translates most of the values linearly, but also transforms any out-of-range values
so that they stay within the 0-1 limits of the range.

This sort of “S” curve can be constructed to serve the purpose. Writing computer code to
achieve this is somewhat cumbersome. The description shows very well the sort of effect
that is needed, but fortunately there is a much easier and more flexible way to get there.

7.1.8 Softmax Scaling

Softmax scaling is so called because, among other things, it reaches “softly” toward its
maximum value, never quite getting there. It also has a linear transform part of the range.
The extent of the linear part of the range is variable by setting one parameter. It also
reaches “softly” toward its minimum value. The whole output range covered is 0-1. These
features make it ideal as a transforming function that puts all of the pieces together that
have been discussed so far.

The Logistic Function

It starts with the logistic function. The logistic function can be modified to perform all of the
work just described, and when so modified, it does it all at once so that by plugging in a
variable’s instance value, out comes the required, transformed value.

An explanation of the workings of the logistic function is in the Supplemental Material
section at the end of this chapter. Its inner workings are a little complex, and so long as
what needs to be done is clear (getting to the squashing “S” curve), understanding the
logistic function itself is not necessary. The Supplemental Material can safely be skipped.



The explanation is included for interest since the same function is an integral part of
neural networks, mentioned in Chapter 10. The Supplemental Material section then
explains the modifications necessary to modify it to become the softmax function.

7.1.9 Normalizing Ranges

What does softmax scaling accomplish in addressing the problems of range
normalization? The features of softmax scaling are as follows:

The normalized range is 0-1. It is the nature of softmax scaling that no values outside this
range are possible. This keeps all normalized values inside unit state space boundaries.
Since the range of input values is essentially unlimited and the output range is limited, unit
state space, when softmax is normalized, is essentially infinite.

» The extent of the linear part of the normalized range is directly proportional to the level
of confidence that the data sample is representative. This means that the more
confidence there is that the sample is representative, the more linear the normalization
of values will be.

» The extent of the area assigned for out-of-range values is directly proportional to the
level of uncertainty that the full range has been captured. The less certainty, the more
space to put the expected out-of-range values when encountered.

» There is always some difference in normalized value between any two nonidentical
instance values, even for very large extremes.

As already discussed, these features meet many needs of a modeling tool. A static model
may still be presented with out-of-range values where its accuracy and reliability are
problematic. This needs to be monitored separately during execution time. (After all,
softmax squashing them does not mean that the model knows what to do with them—they
still represent areas of state space that the model never visited during training.) Dynamic
models that continuously learn from the data stream—such as continuously learning,
self-adaptive, or response-adaptive models—will have no trouble adapting themselves to
the newly experienced values. (Dynamic models need to interact with a dynamic PIE if the
range or distribution is not stationary—not a problem to construct if the underlying
principles are understood, but not covered in detail here.)

At the limits of the linear normalization range, no modeling tool is required to aggregate
the effect of multiple values by collapsing them into a single value (“clipping”).

Softmax scaling does the least harm to the information content of the data set. Yet it still
leaves some information exposed for the mining tools to use when values outside those
within the sample data set are encountered.



7.2 Redistributing Variable Values

Through normalization, the range of values of a variable can be made to always fall
between the limits 0—1. Since this is a most convenient range to work with, it is assumed
from here on that all of a variable’s values fall into this range. It is also assumed that the
variables fall into the linear part of the normalized range, which will be true during data
preparation.

Although the range is normalized, the distribution of the values—that is, the pattern that
exists in the way discrete instance values group together—has not been altered.
(Distributions were discussed in Chapters 2 and 5.) Now attention needs to be turned to
looking at the problems and difficulties that distributions can make for modeling tools, and
ways to alleviate them.

7.2.1 The Nature of Distributions

Distributions of a variable only consist of the values that actually occur in a sample of
many instances of the variable. For any variable that is limited in range, the count of
possible values that can exist is in practice limited.

Consider, for example, the level of indebtedness on credit cards offered by a particular
bank. For every bank there is some highest credit line that has ever been offered to any
credit card customer. Large perhaps, but finite. Suppose that maximum credit line is
$1,000,000. No credit card offered by this bank can possibly have a debit balance of more
than $1,000,000, nor less than $0 (ignoring credit balances due, say, to overpayment).
How many discrete balance amounts are possible? Since the balance is always stated to
the nearest penny, and there are 100 pennies in a dollar, the range extends from O
pennies to 100,000,000 pennies. There are no more than 100,000,000 possible discrete
values in the entire range.

In general, for any possible variable, there is always a particular resolution limit. Usually it
is bounded by the limits of accuracy of measurement, use, or convention. If not bounded
by those, then eventually the limits of precision of representation impose a practical limit
to the possible number of discrete values. The number may be large, but it is limited. This
is true even for softmax normalization. If values sufficiently out of range are passed into
the function, the truncation that any computer requires eventually assigns two different
input values to the same normalized value. (This practical limitation should not often
occur, as the way in which the scale was constructed should preclude many far
out-of-range values.)

However many value states there are, the way the discrete values group together forms
patterns in the distribution. Discrete value states can be close together or far apart in the
range. Many variables permit identical values to occur—for example, for credit card
balances, it is perfectly permissible for multiple cards to have identical balances.



A variable’s values can be thought of as being represented in a one-dimensional state
space. All of the features of state space exist, particularly including clustering of values. In
some parts of the space the density will be higher than in other parts. Overall there will be
some mean density.

7.2.2 Distributive Difficulties

One of the problems of distribution is outlying values or outlying clumps. (Figure 2.5
illustrates this.) Some modeling techniques are sensitive only to the linear displacement of
the value across the range. This only means that the sensitivity remains constant across
the range so that any one value is as “important” as any other value. It seems reasonable
that 0.45 should be as significant as 0.12. The inferences to be made may be
different—that is, each discrete value probably implies a different predicted value—but
the fact that 0.45 has occurred is given the same weight as the fact that 0.12 has
occurred.

Reasonable as this seems, it is not necessarily so. Since the values cluster together,
some values are more common than others. Some values simply turn up more often than
others. In the areas where the density is higher, values occurring in that area are more
frequent than those values occurring in areas of lower density. In a sense, that is what
density is measuring—frequency of occurrence. However, since some values are more
common than others, the fact that an uncommon one has occurred carries a “message”
that is different than a more common value. In other words, the weighting by frequency of
specific values carries information.

To a greater or lesser degree, density variation is present for almost all variables. In some
cases it is extreme. A binary value, for instance, has two spikes of extremely high density
(one for the “0” value and one for the “1” value). Between the spikes of density is empty
space. Again, most alpha variables will translate into a “spiky” sort of density, each spike
corresponding to a specific label.

Figure 7.5 illustrates several possible distributions. In Figure 7.5(d) the outlier problem is
illustrated. Here the bulk of the distribution has been displaced so that it occupies only half
of the range. Almost half of the range (and half of the distribution) is empty.
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Figure 7.5 Different types of distributions and problems with the distribution of a
variable’s values across a normalized range: normal (a), bimodal or binary
variable (b), alpha label (c), normal with outlier (d), typical actual variable A (e),
and typical actual variable B (f). All graphs plot value (x) and density (y).

Many, if not most, modeling tools, including some standard statistical methods, either
ignore or have difficulty with varying density in a distribution. Many such tools have been
built with the assumption that the distribution is normal, or at least regular. When density
is neither normal nor regular, as is almost invariably the case with real-world data
sets—particularly behavioral data sets—these tools cannot perform as designed. In many
cases they simply are not able to “see” the information carried by the varying density in
the distribution. If possible, this information should be made accessible.

When the density variation is dissimilar between variables, the problem is only intensified.
Between-variable dissimilarity means that not only are