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Preface  

 

 

 What This Book Is About  
 
 

 
This book is about what to do with data to get the most out of it. There is a lot more to that 
statement than first meets the eye. 

 

 
 

 

Much information is available today about data warehouses, data mining, KDD, OLTP, 
OLAP, and a whole alphabet soup of other acronyms that describe techniques and 
methods of storing, accessing, visualizing, and using data. There are books and 
magazines about building models for making predictions of all types—fraud, marketing, 
new customers, consumer demand, economic statistics, stock movement, option prices, 
weather, sociological behavior, traffic demand, resource needs, and many more. 

 

 
 

 

In order to use the techniques, or make the predictions, industry professionals almost 
universally agree that one of the most important parts of any such project, and one of the 
most time-consuming and difficult, is data preparation. Unfortunately, data preparation 
has been much like the weather—as the old aphorism has it, “Everyone talks about it, but 
no one does anything about it.” This book takes a detailed look at the problems in 
preparing data, the solutions, and how to use the solutions to get the most out of the 
data—whatever you want to use it for. This book tells you what can be done about it, 
exactly how it can be done, and what it achieves, and puts a powerful kit of tools directly in 
your hands that allows you to do it. 

 

 
 

 

How important is adequate data preparation? After finding the right problem to solve, data 
preparation is often the key to solving the problem. It can easily be the difference between 
success and failure, between useable insights and incomprehensible murk, between 
worthwhile predictions and useless guesses. 

 

 
 

 

For instance, in one case data carefully prepared for warehousing proved useless for 
modeling. The preparation for warehousing had destroyed the useable information content 
for the needed mining project. Preparing the data for mining, rather than warehousing, 
produced a 550% improvement in model accuracy. In another case, a commercial baker 
achieved a bottom-line improvement approaching $1 million by using data prepared with the 
techniques described in this book instead of previous approaches. 

 

 
Who This Book Is For  
 
 

 

This book is written primarily for the computer savvy analyst or modeler who works with 
data on a daily basis and who wants to use data mining to get the most out of data. The 
type of data the analyst works with is not important. It may be financial, marketing, 
business, stock trading, telecommunications, healthcare, medical, epidemiological, 

 



genomic, chemical, process, meteorological, marine, aviation, physical, credit, insurance, 
retail, or any type of data requiring analysis. What is important is that the analyst needs to 
get the most information out of the data. 

 
 

 

At a second level, this book is also intended for anyone who needs to understand the issues 
in data preparation, even if they are not directly involved in preparing or working with data. 
Reading this book will give anyone who uses analyses provided from an analyst’s work a 
much better understanding of the results and limitations that the analyst works with, and a far 
deeper insight into what the analyses mean, where they can be used, and what can be 
reasonably expected from any analysis. 

 

 
Why I Wrote It  
 
 

 

There are many good books available today that discuss how to collect data, particularly 
in government and business. Simply look for titles about databases and data 
warehousing. There are many equally good books about data mining that discuss tools 
and algorithms. But few, if any books, address what to do with the “dirty data” after it is 
collected and before exploring it with a data mining tool. Yet this part of the process is 
critical. 

 

 
 

 

I wrote this book to address that gap in the process between identifying data and building 
models. It will take you from the point where data has been identified in some form or 
other, if not assembled. It will walk you through the process of identifying an appropriate 
problem, relating the data back to the world from which it was collected, assembling the 
data into mineable form, discovering problems with the data, fixing the problems, and 
discovering what is in the data—that is, whether continuing with mining will deliver what 
you need. It walks you through the whole process, starting with data discovery, and 
deposits you on the very doorstep of building a data-mined model. 

 

 
 

 

This is not an easy journey, but it is one that I have trodden many times in many projects. 
There is a “beaten path,” and my express purpose in writing this book is to show exactly 
where the path leads, why it goes where it does, and to provide tools and a map so that you 
can tread it again on your own when you need to. 

 

 
Special Features  
 
 

 

A CD-ROM accompanies the book. Preparing data requires manipulating it and looking at 
it in various ways. All of the actual data manipulation techniques that are conceptually 
described in the book, mainly in Chapters 5 through 8 and 10, are illustrated by C 
programs. For ease of understanding, each technique is illustrated, so far as possible, in a 
separate, well-commented C source file. If compiled as an integrated whole, these 
provide an automated data preparation tool. 

 

 
 

 The CD-ROM also includes demonstration versions of other tools mentioned, and useful  



for preparing data, including WizWhy and WizRule from WizSoft, KnowledgeSEEKER 
from Angoss, and Statistica from StatSoft. 

 
 

 
Throughout the book, several data sets illustrate the topics covered. They are included on 
the CD-ROM for reader investigation. 
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Introduction  

 
 

 

Ever since the Sumerian and Elam peoples living in the Tigris and Euphrates River basin 
some 5500 years ago invented data collection using dried mud tablets marked with tax 
records, people have been trying to understand the meaning of, and get use from, 
collected data. More directly, they have been trying to determine how to use the 
information in that data to improve their lives and achieve their objectives. 

 

 
 

 

These are the same objectives addressed by the latest technology to wring use and 
meaning out of data—the group of technologies that today have come to be called data 
mining. Often, something important gets lost in the rush to apply these powerful 
technologies to “find something in this data.” The technologies themselves are not an 
answer. They are tools to help find an answer. It is no use looking for an answer unless 
there is a question. But equally important, given a question, both the data and the miner 
need to be readied to find the best answer to the question asked. 

 

 
 

 

This book has two objectives: 1) to present a proven approach to preparing the data, and 
the miner, to get the most out of computer-stored data, and 2) to help analysts and 
business managers make cost-effective and informed decisions based on the data, their 
expertise, and business needs and constraints. This book is intended for everyone who 
works with or uses data and who needs to understand the nature, limitations, application, 
and use of the results they get. 

 

 
 

 

In The Wizard of Oz, while the wizard hid behind the curtain and manipulated the controls, 
the results were both amazing and magical. When the curtain was pulled back, and the 
wizard could be seen manipulating the controls, the results were still amazing—the 
cowardly lion did find courage, the tin man his heart, the scarecrow his brain. The power 
remained; only the mystery evaporated. This book “pulls back the curtain” about the 
reason, application, applicability, use, and results of data preparation. 

 

 

 

 Knowledge, Power, Data, and the World  
 
 

 
Francis Bacon said, “Knowledge is power.” But is it? And if it is, where is the power in 
knowledge? 

 

 
 

 

Power is the ability to control, or at least influence, events. Control implies taking an 
action that produces a known result. So the power in knowledge is in knowing what to do 
to get what you want—knowing which actions produce which results, and how and when 
to take them. Knowledge, then, is having a collection of actions that work reliably. But 
where does this knowledge come from? 

 

 
 

 Our knowledge of the world is a map of how things affect each other. This comes from  



observation—watching what happens. Watching implies making a record of happenings, 
either mental or in some other form. These records, when in nonmental form, are data, 
which is simply a collection of observations of things that happen, and what other things 
happen when the first things happen. And how consistently. 

 
 

 

The world forms a comprehensive interlocking system, called by philosophers “the great 
system of the world.” Essentially, when any particular thing happens in the world, other 
things happen too. We call this causality and want to know what causes what. Everything 
affects everything else. As the colloquial expression has it, “You can’t do just one thing.” This 
system of connected happenings, or events, is reflected in the data collected. 

 

 
Data, Fishing, and Decision Making  
 
 

 

We are today awash in data, primarily collected by governments and businesses. 
Automation produces an ever-growing flood of data, now feeding such a vast ocean that 
we can only watch the swelling tide, amazed. Dazed by our apparent inability to come to 
grips with the knowledge swimming in the vast ocean before us, we know there must be a 
vast harvest to be had in this ocean, if only we could find the means. 

 

 
 

 

Fishing in data has traditionally been the realm of statistical analysis. But statistical 
analysis has been as a boy fishing with a pole from a riverbank. Today’s business 
managers need more powerful and effective means to reap the harvest—ways to explore 
and identify the denizens of the ocean, and to bring the harvest home. Today there are 
three such tools for harvesting: data modeling reveals each “fish,” data surveying looks at 
the shape of the ocean and is the “fish finder,” and data preparation clears the water and 
removes the murk so that the “fish” are clearly seen and easily attracted. 

 

 
 

 

So much for metaphor. In truth, corporations have huge data “lakes” that range from 
comprehensive data stores to data warehouses, data marts, and even data “garbage 
dumps.” Some of these are more useful than others, but in every case they were created, 
and data collected, because of the underlying assumption that collected data has value, 
corporate value—that is it can be turned into money. 

 

 
 

 

All corporations have to make decisions about which actions are best to achieve the 
corporate interest. Informed decisions—those made with knowledge of current 
circumstances and likely outcome—are more effective than uninformed decisions. The core 
business of any corporate entity is making appropriate decisions, and enterprise decision 
support is the core strategic process, fed by knowledge and expertise—and by the best 
available information. Much of the needed information is simply waiting to be discovered, 
submerged in collected data. 

 

 
Mining Data for Information  
 
 

 The most recently developed tools for exploring data, today known as data mining tools,  



only begin the process of automating the search. To date, most modern data mining tools 
have focused almost exclusively on building models—identifying the “fish.” Yet enormous 
dividends come from applying the modeling tools to correctly prepared data. But 
preparing data for modeling has been an extremely time-consuming process, traditionally 
carried out by hand and very hard to automate. 

 
 

 

This book describes automated techniques of data preparation, both methods and 
business benefits. These proven automated techniques can cut the preparation time by 
up to 90%, depending on the quality of the original data, so the modeler produces better 
models in less time. As powerful and effective as these techniques are, the key benefit is 
that, properly applied, the data preparation process prepares both the data and the 
modeler. When data is properly prepared, the miner unavoidably gains understanding and 
insight into the content, range of applicability, and limits to use of the data. When data is 
correctly prepared and surveyed, the quality of the models produced will depend mostly 
on the content of the data, not so much on the ability of the modeler. 

 

 
 

 

But often today, instead of adequate data preparation and accurate data survey, 
time-consuming models are built and rebuilt in an effort to understand data. Modeling and 
remodeling are not the most cost-efficient or the most effective way to discover what is 
enfolded in a data set. If a model is needed, the data survey shows exactly which model (or 
models if several best fit the need) is appropriate, how to build it, how well it will work, where 
it can be applied, and how reliable it will be and its limits to performance. All this can be done 
before any model is built, and in a small fraction of the time it takes to explore data by 
modeling. 

 

 
Preparing the Data, Preparing the Miner  
 
 

 

Correct data preparation prepares both the miner and the data. Preparing the data means 
the model is built right. Preparing the miner means the right model is built. Data 
preparation and the data survey lead to an understanding of the data that allows the right 
model to be built, and built right the first time. But it may well be that in any case, the 
preparation and survey lead the miner to an understanding of the information enfolded in 
the data, and perhaps that is all that is wanted. But who is the miner? 

 

 
 

 

Exploring data has traditionally been a specialist activity. But it is business managers who 
need the results, insights, and intuitions embedded in stored data. As recently as 20 years 
ago, spreadsheets were regarded as specialized tools used by accountants and were 
considered to have little applicability to general business management. Today the vast 
majority of business managers regard the spreadsheet as an indispensable tool. As with 
the spreadsheet, so too the time is fast approaching when business managers will directly 
access and use data exploration tools in their daily business decision making. Many 
important business processes will be run by automated systems, with business managers 
and analysts monitoring, guiding, and driving the processes from “control panels.” Such 
structures are already beginning to be deployed. Skilled data modelers and explorers will 

 



be needed to construct and maintain these systems and deploy them into production. 
 
 

 

So who is the miner? Anyone who needs to understand and use what is in corporate data 
sets. This includes, but is not limited to, business managers, business analysts, consultants, 
data analysts, marketing managers, finance managers, personnel managers, corporate 
executives, and statisticians. The miner in this book refers to anyone who needs to directly 
understand data and wants to apply the techniques to get the best understanding out of the 
data as effectively as possible. (The miner may or may not be a specialist who implements 
these techniques for preparation. It is at least someone who needs to use them to 
understand what is going on and why.) The modeler refers to someone versed in the special 
techniques and methodologies of constructing models. 

 

 
Is This Book for You?  
 
 

 

I have been involved, one way or another, in the world of using automated techniques to 
extract “meaning” from data for over a quarter of a century. Recently, the term “data 
mining” has become fashionable. It is an old term that has changed slightly in meaning 
and gained a newfound respectability. It used to be used with the connotation that if you 
mess around in data long enough, you are sure to find something that seems useful, but is 
probably just an exercise in self-deception. (And there is a warning to be had there, 
because self-deception is very easy!) 

 

 
 

 

This “mining” of data used to be the specialist province of trained analysts and 
statisticians. The techniques were mainly manual, data quantities small, and the 
techniques complex. The miracle of the modern computer (not said tongue in cheek) has 
changed the entire nature of data exploration. The rate of generation and collection of raw 
data has grown so rapid that it is absolutely beyond the means of human endeavor to 
keep up. And yet there is not only meaning, but huge value to be had from understanding 
what is in the data collections. Some of this meaning is for business—where to find new 
customers, stop fraud, improve production, reduce costs. But other data contains 
meaning that is important to understand, for our lives depend on knowing some of it! Is 
global warming real or not? Will massive storms continue to wreak more and more havoc 
with our technological civilization? Is a new ice age almost upon us? Is a depression 
imminent? Will we run out of resources? How can the developing world be best helped? 
Can we prevent the spread of AIDS? What is the meaning of the human genome? 

 

 
 

 

This book will not answer any of those questions, but they, along with a host of other 
questions large and small, will be explored, and explored almost certainly by automated 
means—that is, those techniques today called data mining. But the explorers will not be 
exclusively drawn from a few, highly trained professionals. Professional skill will be sorely 
needed, but the bulk of the exploration to come will be done by the people who face the 
problems, and they may well not have access to skilled explorers. What they will have is 
access to high-powered, almost fully automated exploration tools. They will need to know 
the appropriate use and limits of the tools—and how to best prepare their data. 

 

 



 

 

If you are looking at this book, and if you have read this far through the introduction, almost 
certainly this book is for you! It is you who are the “they” who will be doing the exploring, and 
this book will help you. 

 

 
Organization  
 
 

 

Data preparation is both a broad and a narrow topic. Business managers want an 
overview of where data preparation fits and what it delivers. Data miners and modelers 
need to know which tools and techniques can be applied to data, and how to apply them 
to bring the benefits promised. Business and data analysts want to know how to use the 
techniques and their limits to usefulness. All of these agendas can be met, although each 
agenda may require a different path through the book. 

 

 
 

 

Chapters 1 through 3 lay the ground work by describing the data exploration process in 
which data preparation takes place. Chapters 4 through 10 outline each of the problems 
that have to be addressed in best exposing the information content enfolded in data, and 
provide conceptual explanations of how to deal with each problem. Chapters 11 and 12 
look at what can be discovered from prepared data, and how both miner and modeling 
performance are improved by using the techniques described. 

 

 
 

 

Chapter 1 places data preparation in perspective as part of a decision-making process. It 
discusses how to find appropriate problems and how to define what a solution looks like. 
Without a clear idea of the business problem, the proposed business objectives, and 
enough knowledge of the data to determine if it’s an appropriate place to look for at least 
part of the answer, preparing data is for naught. While Chapter 1 provides a top-down 
perspective, Chapter 2 tackles the process from the bottom up, tying data to the real 
world, and explaining the inherent limitations and problems in trying to capture data about 
the world. Since data is the primary foundation, the chapter looks at what data is as it 
exists in database structures. Chapter 3 describes the data exploration process and the 
interrelationship between its components—data preparation, data survey, and data 
modeling. The focus in this chapter is on how the pieces link together and interact with 
each other. 

 

 
 

 

Chapters 4 through 9 describe how to actually prepare data for survey and modeling. 
These chapters introduce the problems that need to be solved and provide conceptual 
descriptions of all of the techniques to deal with the problems. Chapter 4 discusses the 
data assay, the part of the process that looks at assembling data into a mineable form. 
There may be much more to this than simply using an extract from a warehouse! The 
assay also reveals much information about the form, structure, and utility of a data set. 
Chapters 5 through 8 discuss a range of problems that afflict data, their solutions, and 
also the concept of how to effectively expose information content. Among the topics these 
chapters address are discovering how much data is needed; appropriately numerating 
alpha values; removing variables and data; appropriately replacing missing values; 

 



normalizing range and distribution; and assembling, enhancing, enriching, compressing, 
and reducing data and data sets. Some parts of these topics are inherently and 
unavoidably mathematical. In every case, the mathematics needed to understand the 
techniques is at the “forgotten high school math” level. Wherever possible, and where it is 
not required for a conceptual understanding of the issues, any mathematics is contained 
in a section titled Supplemental Material at the end of those particular chapters. Chapter 9
deals entirely with preparing series data, such as time series. 

 
 

 

Chapter 10 looks at issues concerning the data set as a whole that remain after dealing 
with problems that exist with variables. These issues concern restructuring data and 
ensuring that the final data set actually meets the need of the business problem. 

 

 
 

 

Chapter 11 takes a brief look at some of the techniques required for surveying data and 
examines a small part of the survey of the example data set included on the 
accompanying CD-ROM. This brief look illustrates where the survey fits and the high 
value it returns. Chapter 12 looks at using prepared data in modeling and demonstrates 
the impact that the techniques discussed in earlier chapters have on data. 

 

 
 

 

All of the preparation techniques discussed here are illustrated in a suite of C routines on the 
accompanying CD-ROM. Taken together they demonstrate automated data preparation and 
compile to provide a demonstration data preparation program illustrating all of the points 
discussed. All of the code was written to make the principles at work as clear as possible, 
rather than optimizing for speed, computational efficiency, or any other metric. Example data 
sets for preparation and modeling are included. These are the data sets used to illustrate the 
discussed examples. They are based on, or extracted from, actually modeled data sets. The 
data in each set is assembled into a table, but is not otherwise prepared. Use the tools and 
techniques described in the book to explore this data. Many of the specific problems in these 
data sets are discussed, but by no means all. There are surprises lurking, some of which 
need active involvement by the miner or modeler, and which cannot all be automatically 
corrected. 

 

 
Back to the Future  
 
 

 

I have been involved in the field known today as data mining, including data preparation, 
data surveying, and data modeling, for more than 25 years. However, this is a 
fast-developing field, and automated data preparation is not a finished science by any 
means. New developments come only from addressing new problems or improving the 
techniques used in solving existing problems. The author welcomes contact from anyone 
who has an interest in the practical application of data exploration techniques in solving 
business problems. 

 

 
 

 

The techniques in this book were developed over many years in response to data problems 
and modeling difficulties. But, of course, no problems are solved in a vacuum. I am indebted 
to colleagues who unstintingly gave of their time, advice, and insight in bringing this book to 



fruition. I am equally indebted to the authors of many books who shared their knowledge and 
insight by writing their own books. Sir Isaac Newton expressed the thought that if he had 
seen further than others, it was because he stood on the shoulders of giants. The giants on 
whose shoulders I, and all data explorers stand, are those who thought deeply about the 
problems of data and its representations of the world, and who wrote and spoke of their 
conclusions. 

 

 



 

Chapter 1: Data Exploration as a Process  

 

 

 Overview  
 
 

 
Data exploration starts with data, right? Wrong! That is about as true as saying that 
making sales starts with products. 

 

 
 

 

Making sales starts with identifying a need in the marketplace that you know how to meet 
profitably. The product must fit the need. If the product fits the need, is affordable to the 
end consumer, and the consumer is informed of your product’s availability (marketing), 
then, and only then, can sales be made. When making sales, meeting the needs of the 
marketplace is paramount. 

 

 
 

 

Data exploration also starts with identifying a need in its “marketplace” that can be met 
profitably. Its marketplace is corporate decision making. If a company cannot make 
correct and appropriate decisions about marketing strategies, resource deployment, 
product distribution, and every other area of corporate behavior, it is ultimately doomed. 
Making correct, appropriate, and informed business decisions is the paramount business 
need. Data exploration can provide some of the basic source material for decision 
making—information. It is information alone that allows informed decision making. 

 

 
 

 

So if the marketplace for data exploration is corporate decision making, what about profit? 
How can providing any information not be profitable to the company? To a degree, any 
information is profitable, but not all information is equally useful. It is more valuable to 
provide accurate, timely, and useful information addressing corporate strategic problems 
than about a small problem the company doesn’t care about and won’t deploy resources 
to fix anyway. So the value of the information is always proportional to the scale of the 
problem it addresses. And it always costs to discover information. Always. It takes time, 
money, personnel, effort, skills, and insight to discover appropriate information. If the cost 
of discovery is greater than the value gained, the effort is not profitable. 

 

 
 

 

What, then, of marketing the discovered information? Surely it doesn’t need marketing. 
Corporate decision makers know what they need to know and will ask for it—won’t they? 
The short answer is no! Just as you wouldn’t even go to look for stereo equipment unless 
you knew it existed, and what it was good for, so decision makers won’t seek information 
unless they know it can be had and what it is good for. Consumer audio has a great depth 
of detail that needs to be known in order to select appropriate equipment. Whatever your 
level of expertise, there is always more to be known that is important—once you know 
about it. Speakers, cables, connectors, amplifiers, tuners, digital sound recovery, 
distortion, surround sound, home theater, frequency response. On and on goes the list, 
and detailed books have been written about the subject. In selecting audio equipment (or 
anything else for that matter), an educated consumer makes the best choice. It is exactly 

 



the same with information discovered using data exploration. 
 
 

 

The consumers are decision makers at all levels, and in all parts of any company. They 
need to know that information is available, as well as the sort of information, its range of 
applicability, limits to use, duration of applicability, likely return, cost to acquire, and a host 
of other important details. As with anything else, an educated consumer makes the best 
use of the resource available. But unlike home audio equipment, each problem in data 
exploration for business is unique and has needs different from other problems. It has not 
yet become common that the decision maker directly explores broadly based corporate 
data to discover information. At the present stage of data exploration technology, it is 
usual to have the actual exploration done by someone familiar with the tools 
available—the miner. But how are the miner and the decision maker(s) to stay “in synch” 
during the process? How is the consumer, the decision maker, to become educated about 
reasonable expectations, reasonable return, and appropriate uses of the discovered 
information? 

 

 
 

 

What is needed is a process. A process that works to ensure that all of the participants are 
engaged and educated, that sets appropriate expectations, and that ensures the most value 
is obtained for the effort put in. That process is the data exploration process, introduced in 
this chapter. 

 

 
1.1  The Data Exploration Process  
 
 

 

Data exploration is a practical multistage business process at which people work using a 
structured methodology to discover and evaluate appropriate problems, define solutions 
and implementation strategies, and produce measurable results. Each of the stages has a 
specific purpose and function. This discussion will give you a feel for the process: how to 
decide what to do at each stage and what needs to be done. This is a look at what goes 
in, what goes on, and what comes out of data exploration. While much of this discussion 
is at a conceptual level, it provides some practical “hands-on” advice and covers the major 
issues and interrelationships between the stages. 

 

 
 

 At the highest-level overview, the stages in the data exploration process are  
 
 

  1.  Exploring the Problem Space  
 
 

  2.  Exploring the Solution Space  
 
 

  3.  Specifying the Implementation Method  
 
 

  4.  Mining the Data (three parts)  
 
 

  a. Preparing the Data  
 
 



  b. Surveying the Data  
 
 

  c. Modeling the Data  
 
 

 

This is the “map of the territory” that you should keep in mind as we visit each area and 
discuss issues. Figure 1.1 illustrates this map and shows how long each stage typically 
takes. It also shows the relative importance of each stage to the success of the project. 
Eighty percent of the importance to success comes from finding a suitable problem to 
address, defining what success looks like in the form of a solution, and, most critical of all, 
implementing the solution. If the final results are not implemented, it is impossible for any 
project to be successful. On the other hand, mining—preparation, surveying, and 
modeling—traditionally takes most of the time in any project. However, after the 
importance of actually implementing the result, the two most important contributors to 
success are solving an appropriate problem and preparing the data. While implementing 
the result is of the first importance to success, it is almost invariably outside the scope of 
the data exploration project itself. As such, implementation usually requires organizational 
or procedural changes inside an organization, which is well outside the scope of this 
discussion. Nonetheless, implementation is critical, since without implementing the results 
there can be no success. 

 

 

 

 

 

 

 
 

 
Figure 1.1 Stages of a data exploration project showing importance and duration 
of each stage. 

 

   
 

 

 1.1.1  Stage 1: Exploring the Problem Space  
 
 

 

This is a critical place to start. It is also the place that, without question, is the source of 
most of the misunderstandings and unrealistic expectations from data mining. Quite aside 
from the fact that the terms “data exploration” and “data mining” are (incorrectly) used 
interchangeably, data mining has been described as “a worm that crawls through your 
data and finds golden nuggets.” It has also been described as “a method of automatically 

 



extracting unexpected hidden patterns from data.” It is hard to see any analogous 
connection between either data exploration or data mining and metaphorical worms. As 
for automatically extracting hidden and unexpected patterns, there is some analogous 
truth to that statement. The real problem is that it gives no flavor for what goes into finding 
those hidden patterns, why you would look for them, nor any idea of how to practically use 
them when they are found. As a statement, it makes data mining appear to exist in a world 
where such things happen by themselves. This leads to “the expectation of magic” from 
data mining: wave a magic wand over the data and produce answers to questions you 
didn’t even know you had! 

 
 

 

Without question, effective data exploration provides a disciplined approach to identifying 
business problems and gaining an understanding of data to help solve them. Absolutely 
no magic used, guaranteed. 

 

 

 

 Identifying Problems  
 
 

 

The data exploration process starts by identifying the right problems to solve. This is not 
as easy as it seems. In one instance, a major telecommunications company insisted that 
they had already identified their problem. They were quite certain that the problem was 
churn. They listened patiently to the explanation of the data exploration methodology, and 
then, deciding it was irrelevant in this case (since they were sure they already understood 
the problem), requested a model to predict churn. The requested churn model was duly 
built, and most effective it was too. The company’s previous methods yielded about a 50% 
accurate prediction model. The new model raised the accuracy of the churn predictions to 
more than 80%. Based on this result, they developed a major marketing campaign to 
reduce churn in their customer base. The company spent vast amounts of money 
targeting at-risk customers with very little impact on churn and a disastrous impact on 
profitability. (Predicting churn and stopping it are different things entirely. For instance, the 
amazing discovery was made that unemployed people over 80 years old had a most 
regrettable tendency to churn. They died, and no incentive program has much impact on 
death!) 

 

 
 

 

Fortunately they were persuaded by the apparent success, at least of the predictive 
model, to continue with the project. After going through the full data exploration process, 
they ultimately determined that the problem that should have been addressed was 
improving return from underperforming market segments. When appropriate models were 
built, the company was able to create highly successful programs to improve the value 
that their customer base yielded to them, instead of fighting the apparent dragon of churn. 
The value of finding and solving the appropriate problem was worth literally millions of 
dollars, and the difference between profit and loss, to this company. 

 

 

 

 Precise Problem Definition  
 
 

 So how is an appropriate problem discovered? There is a methodology for doing just this. 
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Start by defining problems in a precise way. Consider, for a moment, how people 
generally identify problems. Usually they meet, individually or in groups, and discuss what 
they feel to be precise descriptions of problems; on close examination, however, they are 
really general statements. These general statements need to be analyzed into smaller 
components that can, in principle at least, be answered by examining data. In one such 
discussion with a manufacturer who was concerned with productivity on the assembly 
line, the problem was expressed as, “I really need a model of the Monday and Friday 
failure rates so we can put a stop to them!” The owner of this problem genuinely thought 
this was a precise problem description. 

 

 
 

 

Eventually, this general statement was broken down into quite a large number of 
applicable problems and, in this particular case, led to some fairly sophisticated models 
reflecting which employees best fit which assembly line profiles, and for which shifts, and 
so on. While exploring the problem, it was necessary to define additional issues, such as 
what constituted a failure; how failure was detected or measured; why the Monday and 
Friday failure rates were significant; why these failure rates were seen as a problem; was 
this in fact a quality problem or a problem with fluctuation of error rates; what problem 
components needed to be looked at (equipment, personnel, environmental); and much 
more. By the end of the problem space exploration, many more components and 
dimensions of the problem were explored and revealed than the company had originally 
perceived. 

 

 
 

 

It has been said that a clear statement of a problem is half the battle. It is, and it points 
directly to the solution needed. That is what exploring the problem space in a rigorous 
manner achieves. Usually (and this was the case with the manufacturer), the exploration 
itself yields insights without the application of any automated techniques. 

 

 

 

 Cognitive Maps  
 
 

 

Sometimes the problem space is hard to understand. If it seems difficult to gain insight 
into the structure of the problem, or there seem to be many conflicting details, it may be 
helpful to structure the problem in some convenient way. One method of structuring a 
problem space is by using a tool known as a cognitive map (Figures 1.2(a) and 1.2(b)). A 
useful tool for exploring complex problem spaces, a cognitive map is a physical picture of 
what are perceived as the objects that make up the problem space, together with the 
interconnections and interactions of the variables of the objects. It will very often show 
where there are conflicting views of the structure of the problem. 

 

 

 



 

 

 

 
 

 Figure 1.2 Cognitive maps: simple (a) and complex (b).  

   
 
 

 

Figure 1.2(a) shows a simple cognitive map expressing the perceived relationships 
among the amount of sunshine, the ocean temperature, and the level of cloud cover. 
Figure 1.2(b) shows a somewhat more complex cognitive map. Cloud cover and global 
albedo are significant in this view because they have a high number of connections, and 
both introduce negative feedback relationships. Greenhouse gases don’t seem to be 
closely coupled. A more sophisticated cognitive map may introduce numerical weightings 
to indicate the strength of connections. Understanding the implications of the more 
complex relationships in larger cognitive maps benefits greatly from computer simulation. 

 

 
 

 

Note that what is important is not to resolve or remove these conflicting views, but to 
understand that they are there and exactly in which parts of the problem they occur. They 
may in fact represent valid interpretations of different views of a situation held by different 
problem owners. 

 

 

 

 Ambiguity Resolution  
 
 

 

While the problems are being uncovered, discovered, and clarified, it is important to use 
techniques of ambiguity resolution. While ambiguity resolution covers a wide range of 
areas and techniques, its fundamental purpose is to assure that the mental image of the 
problem in the problem owner’s mind—a mental image replete with many associated 
assumptions—is clearly communicated to, and understood by, the problem solver—most 
specifically that the associated assumptions are brought out and made clear. Ambiguity 
resolution serves to ensure that where there are alternative interpretations, any 
assumptions are explicated. For a detailed treatment of ambiguity resolution, see the 
excellent Exploring Requirements: Quality Before Design by Grause and Weinberg. (See 
Further Reading.) 

 

 

 

 Pairwise Ranking and Building the Problem Matrix  
 



 

 

Exploring the problem space, depending on the scope of the project, yields anything from 
tens to hundreds of possible problems. Something must be done to deal with these as 
there may be too many to solve, given the resources available. We need some way of 
deciding which problems are the most useful to tackle, and which promise the highest 
yields for the time and resources invested. 

 

 
 

 

Drawing on work done in the fields of decision theory and econometrics, it is possible to 
use a rationale that does in fact give consistent and reliable answers as to the most 
appropriate and effective problems to solve: the pairwise ranking. Figure 1.3 illustrates the 
concept. Generating pairwise rankings is an extremely powerful technique for reducing 
comparative selections. Surprisingly, pairwise rankings will probably give different results 
than an intuitive ranking of a list. Here is a simple technique that you can use to 
experiment. 

 

 

 

 

 

 

 
 

 

Figure 1.3 Pairwise ranking method. This method is illustrative only. In practice, 
using a spreadsheet or a decision support software package would ease the 
comparison. 

 

   
 
 

 

Create a four-column matrix. In column 1, list 10–20 books, films, operas, sports teams, or 
whatever subject is of interest to you. Start at the top of the list and pick your best, 
favorite, or highest choice, putting a “1” against it in column 2. Then choose your second 
favorite and enter “2” in column 2 and so on until there is a number against each choice in 
that column. This is an intuitive ranking. 

 

 
 

 

Now start again at the top of the list in column 1. This time, choose which is the preferable 
pick between items 1 and 2, then 1 and 3, then 1 and 4, and so on to the last item. Then 
make your preferable picks between those labeled 2 and 3, 2 and 4, and so on. For each 
pair, put a check mark in column 3 against the top pick. When you have finished this, add 
up the check marks for each preferred pick and put the total in column 4. When you have 

 



finished, column 4 cells will contain 1, 2, 3, 4, and so on, check marks. If there is a tie in 
any of your choices, simply make a head-to-head comparison of the tied items. In column 
4, enter a “1” for the row with the most check marks, a “2” for the second-highest number, 
and so on. This fourth column represents your pairwise ranking. 

 
 

 

There are many, well-founded psychological studies that show, among other things, that a 
human can make judgments about 7 (plus or minus 2) items at the same time. Thus an 
intuitive ranking with more than 10 items will tend to be inconsistent. However, by making 
a comparison of each pair, you will generate a consistent ranking that gives a highly 
reliable indicator of where each item ranks. Look at the results. Are your listings different? 
Which is the most persuasive listing of your actual preferences—the intuitive ranking or 
the pairwise ranking? 

 

 
 

 

Using the principle of the comparison technique described above with identified problems 
forms the problem space matrix (PSM). An actual PSM uses more than a single column of 
judgment rankings—“Problem,” “Importance,” “Difficulty,” “Yield,” and “Final Rank,” for 
example. Remember that the underlying ranking for each column is always based on the 
pairwise comparison method described above. 

 

 
 

 

Where there are many problem owners, that is, a number of people involved in describing 
and evaluating the problem, the PSM uses a consensus ranking made from the individual 
rankings for “Importance,” “Difficulty,” and “Yield.” For the column “Importance,” a ranking 
is made to answer the question “Which of these two problems do you think is the most 
important?” The column “Difficulty” ranks the question “Given the availability of data, 
resources, and time, which of these two problems will be the easier to solve?” Similarly for 
“Yield,” the question is “If you had a solution for each of these two problems, which is 
likely to yield the most value to the company?” If there are special considerations in a 
particular application, an additional column or columns might be used to rank those 
considerations. For instance, you may have other columns that rank internal political 
considerations, regulatory issues, and so on. 

 

 
 

 

The “Final Rank” is a weighted scoring from the columns “Importance,” “Difficulty,” and 
“Yield,” made by assigning a weight to each of these factors. The total of the weights must 
add up to 1. If there are no additional columns, good preliminary weightings are 

 

 
 

 Importance  
 

 

 0.5  
 

 

 

 Difficulty  
 

 

 0.25  
 

 

 

 Yield  
 

 

 0.25  
 

 

 

 

This is because “Importance” is a subjective weighting that includes both “Difficulty” and 
“Yield.” The three are included for balance. However, discussion with the problem owners 
may indicate that they feel “Yield,” for example, is more important since benefit to the 

 



company outweighs the difficulty of solving the problem. Or it may be that time is a critical 
factor in providing results and needs to be included as a weighted factor. (Such a column 
might hold the ranks for the question, “Which of these two will be the quickest to solve?”) 

 
 

 

The final ranking is made in two stages. First, multiplying the value in each column by the 
weighting for that column creates a score. For this reason it is critical to construct the 
questions for each column so that the “best” answer is always the highest or the lowest 
number in all columns. Whichever method you chose, this ranks the scores from highest 
to lowest (or lowest to highest as appropriate). 

 

 
 

 

If completed as described, this matrix represents the best selection and optimum ranking 
of the problems to solve that can be made. Note that this may not be the absolute best 
selection and ranking—just the best that can be made with the resources and judgments 
available to you. 

 

 
 

 

Generating real-world matrixes can become fairly complex, especially if there are many 
problems and several problem owners. Making a full pairwise comparison of a real-world 
matrix having many problems is usually not possible due to the number of comparisons 
involved. For sizeable problems there are a number of ways of dealing with this 
complexity. A good primer on problem exploration techniques is The Thinker’s Toolkit by 
Morgan D. Jones (see Further Reading). This mainly focuses on decision making, but 
several techniques are directly applicable to problem exploration. 

 

 
 

 

Automated help with the problem ranking process is fairly easy to find. Any modern 
computer spreadsheet program can help with the rankings, and several decision support 
software packages also offer help. However, new decision support programs are 
constantly appearing, and existing ones are being improved and modified, so that any list 
given here is likely to quickly become out of date. As with most other areas of computer 
software, this area is constantly changing. There are several commercial products in this 
area, although many suitable programs are available as shareware. A search of the 
Internet using the key words “decision support” reveals a tremendous selection. It is 
probably more important that you find a product and method that you feel comfortable 
with, and will actually use, than it is to focus on the particular technical merits of individual 
approaches and products. 

 

 

 

 1.1.2  Stage 2: Exploring the Solution Space  
 
 

 

After discovering the best mix of precisely defined problems to solve, and ranking them 
appropriately, does the miner now set out to solve them? Not quite. Before trying to find a 
solution, it helps to know what one looks like! 

 

 
 

 

Typical outputs from simple data exploration projects include a selection from some or all 
of the following: reports, charts, graphs, program code, listings of records, and algebraic 
formulae, among others. What is needed is to specify as clearly and completely as 

 



possible what output is desired (Figure 1.4). Usually, many of the problems share a 
common solution. 

 

 

 

 

 

 
 

 Figure 1.4 Exactly how does the output fit into the solution space?  

   
 
 

 

For example, if there are a range of problems concerning fraudulent activity in branch 
offices, the questions to ask may include: What are the driving factors? Where is the 
easiest point in the system to detect it? What are the most cost-effective measures to stop 
it? Which patterns of activity are most indicative of fraud? And so on. In this case, the 
solution (in data exploration terms) will be in the form of a written report, which would 
include a listing of each problem, proposed solutions, and their associated rankings. 

 

 
 

 

If, on the other hand, we were trying to detect fraudulent transactions of some sort, then a 
solution might be stated as “a computer model capable of running on a server and 
measuring 700,000 transactions per minute, scoring each with a probability level that this 
is fraudulent activity and another score for confidence in the prediction, routing any 
transactions above a specific threshold to an operator for manual intervention.” 

 

 
 

 

It cannot be emphasized enough that in the Solution Space Exploration stage, the 
specified solution must be precise and complete enough that it actually specifies a 
real-world, implementable solution to solve the problem. Keep in mind that this 
specification is needed for the data exploration process, not data mining. Data mining 
produces a more limited result, but still one that has to fit into the overall need. 

 

 
 

 

A company involved in asset management of loan portfolios thought that they had made a 
precise solution statement by explaining that they wanted a ranking for each portfolio 
such that a rational judgment could be made as to the predicted performance. This 
sounds like a specific objective; however, a specific objective is not a solution 
specification. 

 

 
 



 

The kind of statement that was needed was something more like “a computer program to 
run on a Windows NT workstation terminal that can be used by trained operators and that 
scores portfolios and presents the score as a bar graph . . .” and so on. The point here is 
that the output of the data exploration process needed to be made specific enough so that 
the solution could be practically implemented. Without such a specific target to aim at, it is 
impossible to mine data for the needed model that fits with the business solution. (In 
reality, the target must be expected to move as a project continues, of course. But the 
target is still needed. If you don’t know what you’re aiming at, it’s hard to know if you’ve hit 
it!) 

 

 
 

 

Another company wanted a model to improve the response to their mailed catalogs. 
Discovering what they really needed was harder than creating the model. Was a list of 
names and addresses needed? Simply a list of account numbers? Mailing labels 
perhaps? How many? How was response to be measured? How was the result to be 
used? It may seem unlikely, but the company had no clear definition of a deliverable from 
the whole process. They wanted things to improve in general, but would not be pinned 
down to specific objectives. It was even hard to determine if they wanted to maximize the 
number of responses for a given mailing, or to maximize the value per response. (In fact, 
it turned out—after the project was over—that what they really wanted to do was to 
optimize the value per page of the catalog. Much more effective models could have been 
produced if that had been known in advance! As it was, no clear objective was defined, so 
the models that were built addressed another problem they didn’t really care about.) 

 

 
 

 
The problems and difficulties are compounded enormously by not specifying what 
success looks like in practice. 

 

 
 

 

For both the problem and the solution exploration it is important to apply ambiguity 
resolution. This is the technique that is used to test that what was conceived as a problem 
is what was actually addressed. It also tests that what is presented as a solution is what 
was really wanted by the problem owners. Ambiguity resolution techniques seek to 
pinpoint any misunderstandings in communication, reveal underlying assumptions, and 
ensure that key points and issues are understood by everyone involved. Removing 
ambiguity is a crucial element in providing real-world data exploration. 

 

 

 

 1.1.3  Stage 3: Specifying the Implementation Method  
 
 

 
At this point, problems are generated and ranked, solutions specified, expectations and 
specifications matched, and hidden assumptions revealed. 

 

 
 

 

However, no data exploration project is conducted just to discover new insights. The point 
is to apply the results in a way that increases profitability, improves performance, 
improves quality, increases customer satisfaction, reduces waste, decreases fraud, or 
meets some other specified business goal. This involves what is often the hardest part of 
any successful data exploration project—modifying the behavior of an organization. 

 

 



 

 

In order to be successful, it is not enough to simply specify the results. Very successful 
and potentially valuable projects have died because they were never seriously 
implemented. Unless everyone relevant is involved in supporting the project, it may not be 
easy to gain maximum benefit from the work, time, and resources involved. 

 

 
 

 

Implementation specification is the final step in detailing how the various solutions to 
chosen problems are actually going to be applied in practice. This details the final form of 
the deliverables for the project. The specification needs to be a complete practical 
definition of the solution (what problem it addresses, what form it takes, what value it 
delivers, who is expected to use it, how it is produced, limitations and expectations, how 
long it is expected to last) and to specify five of the “six w’s”: who, how, what, when, and 
where (why is already covered in the problem specification). 

 

 
 

 

It is critical at this point to get the “buy-in” of both “problem owners” and “problem holders.” 
The problem owners are those who experience the actual problem. The problem holders 
are those who control the resources that allow the solution to be implemented. The 
resources may be in one or more of various forms: money, personnel, time, or corporate 
policy, to name only a few. To be effective, the defined solution must be perceived to be 
cost-effective and appropriate by the problem holder. Without the necessary commitment 
there is little point in moving further with the project. 

 

 

 

 1.1.4  Stage 4: Mining the Data  
 
 

 

Geological mining (coal, gold, etc.) is not carried out by simply applying mining equipment 
to a lump of geology. Enormous preparation is made first. Large searches are made for 
terrain that is geologically likely to hold whatever is to be mined. When a likely area is 
discovered, detailed surveys are made to pinpoint the most likely location of the desired 
ore. Test mines are dug before the full project is undertaken; ore is assayed to determine 
its fineness. Only when all of the preparation is complete, and the outcome of the effort is 
a foregone conclusion, is the full-scale mining operation undertaken. 

 

 
 

 

So it should be with mining data. Actually mining the data is a multistep process. The first 
step, preparation, is a two-way street in which both the miner is prepared and the data is 
prepared. It is not, and cannot be, a fully autonomous process since the objective is to 
prepare the miner just as much as it is to prepare the data. Much of the actual data 
preparation part of this first and very important step can be automated, but miner 
interaction with the data remains essential. Following preparation, the survey. For 
effective mining this too is most important. It is during the survey that the miner 
determines if the data is adequate—a small statement with large ramifications, and more 
fully explored in Chapter 11. 

 

 
 

 
When the preparation and survey are complete, actually modeling the data becomes a 
relatively small part of the overall mining effort. The discovery and insight part of mining 

 



comes during preparation and surveying. Models are made only to capture the insights 
and discoveries, not to make them. The models are built only when the outcome is a 
foregone conclusion. 

 

 

 Preparing the Data for Modeling  
 
 

 

Why prepare data? Why not just take it as it comes? The answer is that preparing data 
also prepares the miner so that when using prepared data, the miner produces better 
models, faster. 

 

 
 

 

Activities that today come under the umbrella of the phrase “data mining” actually have 
been used for many years. During that time a lot of effort has been put forth to apply a 
wide variety of techniques to data sets of many different types, building both predictive 
and inferential models. Many new techniques for modeling have been developed over that 
time, such as evolution programming. In that same time other modeling tools, such as 
neural networks, have changed and improved out of all recognition in their capabilities. 
However, what has not changed at all, and what is almost a law of nature, is 
GIGO—garbage in, garbage out. Keeping that now-popular aphorism firmly in mind leads 
logically to the observation that good data is a prerequisite for producing effective models 
of any type. 

 

 
 

 

Unfortunately, there is no such thing as a universal garbage detector! There are, however, 
a number of different types of problems that constantly recur when attempting to use data 
sets for building the types of models useful in solving business problems. The source, 
range, and type of these problems, the “GI” in GIGO, are explored in detail starting in 
Chapter 4. Fortunately, there are a number of these problems that are more or less easily 
remedied. Some remedies can be applied automatically, while others require some 
choices to be made by the miner, but the actual remedial action for a wide range of 
problems is fairly well established. Some of the corrective techniques are based on 
theoretical considerations, while others are rules of thumb based on experience. The 
difficulty is in application. 

 

 
 

 

While methodologies and practices that are appropriate for making models using various 
algorithms have become established, there are no similar methodologies or practices for 
using data preparation techniques. Yet good data preparation is essential to practical 
modeling in the real world. 

 

 
 

 

The data preparation tools on the accompanying CD-ROM started as a collection of 
practical tools and techniques developed from experience while trying to “fix” data to build 
decent models. As they were developed, some of them were used over and over on a 
wide variety of modeling projects. Their whole purpose was to help the miner produce 
better models, faster than can be done with unprepared data, and thus assure that the 
final user received cost-effective value. This set of practical tools, in the form of a 
computer program, and a technique of applying the program, must be used together to 

 



get their maximum benefit, and both are equally important. The accompanying 
demonstration software actually carries out the data manipulations necessary for data 
preparation. The technique is described as the book progresses. Using this technique 
results in the miner understanding the data in ways that modeling alone cannot reveal. 
Data preparation is about more than just readying the data for application of modeling 
tools; it is also about gaining the necessary insights to build the best possible models to 
solve business problems with the data at hand. 

 
 

 

One objective of data preparation is to end with a prepared data set that is of maximum 
use for modeling, in which the natural order of the data is least disturbed, yet that is best 
enhanced for the particular purposes of the miner. As will become apparent, this is an 
almost totally different sort of data preparation activity than is used, say, in preparing data 
for data warehousing. The objective, techniques, and results used to prepare data when 
mining are wholly different. 

 

 

 

 The Prepared Information Environment (PIE)  
 
 

 

A second objective of data preparation is to produce the Prepared Information 
Environment (PIE). The PIE is an active computer program that “envelops” the modeling 
tools to protect them from damaged and distorted data. The purpose and use of this very 
important tool in modeling is more fully described in Chapter 3. Its main purposes are to 
protect the modeling tool from damaged data and to maximally expose the data set’s 
information content to the modeling tool. One component, the Prepared Information 
Environment Input module (PIE-I) does this by acting as an intelligent buffer between the 
incoming data, manipulating the training, testing, and execution data sets before the 
modeling tool sees the data. Since even the output prediction variables are prepared by 
the PIE-I, any model predictions are predictions of the prepared values. The predictions of 
prepared values need to be converted back into their unmodified form, which is done by 
the Prepared Information Environment Output module (PIE-O). 

 

 
 

 

A clear distinction has to be made between the training and testing data set, and the 
execution data set. On some occasions the training, testing, and execution data sets may 
all be drawn from the same “pool” of data that has been assembled prior to modeling. On 
other occasions the execution data may be impossible to obtain at the time of modeling. 
In the case of industrial modeling, for instance, it may be required to build a model that 
predicts likely time to failure for a manufactured component based on the manufacturing 
information collected as it is manufactured. The model, when built, validated, and verified, 
will be placed in service to monitor future production. However, at the time the model is 
being built, using already collected data, the data on next month’s or next year’s 
production is impossible to acquire. The same is true for stock market data, or insurance 
claims data, for instance, where the model is built on data already collected, but applied to 
future stock movements or insurance claims. 

 

 
 

 In the continuously learning model described in the Supplemental Material section at the  
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end of this chapter, the actual data to be used for mailing was not available until it was 
acquired specifically for the mailing. The model built to predict likely responders to the 
mailing solicitation was built before the mailing data was available. The initial mailing 
response model was built on information resulting from previous mailings. It was known 
that the characteristics of the variables (described in Chapter 2) for the training data that 
was available were similar to those in the actual mailing data set—even though the 
precise data set for the mailing had not been selected. 

 
 

 

In general, preparation of the data for modeling requires various adjustments to be made 
to the data prior to modeling. The model produced, therefore, is built using adjusted, 
prepared data. Some mechanism is needed to ensure that any new data, especially data 
to which the model is to be applied, is also adjusted similarly to the training data set. If this 
is not done, the model will be of no value as it won’t work with raw data, only with data 
similarly prepared to that used for training. 

 

 
 

 

It is the PIE that accomplishes this transformation. It may perform many other useful tasks 
as well, such as novelty detection, which measures how similar the current data is to that 
which was used for training. The various tasks and measures are discussed in detail in 
various parts of the book. However, a principal purpose of the PIE is to transform 
previously unencountered data into the form that was initially used for modeling. (This is 
done by the PIE-I.) 

 

 
 

 

Notable too is that a predictive model’s output variable(s), the one(s) that the model is 
trying to predict or explain, will also have been in its adjusted format, since the model was 
trying to predict or explain it in a prepared data set. The PIE also will transform the 
prepared and normalized model output into the experiential range encountered in the data 
before preparation—in other words, it undoes the transformations for the predicted values 
to get back the original range and type of values for the predicted output. (This is 
accomplished by the PIE-O.) 

 

 
 

 
While the PIE adds great value in many other areas, its main function is allowing models 
trained on prepared data to be used on other data sets. 

 

 
 

 

For one-shot modeling, where all of the data to be modeled and explained is present, the 
PIE’s role is more limited. It is simply to produce a file of prepared data that is used to 
build the model. Since the whole of the data is present, the role of the PIE is limited to 
translating the output variables from the predicted adjusted value to their predicted actual 
expected value. 

 

 
 

 

Thus, the expected output from the data preparation process is threefold: first, a prepared 
miner, second, a prepared data set, and third, the PIE, which will allow the trained model 
to be applied to other data sets and also performs many valuable ancillary functions. The 
PIE provides an envelope around the model, both at training and execution time, to 
insulate the model from the raw data problems that data preparation corrects. 
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 Surveying the Data  
 
 

 

Surveying the prepared data is a very important aspect of mining. It focuses on answering 
three questions: What’s in the data set? Can I get my questions answered? Where are the 
danger areas? These questions may seem similar to those posed by modeling, but there 
is a significant difference. 

 

 
 

 

Using the survey to look at the data set is different in nature from the way modeling 
approaches the data. Modeling optimizes the answer for some specific and particular 
problem. Finding the problem or problems that are most appropriate is what the first stage 
of data exploration is all about. Providing those answers is the role of the modeling stage 
of data mining. The survey, however, looks at the general structure of the data and 
reports whether or not there is a useful amount of information enfolded in the data set 
about various areas. The survey is not really concerned with exactly what that information 
might be—that is the province of modeling. A most particular purpose of the survey is to 
find out if the answer to the problem that is to be modeled is actually in the data prior to 
investing much time, money, and resource in building the model. 

 

 
 

 

The survey looks at all areas of the data set equally to make its estimate of what 
information is enfolded in the data. This affects data preparation in that such a survey may 
allow the data to be restructured in some way prior to modeling, so that it better addresses 
the problem to be modeled. 

 

 
 

 

In a rich data set the survey will yield a vast amount of insight into general relationships 
and patterns that are in the data. It does not try to explicate them or evaluate them, but it 
does show the structure of the data. Modeling explores the fine structure; survey reveals 
the broad structure. 

 

 
 

 

Given the latter fact, the search for danger areas is easier. An example of a danger area 
is where some bias is detectable in the data, or where there is particular sparsity of data 
and yet variables are rapidly changing in value. In these areas where the relationship is 
changing rapidly, and the data do not describe the area well, any model’s performance 
should be suspect. Perhaps the survey will reveal that the range in which the model 
predictions will be important is not well covered. 

 

 
 

 

All of these areas are explored in much more detail in Chapter 11, although the 
perspective there is mainly on how the information provided by the survey can be used for 
better preparing the data. However, the essence of the data survey is to build an overall 
map of the territory before committing to a detailed exploration. Metaphorically speaking, 
it is of immense use to know where the major mountain ranges, rivers, lakes, and deserts 
are before setting off on a hiking expedition. It is still necessary to make the detailed 
exploration to find out what is present, but the map is the guide to the territory. 
Vacationers, paleontologists, and archeologists all use the same basic topographic map 
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to find their way to sites that interest them. Their detailed explorations are very different 
and may lead them to each make changes to the local, or fine, structure of their individual 
maps. However, without the general map it would be impossible for them to find their way 
to likely places for a good vacation site, dinosaur dig, or an ancient city. The general 
map—the data survey—shows the way. 

 

 

 Modeling the Data  
 
 

 

When considering data mining, even some of the largest companies in the U.S. have 
asked questions whose underlying meaning was, “What sort of problems can I solve with 
a neural net (or other specific technique)?” This is exactly analogous to going to an 
architect and asking, “What sort of buildings can I build with this power saw (or other tool 
of your choice)?” The first question is not always immediately seen as irrelevant, whereas 
the second is. 

 

 
 

 

Some companies seem to have the impression that in order to produce effective models, 
knowledge of the data and the problem are not really required, but that the tools will do all 
the work. Where this myth came from is hard to imagine. It is so far from the truth that it 
would be funny if it were not for the fact that major projects have failed entirely due to 
ignorance on the part of the miner. Not that the miner was always at fault. If ordered to 
“find out what is in this data,” an employee has little option but to do something. No one 
who expected to achieve anything useful would approach a lump of unknown substance, 
put on a blindfold, and whack at it with whatever tool happened to be at hand. Why this is 
thought possible with data mining tools is difficult to say! 

 

 
 

 

Unfortunately, focusing on the data mining modeling tools as the primary approach to a 
problem often leads to the problem being formulated in inappropriate ways. Significantly, 
there may be times when data mining tools are not the right ones for the job. It is worth 
commenting on the types of questions that are particularly well addressed with a 
data-mined model. These are the questions of the “How do I . . . ?” and “Why is it 
that . . . ?” sort. 

 

 
 

 

For instance, if your questions are those that will result in summaries, such as “What were 
sales in the Boston branch in June?” or “What was the breakdown by shift and product of 
testing failures for the last six weeks?” then these are questions that are well addressed 
by on-line analytical processing (OLAP) tools and probably do not need data mining. If 
however, the questions are more hypothesis driven, such as “What are the factors driving 
fraudulent usage in the Eastern sector?” or “What should be my target markets and what 
is the best feature mix in the marketing campaign to capture the most new customers?” 
then data mining, used in the context of a data exploration process, is the best tool for the 
job. 

 

 

 

 1.1.5  Exploration: Mining and Modeling  
 
 



 

This brief look at the process of data exploration emphasizes that none of the pieces stands 
alone. Problems need to be identified, which leads to identifying potential solutions, which 
leads to finding and preparing suitable data that is then surveyed and finally modeled. Each 
part has an inextricable relationship to the other parts. Modeling, the types of tools and the 
types of models made, also has a very close relationship with how data is best prepared, and 
before leaving this introduction, a first look at modeling is helpful to set the frame of 
reference for what follows. 

 

 
1.2  Data Mining, Modeling, and Modeling Tools  
 
 

 

One major purpose for preparing data is so that mining can discover models. But what is 
modeling? In actual fact, what is being attempted is very simple. The ways of doing it may 
not be so simple, but the actual intent is quite straightforward. 

 

 
 

 

It is assumed that a data set, either one immediately available or one that is obtainable, 
might contain information that would be of interest if we could only understand what was 
in it. Therein lies the rub. Since we don’t understand the information that is in the data just 
by looking at it, some tool is needed that will turn the information enfolded in the data set 
into a form that is understandable. That’s all. That’s the modeling part of data mining—a 
process for transforming information enfolded in data into a form amenable to human 
cognition. 

 

 

 

 1.2.1  Ten Golden Rules  
 
 

 

As discussed earlier in this chapter, the data exploration process helps build a framework 
for data mining so that appropriate tools are applied to appropriate data that is 
appropriately prepared to solve key business problems and deliver required solutions. 
This framework, or one similar to it, is critical to helping miners get the best results and 
return from their data mining projects. In addition to this framework, it may be helpful to 
keep in mind the 10 Golden Rules for Building Models: 

 

 
 

  1.  Select clearly defined problems that will yield tangible benefits.  
 
 

  2.  Specify the required solution.  
 
 

  3.  Define how the solution delivered is going to be used.  
 
 

  4.  Understand as much as possible about the problem and the data set (the domain).  
 
 

  5.  Let the problem drive the modeling (i.e., tool selection, data preparation, etc.).  
 
 

  6.  Stipulate assumptions.  
 
 

  7.  Refine the model iteratively.  
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  8.  Make the model as simple as possible—but no simpler.  
 
 

  
9. 

 
Define instability in the model (critical areas where change in output is drastically 
different for a small change in inputs). 

 

 
 

  
10.

 
Define uncertainty in the model (critical areas and ranges in the data set where the 
model produces low confidence predictions/insights). 

 

 
 

 

In other words, rules 1–3 recapitulate the first three stages of the data exploration 
process. Rule 4 captures the insight that if you know what you’re doing, success is more 
likely. Rule 5 advises to find the best tool for the job, not just a job you can do with the 
tool. Rule 6 says don’t just assume, tell someone. Rule 7 says to keep trying different 
things until the model seems as good as it’s going to get. Rule 8 means KISS (Keep It 
Sufficiently Simple). Rules 9 and 10 mean state what works, what doesn’t, and where 
you’re not sure. 

 

 
 

 

To make a model of data is to express the relationships that change in one variable, or set 
of variables, has on another variable or set of variables. Another way of looking at it is that 
regardless of the type of model, the aim is to express, in symbolic terms, the shape of how 
one variable, or set of variables, changes when another variable or set of variables 
changes, and to obtain some information about the reliability of this relationship. The final 
expression of the relationship(s) can take a number of forms, but the most common are 
charts and graphs, mathematical equations, and computer programs. Also, different 
things can be done with each of these models depending on the need. Passive models 
usually express relationships or associations found in data sets. These may take the form 
of the charts, graphs, and mathematical models previously mentioned. Active models take 
sample inputs and give back predictions of the expected outputs. 

 

 
 

 

Although models can be built to accomplish many different things, the usual objective in 
data mining is to produce either predictive or explanatory (also known as inferential) 
models. 

 

 

 

 1.2.2  Introducing Modeling Tools  
 
 

 

There are a considerable variety of data mining modeling tools available. A brief review of 
some currently popular techniques is included in Chapter 12, although the main focus of 
that chapter is the effect of using prepared data with different modeling techniques. 
Modeling tools extend analysis into producing models of several different types, some 
mentioned above and others examined in more detail below. 

 

 
 

 

Data mining modeling tools are almost uniformly regarded as software programs to be run 
on a computer and that perform various translations and manipulations on data sets. 
These are indeed the tools themselves, but it does rather leave out the expertise and 
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domain knowledge needed to successfully use them. In any case, there are a variety of 
support tools that are also required in addition to the so-called data mining tools, such as 
databases and data warehouses, to name only two obvious examples. Quite often the 
results of mining are used within a complex and sophisticated decision support system. 
Close scrutiny often makes problematic a sharp demarcation between the actual data 
mining tools themselves and other supporting tools. For instance, is presenting the results 
in, say, an OLAP-type tool part of data mining, or is it some other activity? 

 
 

 

In any case, since data mining is the discovery of patterns useful in a business situation, 
the venerable tools of statistical analysis may be of great use and value. The demarcation 
between statistical analysis and data mining is becoming somewhat difficult to discern 
from any but a philosophical perspective. There are, however, some clear pointers that 
allow determination of which activity is under way, although the exact tool being used may 
not be indicative. (This topic is also revisited in Chapter 12.) 

 

 
 

 

Philosophically and historically, statistical analysis has been oriented toward verifying and 
validating hypotheses. These inquiries, at least recently, have been scientifically oriented. 
Some hypothesis is proposed, evidence gathered, and the question is put to the evidence 
whether the hypothesis can reasonably be accepted or not. Statistical reasoning is 
concerned with logical justification, and, like any formal system, not with the importance or 
impact of the result. This means that, in an extreme case, it is quite possible to create a 
result that is statistically significant—and utterly meaningless. 

 

 
 

 

It is fascinating to realize that, originally, the roots of statistical analysis and data mining 
lie in the gaming halls of Europe. In some ways, data mining follows this heritage more 
closely than statistical analysis. Instead of an experimenter devising some hypothesis and 
testing it against evidence, data mining turns the operation around. Within the parameters 
of the data exploration process, data mining approaches a collection of data and asks, 
“What are all the hypotheses that this data supports?” There is a large conceptual 
difference here. Many of the hypotheses produced by data mining will not be very 
meaningful, and some will be almost totally disconnected from any use or value. Most, 
however, will be more or less useful. This means that with data mining, the inquirer has a 
fairly comprehensive set of ideas, connections, influences, and so on. The job then is to 
make sense of, and find use for, them. Statistical analysis required the inquirer first to 
devise the ideas, connections, and influences to test. 

 

 
 

 

There is an area of statistical analysis called “exploratory data analysis” that approaches 
the previous distinction, so another signpost for demarcation is useful. Statistical analysis 
has largely used tools that enable the human mind to visualize and quantify the 
relationships existing within data in order to use its formidable pattern-seeking 
capabilities. This has worked well in the past. Today, the sheer volume of data, in 
numbers of data sets, let alone quantity of data, is beyond the ability of humans to sift for 
meaning. So, automated solutions have been called into play. These automated solutions 
draw largely on techniques developed in a discipline known as “machine learning.” In 

 



essence, these are various techniques by which computerized algorithms can, to a 
greater or lesser degree, learn which patterns actually do exist in data sets. They are not 
by any means as capable as a trained human mind, educated in the knowledge domain, 
would be. They are, however, formidably fast (compared to humans), tireless, consistent, 
and error-free for a particular class of errors. They are error-free in the sense that, once 
validated that they are indeed performing accurately, the output is consistent. Judgments 
about what the outputs mean remain firmly in the human domain. That is to say, while 
decisions as to particular actions to be taken under given circumstances can be 
programmed algorithmically, humans had to either explicitly program such switch points 
or permit the program to train and learn them. No amount of artificial intelligence reaches 
the level of sophistication represented by even human stupidity! In fact, appearances to 
the contrary, computer programs still cannot make self-motivated, intentional decisions. 

 
 

 

Regardless of their source and how they are used (or misused), the function and purpose 
of modeling tools is actually very straightforward. It is to transform any of the required 
knowledge enfolded in a particular data set into a form useful to, or comprehensible by, 
humans. It may be both useful and comprehensible, but this is not necessarily so. 

 

 
 

 

In marketing applications, for instance, models often have to be created where 
comprehensibility is not an issue. The marketing manager simply wants a model that 
delivers more, or more valuable, leads, customers, or orders. Why such a model works is 
not an issue, at least not until someone asks, “Why does that market segment produce 
better results?” A specific instance of this occurred with a company concerned with 
providing college students with funding to attend college. It had long been their practice to 
mail solicitations to people they felt would be appropriate candidates somewhat before the 
end of the school year, assuming that was the time when people were considering which 
college to attend and applying for financial aid. In order to investigate this further, 
marketing response models were made with a variety of their assumptions altered for a 
small subset of the mailing. Analysis of the results indicated strongly that mailing 
immediately following the end of the school year showed a stronger response. This 
seemed so counterintuitive to the marketers that they found it hard to accept and 
immediately asked why this was so. At this point a variety of different models drawing on 
different data sets had to be built to explore the question. (It turned out that, for the 
population segment for which this response was valid, colleges were explored first and 
the earlier solicitation had been thrown away as unwanted “junk mail” by the time financial 
aid for school was being considered. Early mailing meant that they weren’t in the running 
for that segment of the population.) 

 

 
 

 This leads to consideration of the types of models that are used.  
 

 

 1.2.3  Types of Models  
 
 

 
After conducting a data exploration project and stipulating the problem set, solution set, 
and implementation strategies, preparing the data, surveying it, then selecting algorithms 

 



for the purpose, there still remains the process of building models and delivering the 
results. 

 
 

 

First, a brief observation about modeling in general. A misconception of inexperienced 
modelers is that modeling is a linear process. This imagined linear process can be shown 
as 

 

 
 

  1.  State the problem.  
 
 

  2.  Choose the tool.  
 
 

  3.  Get some data.  
 
 

  4.  Make a model.  
 
 

  5.  Apply the model.  
 
 

  6.  Evaluate results.  
 
 

 

On the contrary, building any model should be a continuous process incorporating several 
feedback loops and considerable interaction among the components. Figure 1.5 gives a 
conceptual overview of such a process. At each stage there are various checks to ensure 
that the model is in fact meeting the required objectives. It is a dynamic process in which 
various iterations converge toward the best solution. There is naturally a fair amount of 
human interaction and involvement in guiding the search for an optimum solution. 

 

 

 

 

 

 

 
 

 Figure 1.5 Model building outline.  

   
 
 

 The various types of models were briefly touched on previously, but discussing them  



together helps clarify their similarities and differences. 
 

 

 1.2.4  Active and Passive Models  
 
 

 
Basically, active models actually respond in some way, whereas passive models are 
nonreactive. 

 

 
 

 

Passive models generally answer questions and show relationships using charts, graphs, 
words, mathematical formulae, and so on. The example above describing why some 
college applicants respond better to late mailings was a passive model. It explicated in an 
understandable way the “why” of the relationship. It was “actionable information” in that, 
as a result, better marketing plans can be made and characteristics of the targeted 
population can be identified. A model is passive in that it does not take inputs, give 
outputs, change, react, or modify anything as it is used. It is simply a fixed expression, 
such as a statement on a piece of paper. 

 

 
 

 

On the other hand, an active model performs one or more activities. An active model built 
for the college loan application, for instance, might take a specific input file and score or 
categorize it as to the type of response to be expected for each instance (record) in the 
file. 

 

 
 

 

The differentiation between active and passive models may be critical to the modeler and 
to the application. It will have a considerable effect on which data is selected for modeling. 
However, when preparing the selected data set, the difference between active and 
passive model requirements has little if any impact on how the data is further prepared for 
modeling. 

 

 

 

 1.2.5  Explanatory and Predictive Models  
 
 

 

Here, of course, the one type of model is created to explain some facet of the data, while 
the other is designed to predict, classify, or otherwise interpret data. These are not 
synonymous with active and passive. 

 

 
 

 

On occasion, particularly in the arena of industrial automation, the required output from 
the modeling process is a passive, predictive model. For instance, in a paper mill, where 
paper is made, the key parts of the process were captured in the shift foreman’s 
experience. At shift change, the new foreman, who had enormous experience, would 
make various adjustments based on such measures as the taste of the process (actually 
tasting the slurry as a means of measuring what was happening in the mixture) at a 
particular stage. Each foreman knew how to tune the process to produce fine paper. Each 
foreman knew what was going wrong when indeed things were going wrong, and how to 
fix them. Yet each foreman’s recipe was different! 

 

 
 

 The business problem here was that automating such a process seemed impossible. The  
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“rules” for making paper were embedded in the shift foremen’s heads, and extracting a 
useful set of rules by questioning them, although tried, proved impossible. Instead of 
studying the experts (shift foremen), the modeling approach was to instrument the paper 
mill, collect data about the process, analyze the collected data, and model the process. 
This type of approach is called automated expertise capture. This process involves 
watching and modeling what an expert actually does rather than questioning the expert to 
create a model. 

 
 

 

It took considerable effort, but eventually successful passive predictive models were 
produced in the form of mathematical statements. These mathematical statements 
described how the process behaved, and how its behavior changed as conditions 
changed. To automate the paper-making process, these mathematical statements were 
turned into a particular sort of programming language called “ladder logic,” which is widely 
used in programmable logic controllers (PLCs). The passive, explanatory model was used 
to create the program for the PLCs. It essentially captured the expertise of the foremen 
and encapsulated it in succinct expressions. These, in turn, were used in machine and 
process automation. 

 

 
 

 

Without giving detailed examples of each model type (which would properly belong in a 
book on modeling rather than data preparation), it can be easily seen that it is quite 
possible to have active-explanatory, passive-explanatory, active-predictive, or 
passive-predictive models. 

 

 
 

 

Passive-predictive models can be exemplified in the “score cards” used to score certain 
credit applicants. These are really worksheets that loan officers can use. Modeling 
techniques have been used to improve the performance of such devices. The output is a 
fixed, passive worksheet printed on a form. It is, nonetheless, used as a predictive and 
classification tool by the user. However, note that the output of the modeling technique 
used is passive predictive. 

 

 

 

 1.2.6  Static and Continuously Learning Models  
 
 

 

This is an interesting and important division of modeling that deserves a closer look, 
particularly the continuously learning models. These hold enormous promise for the 
application of the sophisticated techniques outlined here. 

 

 

 

 Static (One-Shot) Models  
 
 

 

Static modeling is used to discover relationships or answer questions that are drawn from 
historical data. In point of fact, all data is historical. (If you have future data about, say, the 
stock market, please let me know!) However, in this context “historical” data can be taken 
to mean that the data set from which the model is built is not going to be updated with 
more current data. Questions leading to the building of static models might be similar to 
“What factors drive the failure modes in disk drive manufacture?” Once the failure modes 
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in manufacturing are analyzed, corrective action will be applied to fix problems, and that’s 
that. Naturally, the process will be monitored to find out how well the “fix” worked, but the 
data previously collected is no longer representative of production since changes were 
made based on the failure mode’s driving factors. If any further investigation into the 
problem is wanted, the historical data cannot address the new issues as systemic 
changes were made. New data representative of the modified system’s performance 
would have to be collected. 

 
 

 

Although pursuing answers to problems requiring static models can be a fairly complex 
undertaking and draw on the full resources of the tools available, as well as heavily relying 
on the experience of the modeler, producing the static models themselves is fairly 
straightforward. An answer in a fixed form, one that does not interact with data to modify 
itself, is the final solution. 

 

 
 

 

Inexperienced modelers frequently see the static model, or a series of static models, as 
how modeling should take place. While static models are certainly an appropriate solution 
for many problems, they are very prevalent even where more extensive techniques are 
more appropriate. We will now examine one alternative. 

 

 

 

 Continuously Learning Models  
 
 

 

These types of models represent a relatively hands-off, controlling, or discovering process 
working in dynamic conditions. Constructing a robust continuously learning model draws 
on resources from outside the domain of data exploration. The core, or enabling, 
technology, however, is data mining directed by the data exploration process. 

 

 
 

 

Continuous learning is a system using an autonomous model containing a number of 
internal set points. One natural example of such a system is a human being. We contain 
many set points that control our behavior, one of which is internal temperature. The 
internal temperature of a healthy human being is estimated at about 98.6º Fahrenheit. 
That temperature may be regarded as a set point. Our bodies seek to maintain a constant 
internal temperature in spite of external assaults. We may be motivated to make a number 
of internal and external environmental adjustments to, say, keep warm when the external 
temperature is falling. These include turning up the thermostat, putting on more clothes, 
shivering, having a hot drink, and possibly a whole host of other activities. All the time 
we’re actively manipulating the environment, both internal and external, to maintain the 
specific set point for internal temperature. It is exactly this type of behavior that is used in 
an artificially constructed, but still self-motivated model. 

 

 
 

 

In artificial continuously learning systems, the primary set points are always externally 
specified; natural continuously learning systems may evolve suitable set points. The 
system evaluates incoming data and modifies its behavior in such a way as to modify 
those parameters of its environment that are more or less under its control so that the 
system maintains the set points. It is a self-adaptive system adjusting in real time to a 

 



dynamic environment. It is continuously changing its internal structure to reflect its past 
experiences, and using those past experiences to modify its environment. If a 
continuously learning predictive model was given an identical input at different times, it 
may well produce totally different predictions—depending on what it had experienced, 
and the changes in its environment, in the interim. This is very different from a 
sequentially updated series of static models. The key is a continuous interaction between 
components. 

 
 

 

As far as data preparation is concerned, the preparatory activities carried out when 
making static models tend to be manual. When continuously learning systems are 
deployed, however, the PIE that permits continuous, automated data preparation 
becomes a vital part of the whole process. 

 

 
 

 

The easiest way to see what is involved in a continuously learning model is to examine a 
simplified actual application, and the Supplemental Material section at the end of this chapter 
briefly outlines a simplified application using a continuously learning model. 

 

 
1.3  Summary  
 
 

 

When discussing data mining, it is easy to think of the process only in terms of what 
various tools can do. This is exactly analogous to focusing on types of nails and what to 
do with them simply because a hammer collection is available. For sure, we will do 
different things with a 6-ounce ball-peen hammer, a 12-ounce claw hammer, and a 
14-pound sledgehammer. However, the object of the exercise may be to knock down a 
wall, construct a house, repair a car door, or drive a railroad spike. It is the nature of the 
job to be done that determines which tool to use—not the other way around. So it is too 
with data mining. To obtain effective results when mining, focusing on the tools is not 
enough. This chapter has looked from the “100,000-foot level” at the whole process of 
data exploration, giving a perspective of where data mining fits within the process, and 
how data preparation, modeling, and the other components of mining interact. Because 
modeling is so closely connected with data preparation, the chapter introduced various 
types of models commonly produced by miners. 

 

 
 

 

The key point is that data mining does not exist independently of the business problems that 
it needs to solve. Data mining exists to serve needs, in general the needs of a business user. 
The first thing to focus on is the business problem—what is the real problem, what does 
success look like? When that is established, then and only then is it time to select data and 
tools appropriate for the job. 

 

 
Supplemental Material  
 

 

 A Continuously Learning Model Application  
 
 

 A major credit card issuer in the United States wanted to try innovative and more effective  
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approaches for a solicitation program aimed at acquiring new customers. Several routes 
to market, including telemarketing and “take-one” programs, were used as well as direct 
mail. Additional marketing promotions, solicitations, and offer structures were included in 
the overall program, including balance transfer, affinity group marketing, and a variety of 
rates and payment terms. Most of this detail will not be included in this description. 
Although continuously learning models were used in all aspects of the solicitation, for 
clarity we will focus only on the direct mail portion. Before describing how a continuously 
learning model was built for this customer, it will be helpful to have a brief introduction to 
the significant considerations in credit card solicitations. 

 
 

 

Typically, a marketing solicitation program without continuously learning techniques 
involves selecting the mailing list, producing the mail piece, making a bulk mailing, 
receiving the responses, entering the responses, and approving or declining each 
responding applicant. In essence, the bulk of the mailing goes out all together as far as 
that is possible. In practice the mailing is usually of such quantity that it is often spread 
over a number of days. 

 

 
 

 

Since the mailing goes out, in effect, all at once, the response quickly builds to a 
maximum and then gradually tails off to a trickle. The sudden influx of responses 
necessitates hiring temporary staff, and renting office space and equipment for the staff, 
to cope with the sudden data entry workload. Federal requirements put great pressure on 
credit card issuers to “decision” an application—that is, to approve or decline the 
applicant—within a very short time period or face heavy financial penalties. The 
“decisioning” process involves studying credit references on all applicants, with the 
reference information almost invariably obtained from outside vendors. However, credit 
reference information can only legally be obtained for people who are actually offered 
credit. 

 

 
 

 

Furthermore, the national average response rate for an unsolicited mailing program is well 
under 3%. The approve/decline rate is difficult to generalize since usually a variety of 
groups are targeted and the approve/decline rate varies enormously depending on the 
group actually targeted. It was estimated that at the time of this program it cost about 
$140 to acquire a new credit card customer by direct mail. 

 

 

 

 How the Continuously Learning Model Worked  
 
 

 

The initial reaction of the company when approached with a discussion of the possibilities 
of data exploration was to say that they knew all about data mining, as they had bought a 
neural network package and one of their business analysts had built a model, but it didn’t 
work in their market. Fortunately, they were persuaded to consider the power of data 
exploration, not simply to mistake it for a PC-based neural network tool. 

 

 
 

 
For the purposes of this explanation it is not necessary to examine the problem and 
solution explorations. Suffice it to say that the credit card issuer was interested in reducing 

 



the overall cost of the program, lowering the cost per acquisition, and improving the 
quality of the applicants and users in ways that are discussed during the course of this 
example. 

 
 

 

An advantage of the traditional system of making a massive bulk mailing is that maximum 
return is felt shortly after the start date of the program. The bulk of new users who are 
going to respond typically have their credit cards activated within 60 days of program 
commencement. As discussed, this requires a considerable investment in temporary staff 
and facilities. The credit card issuer was willing to forgo this quick return for the proposed 
system that was designed to produce a steady stream of applicants at a preselected rate. 
The constancy in application level removed the need for, and cost of, temporary staff and 
facilities, allowing existing staff to cope with the flow rate. It also removed the sudden 
pressure on the “decisioning” process and additionally permitted the mailing to be 
routinized. Over the length of the program these changes alone saved a considerable 
amount of money for the card issuer. 

 

 
 

 

Although it was conceived as a whole, we will consider the simplified pieces of the 
continuously learning system as they become relevant. The system as a whole is larger 
than the model itself since the whole system also includes the environment in which the 
model operates. The system starts with what was labeled the “slush pile.” 

 

 
 

 

As was mentioned above, credit reference information can only be obtained for those 
people to whom credit is actually offered. In order that certain information can be obtained 
about people that the credit card company may wish to offer credit to, but has not yet 
done so, a method of “reservation numbers” was devised. Using this system, most of the 
information pertaining to a particular candidate (instance) is made available, but not the 
information about who it is. Thus you might know details such as education level, credit 
balance, number of children, marital status, and possibly well over 100 or more other 
demographic and sociographic measures. What you cannot know until an offer is made is 
name and address information, which makes it impossible to attach a record to an 
individual. In place of the missing information a unique key was supplied; called the 
“reservation number,” it allowed the credit information vendor to supply the relevant 
information when an offer of credit was to be made. The important point here is that it was 
possible to know a great deal about the population of potential new customers, but not to 
know specifically who they were until an offer was made. The information about the 
population was truly anonymous. 

 

 
 

 

The slush pile consisted of a large number of records (instances) of credit information 
identified by reservation number. The pool was maintained with a minimum of about 
1,000,000 records. As the records (instances) were “used,” that is, they had been 
selected and a solicitation made to them, the appropriate record was removed from the 
slush pile and replaced with a new, unsolicited credit record. 

 

 
 

 The continuously learning solicitation system began with the mailing process. A lot of  
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preparatory work was needed to build a PIE. A result of the data preparation process, the 
PIE is a model of the data that allows new data drawn from the same population that was 
used to create the model to be transformed in “real time” into a form appropriate to be 
modeled. Its purpose is to convert raw data into the selected form after manual 
involvement in data preparation has been completed. The PIE for this application was 
built from credit information similar to, but not used in, this application. 

 
 

 

Since there was no history of performance, the initial action was to make a random 
selection from the slush pile for the initial mailing. However, once responses from the 
initial mailing were received, it immediately became possible to begin building a model of 
who was likely to respond to the solicitation. 

 

 
 

 

Information about who had actually responded to the mailing was entered into a table. 
Using the information about who had been solicited and who had responded, a fully 
automatic modeling process built models segmenting those attributes most indicative of a 
response to the mailing. The key features of the continuously learning system were that 
modeling was fully automatic—with no human operator involvement—and that the 
response was automatically optimized based on feedback information. One of the set 
points was externally fixed within the system—that is, the number of responses required. 
Another set point was variable and selected for optimization—that is, response rate as a 
percentage of solicitations. The environmental parameters under the “control” of this 
piece of the system included the selection criteria from the slush pile—that is, the 
characteristics of the person to whom the offer was made. Also included in the 
environment was which offer to make from the variety available. Thus, optimal cross-sell 
of additional products was automatically built in. The system, on receiving feedback 
information about response, used the information to update its model of the current 
driving factors—that is, what was working best at that instant, incorporating changes 
produced by competing offers, market dynamics, or social changes in the real world. 

 

 
 

 

Fully automatic selection of the next batch to be mailed was made by the system based 
on the response model generated from previous mailings. The system automatically 
adjusted the number of solicitations to be mailed, based upon response levels, so that the 
right number of responses came back to meet the target selected in the project objectives.

 

 
 

 

The next stage in the process was that the applications were decisioned. This 
approve/decline information was entered into the system. The system now had additional 
factors in its environment to control—targeting not only people who would respond, but 
also those most likely to be approved. Once again, this model was automatically 
maintained, without human intervention, by the continuously learning system. 

 

 
 

 

Following this, additional automatic environmental controls were added. The first was 
added when pattern of use information became available. Many credit card issuers feel a 
strong preference toward customers who are not “convenience users,” those who pay the 
balance in full when requested and, thus, never generate revenue for the issuer in the 

 



form of interest payments. Another increase in the quality of the target potential 
customers resulted—those who would not only respond and be approved, but also would 
be profitable for the card issuer. Eventually, default and fraud were modeled and added 
into the selection process. 

 
 

 

This is a highly simplified description indeed. However, the system as described consists 
of four “sensors” feeding into a model continuously learning to recognize particular 
features in the environment—responsiveness, approval likeliness, convenience user 
tendency, and proclivity to default/fraud. The “environmental” parameters under the 
system’s control were the selection criteria for the 160 or so variables of the prospects in 
the slush pile, plus what products to offer each candidate. 

 

 
 

 

Some particularly notable features of this system were that, for the duration of the 
program, the internal structures of the various model elements changed—dramatically in 
some cases. That is to say, the key indicating factors of, for example, who was likely to 
respond to the solicitation were dramatically different at different times. (A competing offer 
from another company targeted much of the original population. Any static model would 
have been defeated. The continuously learning model simply moved its sights and kept 
right on producing. Some time later the company’s marketers discovered what was going 
on.) 

 

 
 

 

Clearly, any static model would have lost predictive power very quickly. The “half-life” of a 
static model, especially as market and economic conditions were changing rapidly, 
seemed to be about six weeks. While no full analysis of many of the underlying reasons 
for this shift was made, various economic, political, and social changes were happening 
during the solicitation period, from such things as the competing offer already mentioned, 
to a presidential election. Cursory examination of the parameter drift in the models 
indicated that these changes had an impact. In fact, competition from other credit card 
companies’ solicitation programs, targeting similar demographic and affinity groups, made 
for the most dramatic changes in the model. 

 

 
 

 

In addition to actively reacting to changing conditions in order to optimize return, various 
pieces of business intelligence were generated. There were, in fact, a variety of different 
offers made, such as gold cards, preapproved and non-preapproved cards, interest rates 
and terms, home equity loans, lines of credit, and so on. Although not specifically 
requested in the specification of the system, a response surface model built of the 
response pattern based on the actual offer revealed what it was about different offers that 
different groups found attractive. This allowed the company’s marketing organization to 
make adjustments to terms and conditions offered to increase the appeal of the 
solicitation. 

 

 
 

 

Although this is a very brief summary description of what a continuously learning model 
looks like in practice, it shows that it has a key place in a data miner’s toolkit. This particular 
model produced spectacular results. This system was able to achieve, among other things, 



response rates peaking over 10% (compared to an industry standard of well under 3%) and 
a greatly reduced acquisition cost (varying from time to time, of course, but under $75 at 
times compared to the client’s previous $140). Additional benefits gained might be described 
(from the credit card issuer’s viewpoint) as higher-quality customers—less likely to be 
convenience users or to default. 

 

 



 

Chapter 2: The Nature of the World and Its 

Impact on Data Preparation 

 

 

 

 Overview  
 
 

 

Data is explored to discover knowledge about the data, and ultimately, about the world. 
There are, however, some deep assumptions underlying this idea. It presupposes that 
knowledge is discoverable. In the case of using data mining as a tool for discovering 
knowledge, it presupposes that knowledge is discoverable in a collection of data. A 
reasonable assumption is that the discovered knowledge is to be usefully applied to the 
real world. It is therefore also assumed that the data to be mined does in fact have some 
persistent relationship to the world from which it was drawn. It is also assumed that any 
relationships that happen to be present in the assembled data can be meaningfully 
related back to real-world phenomena. 

 

 
 

 

These crucial assumptions underpinning data exploration and data mining are usually 
unstated. They do, however, have a major impact on the actual process of mining data, 
and they affect how data is prepared for mining. Any analysis of data that is made in the 
hope of either understanding or influencing the world makes these assumptions. To better 
understand why data is manipulated in the way that it is during data preparation, and to 
understand the effects of the manipulations, we need to closely examine the assumptions, 
the nature of what data is measuring, and define the terms “data,” “information,” and 
“knowledge.” 

 

 
 

 

Chapter 1 provided an overall framework for data exploration and put all of the components 
into perspective. This chapter will focus on the nature of the connection between the 
experiential world and the measurements used to describe it, how those measurements are 
turned into data, and how data is organized into data sets. Having created an organized 
representation of part of the world in a data set, we will also look at the nature and reasons 
for some of the adjustments, alterations, and reformatting that have to be applied to the data 
sets to prepare them for mining. 

 

 
2.1  Measuring the World  
 
 

 

The world is a place of unbelievable complexity. No matter how closely we look at some 
facet of the world, there is an infinite depth of detail. Yet our brains and minds construct 
meaningful (for us) simplicities from the stunning complexity that surrounds us. Using 
these simplicities we make representations of the world that we find useful, like lunch and 
banks. And using these simplicities, we can collect and record impressions about various 
facets of them, which we call data. It is this data that we then explore, at least with data 
mining, to understand something about the reality of the world—to discover information. 
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The data itself from which information is to be discovered, however rich and copious, is 
but a pale reflection of the real world. It doesn’t matter how much care is taken in 
examining the world and collecting data about it, reality is always more fluid, rich, and 
complex than any human can comprehend. Data never provides more than a pale and 
hazy shadow, a murky outline, of the true workings of the world. And yet this gossamer 
wisp is just enough for us to grasp at the edges of understanding. We may imagine that 
we control and manipulate the firm reality, but it is no more than a shadow of reality that is 
in our grasp. Understanding this, and understanding too the way that data connects to the 
world, is crucial for any data explorer. However powerful the exploring tools, or aggressive 
the explorer, nothing can be discovered that is beyond the limits of the data itself. 

 

 

 

 2.1.1  Objects  
 
 

 

This is not a philosophical treatise, and I will leave discussing the true nature of the world 
to philosophers. The world exists in a way that humans generally agree on. It consists of 
objects that we can identify, such as cars, trees, cost-of-living adjustments, cartons of 
milk, beams of light, gross national products, beauty, truth, and justice. For data 
exploration through data mining it is these objects that form the basic material of the world 
to be explored. These objects actually comprise the fundamental underpinning, or the 
interface, that connects the activities of mining to the real world. Data mining explores the 
relationships that exist between these objects. 

 

 
 

 

The precise definition of objects is another philosophical issue that need not concern 
miners. It is almost, if not actually, impossible to define what an object “really” is. It is also 
difficult or impossible to define the limits of an object precisely and unambiguously, since 
the world at very fine scale seems to appear as “shades of gray.” The miner takes a 
pragmatic view of the objects in the world, finding it unnecessary to define the actual 
objects and instead regarding an object as a collection of features about which 
measurements can be taken. 

 

 
 

 

A car, for instance, is accepted by the miner as a defined object. The car possesses 
certain measurable features, such as the number of wheels, number of seats, color, 
weight, number of cylinders, fuel consumption, and a host of others. These 
measurements are not necessarily fixed; for instance, weight will change if fuel is added. 
However, they can be defined and measured with sufficient accuracy for any particular 
purpose, and the features can be specified as needed, such as “weight of vehicle empty.”

 

 
 

 

Clearly, objects do not have to be physical. The cost of living is a non-physical object. It 
has a definition and features. The features of the cost of living can be measured, such as 
what it may be in dollars, its rate of change per month or year, what percentage of the 
mean or median income it represents, and so on. 

 

 
 

 Objects in the real world relate to and interact with each other. Living objects interact with  



the world in noticeable and familiar ways, such as eating and breathing. Even inanimate 
objects interact with the world. Rocks, for example, interact with the ground on which they 
rest at an atomic level, and so do not sink into it. Mountains are worn down by weather, 
and even continents interact with the core of the earth and drift about. The cost of living 
changes, as does the unemployment level—driven (we say) by the economy and 
marketplace. All of these interactions form what philosophers have called “the great 
system of the world.” The features of objects captured as data form a reflection of this 
great system of the world. If the reflection is accurate, the features themselves, to a 
greater or lesser degree, represent that system. It is in this sense that data is said to 
represent or, sometimes, to form a system. 

 

 

 2.1.2  Capturing Measurements  
 
 

 

For the data miner, objects actually consist of measurements of features. It is the groups 
of features that are taken as the defining characteristics of the objects, and actual 
instance measurements of the values of those features are considered to represent 
instances of the object. For instance, my car is a dark blue, two-door, six-cylinder, 
five-passenger vehicle. That is to say, for this particular instance of “car,” considering five 
features—ownership, color, door count, cylinder count, and passenger capacity—the 
measurements are Dorian Pyle, dark blue, 2, 6, 5. 

 

 
 

 

These measurements are all taken in such a way that they have a particular type of 
validity. In this particular case, they were all taken at the same time, which is to say that 
they were true at the instant of my writing. The validating feature here, then, is a 
timestamp. This need not be the case, of course, although timestamps are very often 
used. To continue using cars as an example, other validating stamps might be “all 
18-year-old males,” or “all Ford Escorts,” or “all red cars with four cylinders.” This would 
mean collecting measurements about all vehicles owned by 18-year-olds, all Ford 
Escorts, or all red cars with four cylinders, for instance. 

 

 
 

 

There is an assumption here, then, that measurements are taken about objects under 
some validating circumstance. In effect, the world state is “frozen” by the validating 
circumstance and the measurements taken yielding a particular value. This idea of 
“freezing” the world’s state while taking measurements is an important one, particularly for 
miners. There are a variety of factors involved in taking measurements that can make the 
measurements seem inconsistent. Since it is very often part of mining to understand and 
estimate where the variability in a particular measurement comes from, as well as how 
reliable the measurement is, we need to look at some sources of variability. 

 

 

 

 2.1.3  Errors of Measurement  
 
 

 

Measurement implies that there is some quantity to measure, and some device to 
calibrate the measurement against. A simple illustration of such a physical measurement 
is measuring a distance with a ruler. A nonphysical measurement might be of an opinion 

 



poll calibrated in percentage points of one opinion or another. 
 
 

 

There are several ways in which a measurement may be in error. It may be that the 
quantity is not correctly compared to the calibration. For instance, the ruler may simply 
slip out of position, leading to an inaccurate measurement. The calibration device may be 
inaccurate—for instance, a ruler that is longer or shorter than the standard length. There 
are also inevitable errors of precision. For example, measurements of distance simply 
have to be truncated at some point, whether measuring to the nearest mile, foot, meter, 
centimeter, or angstrom unit. 

 

 
 

 

Some of these errors, such as incorrect comparison, lead to a sort of “fuzz” in the 
measurement. Since there are likely to be as many measurements short as there are 
long, such errors also tend to cluster about the “correct” point. Statisticians have devised 
many ways to characterize this type of error, although the details are not needed here. If 
the calibration is in error—say, wrong ruler length—this leads to a systematic error, since 
all measurements made with a given ruler tend to be “off” the mark by the same amount. 
This is described as a bias. 

 

 
 

 

Figure 2.1 shows the distortion, or error, that might be caused by the “fuzz” in such 
measurements. It shows what unbiased error might do to a measurement. Figure 2.2 
shows what bias added to unbiased error might look like. These types of measurements 
are showing “point” measurements, so called because if taken without any error they 
appear as points on a graph. 

 

 

 

 

 

 

 
 

 
Figure 2.1  Unbiased noise spreads the measurements evenly around the 
measurement point. Most cluster near the actual value. 

 

   
 

 



 

 

 

 
 

 
Figure 2.2  Biased noise makes most of the measurements cluster around a 
point that is not the true measurement. 

 

   
 
 

 

Environmental errors are rather different in nature, but of particular importance in mining. 
Environmental errors express the uncertainty due to the nature of the world. Another way 
of looking at this interaction is that it expresses uncertainty due to the nature of the 
interactions between variables. These between-variable interactions are critically 
important to miners. Since there is some level of uncertainty in these interactions, they 
warrant a much closer inspection. 

 

 
 

 

Suppose a particular potential purchaser of products from a catalog has actually made a 
previous purchase. The catalog company wants to measure several features of the object 
“purchaser” to combine them with measurements about other purchasers and create a 
general purchaser profile. There are many circumstances in the world that surround and 
influence purchasers. To make the required measurements, the world is “frozen” in its 
state for the particular purchaser and the surrounding circumstances captured. Several 
variables are measured. Each measurement is, of course, subject to the point distortion, 
or error, described previously. 

 

 
 

 

Each fuzzy circle in Figure 2.3 represents such a single measurement. The central point 
of each circle represents the idealized point value, and the surrounding circle represents 
the unavoidable accompanying fuzz or error. Whatever the value of the actual 
measurement, it must be thought of as being somewhere in this fuzzy area, near to the 
idealized point value. 

 

 

 



 

 

 

 
 

 
Figure 2.3  Taking several point measurement values with uncertainty due to 
error outlines a measurement curve surrounded by an error band. 

 

   
 
 

 

Suppose now that the world is unfrozen, conditions allowed to change minutely, and then 
refrozen. What happens to the measurement? If the driving factors are linearly related to 
the measurement, then a minute change in circumstances makes a minute change in 
measurement. The measurement taken under the slightly changed circumstances is 
slightly changed in direction and distance from the first measurement. Other minute 
changes in the world’s state make similar minute changes in measurement. Such a series 
of measurements traces out the fuzzy line shown in Figure 2.3. This is the sort of change 
in measurement that might be traced out in the value of your bank account, say, if income 
varied by some small amount. The small change in income represents a change in the 
state of the world. The error represents the general fluctuation in bank account level due 
to the normal uncertainties of life. Perhaps if your income were slightly lower, the bank 
balance would be a little lower. An increase in income might raise the bank balance a 
little, but a further increase might lower it as you might then choose to put money into 
another account. This small change in your bank account that is associated with a small 
change in income demonstrates the effect of a linear relationship. 

 

 
 

 

But perhaps the relationship is not linear, at least locally. What does this mean? It might 
mean that a minute change in some other circumstance would persuade you to use a 
completely different bank. Perhaps a better interest rate paid by another bank might be 
enough. This could mean that the overall shape of the curves would be the same, but their 
height would change, indicating the influence of interest rate changes. Figure 2.4 shows 
what this might look like. 

 

 

 



 

 

 

 
 

 
Figure 2.4  Groups and clusters of curves that result when a small change in 
world conditions makes a nonlinear or “step” change in the measured values. 

 

   
 
 

 

What this figure might mean is that a small change in interest rate persuaded you to take 
all your money out of one bank and deposit it in another bank. For one bank the minute 
change in interest rate means that you completely and totally disappear as a customer, 
while appearing as a new customer for some other bank. The world change is small, but 
instead of slightly changing the bank balance up or down in the first bank, it made it 
disappear! The various lines in Figure 2.4 might then represent different banks, with the 
curves representing different balances. This “curve bundle” represents where and how 
the point measurements might map onto the world under the slightly different 
circumstances. 

 

 
 

 

Some conditions, then, would be very sensitive to a minute change in circumstances due 
to the unfreezing/minute change/refreezing cycle, while other conditions were not so 
sensitive, or might be even completely unaffected by small changes. What this means for 
actual measurements is that, even for minute changes in the circumstances surrounding 
measurements, there are a variety of possible results. The changes may be undetectably 
small, given the nature of truncating the measurement accuracy discussed above. So the 
measurements traced out in state space, due possibly to the miniscule perturbations that 
are unavoidable in the real world, trace out not fuzzy points, but fuzzy curves. (State 
space will be covered in more detail later in this chapter. For now, very briefly, state space 
is the space in which measurement values can be plotted, like the space on a graph.) 

 

 
 

 

A very important point to note for the miner here is that while many of the environmental 
factors may be unknowable, and certainly uncontrollable, they are subject to some 
limitations. For instance, it is very unlikely that any minute change in world conditions 
would change your deposit in a bank account into your ownership of a Swiss bank! 
Defining the limits, and determining the shape and size of the measurement curves, can 
be a critical factor in building models. 

 

 



 

 

Determining the extent of the error is not so important to data preparation. What is 
important, and the reason for the discussion, is that during preparation it may be possible 
to determine where some of the components in the overall error come from, and to 
explore its shape. Mining to build models is concerned with addressing and, if possible, 
understanding the nature of the error; data preparation, with exposing and, perhaps, 
ameliorating it. 

 

 

 

 2.1.4  Tying Measurements to the Real World  
 
 

 

Sometimes measurements are described as consisting of two components: the actual 
absolute perfect value, plus distortion. The distortion is often referred to as error. 
However, the distortion is actually an integral part of the measurement. Use of the term 
“error” has unfortunate connotations, as if there is somehow something wrong with the 
measurement. There seems to be an implication that if only the measurer had been more 
careful, the error could have been eliminated. While some part of the distortion may 
indeed result from a mistake on the part of the measurer, and so truly is an error in the 
sense of a “mistake,” much of the distortion is not only unavoidable, but is actually a 
critical part of what is being measured. 

 

 
 

 

This use of the term “error” is emotionally loaded in ways that do a disservice to the miner. 
For all of the reasons discussed above, actual measurements are better envisioned as 
represented by curve bundles drawn in some state space. Some part of the curve will 
represent error in the sense of mistakes on the part of the measurer—whether human or 
machine. However, most of the range of the curve represents the way the feature maps 
onto an uncertain world. Even a perfect measurer, should such a thing exist, would still 
not be able to squeeze the various curves into a single point—nor even into a single 
curve. 

 

 
 

 

Contrary to the view that there exists some perfect measurement with error, the more 
realistic situation is one that includes a distributed mapping of the measurement onto the real 
world, plus some single estimate of the location of some particular instance on the bundle of 
curves. Nonetheless, the term “error” is the one in general use in measurement and must be 
accepted. Remember that it is not to be thought of as some sort of mistake to be corrected, 
but as representing an essential and unavoidable part of the measurement that is integral 
with mapping the feature measured to the real world. Moreover, it is often the job of the 
miner to discover the shape of the measurement bundle. In mining, the error is often 
included in a feature called “noise” (looked at in detail later), although noise also includes 
other components. 

 

 
2.2  Types of Measurements  
 
 

 
So far this chapter has discussed measurements in general, and problems and limitations 
with making the measurements. Looked at more closely, there is an intuitive difference 

 



between different types of measurements. For instance, the value “1.26 feet” is obviously 
of a different type than the value “green.” This difference has a major impact on both the 
way data is prepared and the way it is modeled. Since these differences are important, 
the different types of measurements need to be examined in some detail. 

 
 

 

All measurements have one feature in common: they are all made on some scale. 
Measurements in general map onto the world in ways represented by the measurement 
curve bundles. Individual instance values are not curves, but point measurements. It is 
usual to speak of the measurements of a particular feature of an object as a variable. A 
variable represents a measurement that can take on a number of particular values, with a 
different value possible for each instance. Conceptually, a variable is a container holding 
all of the measurements of a particular feature of some specific object. But different types 
of containers are needed to hold different types of measurements, just as tomatoes and 
soda both need different types of containers to hold them. The “containers” for variables 
are a way to classify them using descriptions such as “nominal” and “ratio” that will be 
discussed in a moment. Some variables consist of two components—the scale on which 
they are measured and the measured value itself—and others require more components. 
The class of variables that can be indicated by the position of a single point (value) on 
some particular scale are called scalar variables. There are other types of variables that 
require more than one value to define them; they are often called vector variables. Most of 
the work of the miner considers scalar variables, and these need to be examined in detail. 
So first, we will look at the different types of containers, and then what is in each of them. 

 

 

 

 2.2.1  Scalar Measurements  
 
 

 

Scalar measurements come in a variety of types. Different types of measurements 
inherently carry different amounts of information. You can intuitively see this: just think 
about measuring the temperature of your coffee. By limiting the measurement to just “hot” 
or “cold,” you will see that this measurement contains less information than the 
measurements “scalding,” “too hot,” “nice and hot,” “hot,” “not hot,” “warm,” “cool,” and 
“cold.” The idea of information content is a very useful way to order the types of scalar 
measurements. 

 

 

 

 Nominal Scale Measurements  
 
 

 

Values that are nominally scaled carry the least amount of information of the types of 
measurements to be considered. Nominal values essentially just name things. There is a 
notable difference in type or identity, but little or nothing more can be said if the scale of 
measurement is actually nominal. A nominal measurement is little more than a label used 
for purposes of identification. There is no inherent order in the nominal measurements. 
Nor indeed can nominally measured values even be meaningfully grouped together. They 
do, nonetheless, carry definite information, little though it might be. 

 

 

 

 Categorical Scale Measurements  
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Categorical measurements name groups of things, not individual entities. This 
categorization allows values to be grouped in meaningful ways. As with nominal 
measurements, nothing more can be said about the size or type of the differences. They 
are no more than labels for different groups. 

 

 
 

 

For instance, ZIP codes, although they look like numbers, are really simply arbitrary labels 
for postal delivery zones. Listing them in their apparent numerical order is not particularly 
revealing. Standard industry classification (SIC) codes are very similar to ZIP codes in 
that, although they categorize different types of business activity, a numerical ordering 
seems no more nor less reasonable than an alphabetical listing of the activity represented 
by the number. It should also be clear that any ordering of scales such as marital status, 
ethnic background, or academic interest seems quite arbitrary. 

 

 
 

 

However, it is possible to use a number as a categorically measured value label in order 
to more conveniently label and differentiate the category to which it belongs. Although 
formed using characters that are numerical symbols rather than letters of the alphabet, 
the labels remain exactly that, labels, and carry no numerical significance. Postal 
authorities numerically labeled ZIP codes, and the federal government numerically 
labeled SIC codes. Numerically labeled or not, all that can be said about the categories is 
that they are different in type. Numbering the measurement values is only a matter of 
convenience, and there is no implied ordering or ranking. 

 

 
 

 

Not only do the categorical labels have no particular order, there is no information 
included in the categorization that indicates how different they are from each other. There 
is no real meaning in saying, for instance, that a plumber is twice a carpenter or 
three-quarters of a corporate director. You may have some personal feeling as to the 
amount of difference there is between different brands of boot polish. However, there is 
no way to determine, simply by knowing the category of the product, if the amount of 
difference between black and brown polish is more or less than between, say, black and 
red or red and brown types of polish. All that can be said, simply by knowing its category, 
is that there is a difference. 

 

 
 

 

Categorical measurements, then, denote that there is a difference in kind or type, but are 
not able to quantify the difference. The scale used amounts to no more than a 
comprehensive listing of all of the categories into which the value can fall. 

 

 

 

 Ordinal Scale Measurements  
 
 

 

When something more can be said about the measurement scale used, the additional 
information gives some sort of order to the categories that are used to label the 
measurement. Because there is some sort of meaningful order to the listing of the labels, 
this type of measurement is often known as an ordinal measurement. 

 

 
 



 

Ordinal measurements carry far more information than either nominals or categoricals. 
You may not be surprised to learn that by taking a table of the actual distances between, 
say, major American cities, the joint distance table alone is enough to re-create the layout 
of the cities that show up on a map. Surprisingly, instead of the actual distances, just 
using a simple pairwise ranking of cities by distance is also enough to re-create the layout 
of the cities as seen on a map almost perfectly. 

 

 
 

 

This example shows that for the purpose of making a schematic map, knowing the actual 
distances provides little additional information. Most of the information required to 
accurately create a schematic map of American cities is enfolded in a simple pairwise 
ranking of cities by their distance apart. 

 

 
 

 

The ranking of the categories must be done subject to a very particular condition, called 
transitivity, which is actually a reasonable notion although of critical importance. 
Transitivity means that if A is ranked higher than B, and B higher than C, then A must be 
ranked higher than C. That is: If A > B and B > C, then A > C. While measuring a value 
using an ordinal scale adds a huge amount of information over that contained in a 
categorical measurement, the transitivity requirement places some constraints on how the 
ordinal scale can actually be built. Note that the ordinal scale does not require that 
anything has to be specified about the amount of the difference between each category. 

 

 
 

 

For instance, at a “blind tasting” for wines, you sample several different types and styles 
of wine and mark down pairwise combinations of preference. Perhaps you prefer the 
cabernet to the merlot, and the merlot to the shiraz. If transitivity holds and you prefer the 
cabernet to the shiraz, the result is an ordinal listing of wine preferences: the favorites, in 
order, are cabernet, merlot, and shiraz. However, there is no indication of by how much 
you prefer the cabernet to the merlot. It may be that the difference in preference is slight: 
you choose cabernet 51% of the time and merlot 49% of the time; the shiraz doesn’t get a 
look in. On the other hand, given the availability of cabernet, perhaps you will choose that 
every time, only considering the others when cabernet is unavailable. 

 

 
 

 
The point here is that ordinal measurements do indeed carry a lot of information, but allow 
for no comparison of the magnitude of the differences between the categories. 

 

 

 

 Interval Scale Measurements  
 
 

 

When there is information available not only about the order for ranking the values 
measured but also about the differences in size between the values, then the scale is 
known as an interval scale. This means that the scale carries with it the means to indicate 
the distance that separates the values measured. Interval variables are almost always 
measured using numbers. Because numbers are almost exclusively used when 
discussing interval-scaled values, measurements scaled this way are part of the group 
called quantitative measurements—that is, values that capture differences in, changes in, 
or the amount of the quantity of some attribute of an object. 

 

 



 

 

An interval scale that almost everyone is familiar with is the temperature scale. Every day 
newspapers, radio, and television provide a forecast of the temperature range for the 
day’s weather. If the low for the day is predicted to be 40 and the high 50, this provides 
some particular idea of what temperature you will experience. In this case the range 
through which the temperature is expected to move is 10º. If at some other time of year 
the low/high is forecast as 80 through 90, you can tell that the expected temperature 
range is again 10º, the same as earlier in the year. Thus the difference of 10º indicates the 
same amount of temperature change regardless of where it occurs on the range of the 
scale. 

 

 
 

 

However, you cannot say, based on the interval scale used, that the low for the two days 
can be compared using their ratio. That is to say, 80º is not twice as hot as 40º. It is easy 
to see that there must be something wrong in supposing that the ratios are meaningful if 
instead of using Fahrenheit, you made the same comparison using the Celsius scale to 
measure the same temperature range. 

 

 
 

 

Roughly speaking, 80ºF corresponds to 25ºC, while 40ºF corresponds to about 5ºC. 
However, the ratio of 80 to 40 is 2, but the ratio of 25 to 5 is 5! This means that when 
measuring the temperature with a Fahrenheit thermometer, you might say that it was 
twice as hot (ratio of 2), but your Celsius-using neighbor claims that it was five times as 
hot (ratio of 5)! One of these observations at least must be wrong, and in fact they are 
both wrong. 

 

 
 

 

What is wrong, of course, is that the zero point, often called the origin of the scale, is not 
at the same temperature for the two scales. This means that the scales have differing 
ratios at equivalent temperatures. In fact, the zero point is arbitrarily set, which is a 
characteristic of interval scales. So, as far as temperature goes, scientists use a scale 
known as the “Absolute” or “Kelvin” scale specifically to overcome this problem. On this 
scale, the zero point corresponds to a true zero point so that the ratios of numbers 
compared on this scale have meaning. 

 

 

 

 Ratio Scale Measurements  
 
 

 

The scale that carries the most information content is the ratio scale. One ratio scale 
measure that you are no doubt very familiar with measures the content of your bank 
account. It starts at a true zero point, which is to say that when the bank balance is 0 it is 
because there is no money in it. Also, it is denominated in currency units of equal value 
and size. This means that you can express meaningful ratio values of the state of your 
finances, knowing, for instance, that $10 is twice as much as $5, and $100 is twice $50. At 
any position on the scale, for any values, the ratio is a meaningful measure of properties 
of the scale. 

 

 
 

 As with the interval scale, ratio-scaled values are also quantitative. It is useful to consider  



two types of ratio-scaled measurements: those for which the scale that they are measured 
on must be named and those for which no scale is named. The characteristics of each 
type are sufficiently different that it is sometimes important to treat them differently during 
data preparation. 

 
 

 

Usually it is important to know the units of a particular ratio measurement. To measure 
sales activity as “5” is not useful. Even if you knew that they were “4” last month, there is 
no reference in the numbers to indicate their significance. Knowledge of the unit of 
measurement is required. It means something if we stipulate that the units are millions of 
dollars and something else again if the units are thousands of Russian rubles or numbers 
of units shipped. 

 

 
 

 

There is a class of ratio-scaled values that is measured only as numbers. These numbers 
are sometimes called dimensionless. A dimensionless number expresses a relationship 
that holds true without reference to the underlying measurements of the scale. For 
instance, consider a lighthouse standing on a rocky headland. Each lighthouse signals in 
a particularly distinct way such that any ship that sees the signal knows which particular 
lighthouse is in view just from the pattern of the signal. The lighthouse signals by showing 
a light in a unique pattern that is repeated over time. In any time cycle, however long or 
short, the light is on for a certain duration and off for another duration. Suppose that for a 
particular lighthouse the light is on for 10 seconds and off for 5. The ratio of on/off is 10/5, 
which, by division, reduces to 2/1, or 2. This measurement, sometimes known as a duty 
cycle, is dimensionless, and for this particular lighthouse it is 2. That is not 2 per anything, 
or 2 anythings, simply 2. The lighthouse pattern repeats once in 15 seconds, or four times 
per minute. So long as we consider only complete cycles, it doesn’t matter at all over how 
long a period the duty cycle of the lighthouse is measured; it will always be 2. 

 

 
 

 

Care must be taken with measurements over time. Sometimes these measurements are 
assumed to be dimensionless when in fact they are not. A common discussion of 
ratio-scale variables discusses the distinction between “how many” and “how much.” The 
“how much” type is said to require the scale units, as in the sales figures just discussed. 
“How many” types of measurements are often said not to need such units. For instance, in 
stock market reports, not only is the market index quoted, but frequently the 
“advance/decline ratio” is given. 

 

 
 

 

“The stock market was up today,” the news anchor might say, “with advances leading 
declines 5 to 4.” This means that five stocks went up in price for every four that did not. 
Now a ratio of 5/4 can be given as 1.25 and this gives the appearance of a dimensionless 
number. Here is a measurement of “how many” (i.e., 5/4) rather than “how much” (which 
is measured in “points” or dollars or some other specified unit). 

 

 
 

 

However, the “gotcha” is that the count of advances to declines was taken over today. 
When considering the example of the lighthouse, a very important point was that, so long 
as we looked at complete cycles, the length of time of the observation did not matter. The 

 



advance/decline ratio applies only to the specific period over which it was measured. If a 
period is included that is longer or shorter by only a few minutes, it is possible that the 
measurement would not be 5/4. Indeed, you can be quite sure that in choosing some 
other period there is no reason to think that the 5/4 ratio holds true except by coincidence.

 
 

 

We have become so culturally accustomed to the idea of fixed and “natural” 
measurements of time that it is easy to overlook the fact that measurements of duration 
are arbitrary. By happenstance the Babylonians had a number system based on the 
number 60. Since it was they who made the original astronomical measurements, and 
because they thought there were approximately 360 days in a year, we now have 360 
degrees in a circle. By a series of what they thought were convenient divisions, they 
arrived at a 24-hour day as standard. The hours were further divided in smaller parts, and 
by making a second division of the minute parts of an hour by 60 we get the “seconds,” so 
called because of the second division involved. Very clever and useful. However, there 
are alternatives. 

 

 
 

 

Napoleon, in attempting to introduce the metric system, tried to “rationalize” all of the 
measuring systems then in use. Measures for distance and mass—the meter and gram, 
respectively—were adopted; however, the division of the year into 10 months and the day 
into 10 hours, and so on, was not accepted. The point is that all of our measurements of 
time are arbitrary. Some are arbitrary through human selection, but even the rotation of 
our planet has varied considerably through the eons. The first creatures out of the 
primordial soup probably experienced an 18-hour day. The slowing of planetary rotation 
has brought us to a day of approximately 24 hours. Because we are creatures of planet 
Earth, there are many cycles that are tied to days, seasons, and years. However, there is 
nothing inherently special about these scale units any more than any other scale unit. 

 

 
 

 

Measurements in time, then, need to be considered carefully. By identifying and 
confirming complete cycles, returning to an identifiable identical state from time to time, 
dimensionless numbers may be useful. Measures based on the “how many/how much” 
dichotomy are suspect. 

 

 

 

 2.2.2  Nonscalar Measurements  
 
 

 

Scalar values consist of just two component parts, the value of the measurement and the 
scale against which the measurement was made. In traffic court it is enough to prove that 
the speed of a vehicle was, or was not, some particular number of miles per hour. The 
speed is expressed as a number and the scale in miles per hour. Nonscalar 
measurements need more component parts to capture additional information. Speed is 
the number of miles traveled in one hour. Velocity, however, is measured as speed in a 
particular direction. There are at least four components in such a measurement—two 
scales and two measurements on those scales. Navigation at sea, for instance, is very 
concerned with velocity—how fast and in which direction the vessel is travelling. 

 

 
 



 

Measurements such as velocity can be plotted on a two-dimensional graph in the form of 
a point specified by the measurements of speed on one axis, and direction on another. A 
line drawn on a graph from the common point that was chosen to begin the measurement 
representation, to the point where it ends up, is known as a vector. There is a great deal of 
literature about such vector quantities, their properties, and how to manipulate them. So 
far as data preparation is concerned, however, vector quantities are built out of scalar 
quantities. It is true that the scalar quantities are linked in particular and significant ways, 
but for the purposes of data preparation, the vectors can be carefully treated as multiple 
scalar values. 

 

 
 

 

This is not to minimize the importance of vector quantities. Indeed, the concept of state 
space regards the instance value of multiple features as a multidimensional vector. Each 
record in a table, in other words, is taken as a vectoral representation. The point here is that 
most vectors can be thought of as being made up of separate scalar values and can be 
usefully treated for purposes of data preparation at the scalar level. 

 

 
2.3  Continua of Attributes of Variables  
 
 

 

So far this chapter has addressed the way in which measurements are taken using 
different types of scale. Collections of measured values of particular features are grouped 
together into variables. Because the values are collected together, it is possible to look for 
patterns in the way the values change with changes in the validating feature, or with 
changes in other variables. 

 

 
 

 

When the measurements are actually taken in practice, certain patterns appear if many 
instances of values of a variable are considered as a whole. These aggregate collections 
of values begin to show a variety of different features. It is hard to characterize these 
elementary patterns as a part of data mining, although they are in truth the surface ripples 
of the deeper structure that miners will be seeking when the actual data mining tools are 
applied to the prepared data. Although this discussion only concerns introductory issues 
about data preparation, it is still true that the data preparation begins with a fairly 
comprehensive survey of the properties of each of the variables taken individually. It is in 
the appreciation of the basic types of attributes of variables that data preparation begins. 
Chapter 4 looks at this issue in considerable detail. Later discussion in this chapter 
summarizes the methods that will prepare variables for modeling. 

 

 
 

 

Although described as if each of the scales were separate, actually the types blur together 
into a more continuous spectrum than the separate descriptions seem to imply. It is usual 
to describe variables as being of the same type as the scale, or features of the scale, on 
which they are measured. So it is convenient, say, to talk of a categorical variable, or a 
continuous variable. A measured value on a scale is, of course, a single point and as such 
cannot show any pattern. It cannot even show any of the “fuzz” of noise discussed earlier. 
Variables, being collections of instance values of a particular feature, all being made on a 
common scale, do show recognizable patterns, or attributes. It is these common attributes 
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of variables that can be described as existing in a continuum. 
 

 

 2.3.1  The Qualitative-Quantitative Continuum  
 
 

 

This continuum captures the low to high information content of the different types of scalar
variables. Describing variables as qualitative or quantitative might not make it obvious that 
what is being described is information content. Nominal variables are at the qualitative 
end of the scale—that is, they separate attributes by a difference in quality. Similarly, at 
the other end of the scale is the ratio (quantitative) association. Information content varies 
continuously across the scale. Any sharp division implied by the qualitative-quantitative 
differentiation is not really present. So this continuum really recapitulates the differences 
in the scales that were discussed before, except that it considers the impact of the 
different scales on variables. 

 

 

 

 2.3.2  The Discrete-Continuous Continuum  
 
 

 

This will prove to be a very important distinction about variables. In fact, the 
discrete-continuous distinction forms a continuum. As was done when considering scales, 
for ease of explanation it is easiest to look at several points along the continuum. At each 
of the points viewed, the distinctions are easy to draw. There are, however, no hard and 
fast boundaries in practice. 

 

 
 

 

As a very brief introduction to the following discussion, discrete variables are considered 
to have a very limited set of values that they can take on, such as colors of the rainbow. 
Continuous values can take on any value within a range, like the temperature. To see that 
this is a continuum, consider your bank account—discrete or continuous? Technically, it is 
discrete as it is restricted to values to the nearest penny. In practice, however, the 
quantization, or fineness of division, is such that it would usually be more useful to 
consider it as a continuous value. 

 

 

 

 Single-Valued Variables (Constants)  
 
 

 

It may seem odd to discuss a “variable” as having only a single value. Strictly speaking, 
since it is not varying its value, it would seem to be something other than a variable. 
However, variables that do not vary are often used, and very useful they are, too. Some 
examples of constants are the number of days in a week, inches in a foot, the distance 
represented by a light year, and the number of sides in a triangle. These constant values 
are representative of what we see as invariant, defining characteristics of an object. 

 

 
 

 

They also turn up when modeling variables. Perhaps a marketing organization wants to 
examine all records for “the gold card upgrade program.” There may be many different 
marketing programs represented in the original data set. In this original data set, the 
variable “program name” is variable—it varies by having different values representing the 
different programs. The indicator for the gold card upgrade program is, say, “G”. Different 

 



letters are used to identify other programs. However, by the time only the records that are 
relevant to the gold card upgrade program are extracted into a separate file, the variable 
“program name” becomes a constant, containing only “G” in this data set. The variable is 
a defining feature for the object and, thus, becomes a constant. 

 
 

 

Nonetheless, a variable in a data set that does not change its value does not contribute 
any information to the modeling process. Since constants carry no information within a 
data set, they can and should be discarded for the purposes of mining the data. 

 

 

 

 Two-Valued Variables  
 
 

 

At least variables with two values do vary! Actually, this is a very important type of 
variable, and when mining, it is often useful to deploy various techniques specifically 
designed to deal with these dichotomous variables. An example of a dichotomous 
variable is “gender.” Gender might be expected to take on only values of male and female 
in normal use. (In fact, there are always at least three values for gender in any practical 
application: “male,” “female,” and “unknown.”) 

 

 

 

 Empty and Missing Values: A Preliminary Note  
 
 

 

A small digression is needed here. When preparing data for modeling, there are a number 
of problems that need to be addressed. One of these is missing data. Dealing with the 
problem is discussed more fully later, but it needs to be mentioned here that even 
dichotomous variables may actually take on four values. These are the two values it 
nominally contains and the two values “missing” and “empty.” 

 

 
 

 

It is often the case that there will be variables whose values are missing. A missing value 
for a variable is one that has not been entered into the data set, but for which an actual 
value exists in the world in which the measurements were made. This is a very important 
point. When preparing a data set, the miner needs to “fix” missing values, and other 
problems, in some way. It is critical to differentiate, if at all possible, between values that 
are missing and those that are empty. An empty value in a variable is one for which no 
real-world value can be supposed. 

 

 
 

 

A simple example will help to make the difference clear. Suppose that a sandwich shop 
sells one particular type of sandwich that contains turkey with either Swiss or American 
cheese. In order to determine customer preferences and to control inventory, the store 
keeps records of customer purchases. The data structure contains a variable “gender” to 
record the gender of the purchaser, and a variable “cheese type” to record the type of 
cheese in the sandwich. “Gender” could be expected to take the values “M” for male and 
“F” for female. “Cheese type” could be expected to take the values “S” for Swiss and “A” 
for American cheese. 

 

 
 

 Suppose that during the recording of a sale, one particular customer requests a turkey  
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sandwich with no cheese. In recording the sale the salesperson forgets to enter the 
customer’s gender. This transaction generates a record with both fields “gender” and 
“cheese type” containing no entry. In looking at the problem, the miner can assume that in 
the real world in which the measurements were taken, the customer was either male or 
female, and any adjustment must be made accordingly. As for “cheese type,” this value 
was not measured because no value exists. The miner needs a different “fix” to deal with 
this situation. 

 
 

 

If this example seems contrived, it is based on an actual problem that arose when 
modeling a grocery store chain’s data. The original problem occurred in the definition of 
the structure of the database that was used to collect the data. In a database, missing and 
empty values are called nulls, and there are two types of null values, one each 
corresponding to missing and empty values. Nulls, however, are not a type of 
measurement. 

 

 
 

 

Miners seldom have the luxury of going back to fix the data structure problem at the 
source and have to make models with what data is available. If a badly structured data set 
is all that’s available, so be it; the miner has to deal with it! Details of how to handle empty 
and missing values are provided in Chapter 8. At this point we are considering only the 
underlying nature of missing and empty variables. 

 

 

 

 Binary Variables  
 
 

 

A type of dichotomous variable worth noting is the binary variable, which takes on only the 
values “0” and “1.” These values are often used to indicate if some condition is true or 
false, or if something did or did not happen. Techniques applicable to dichotomous 
variables in general also apply to binary variables. However, when mining, binary 
variables possess properties that other dichotomous variables may not. 

 

 
 

 

For instance, it is possible to take the mean, or average, of a binary variable, which 
measures the occurrence of the two states. In the grocery store example above, if 70% of 
the sandwich purchasers were female, indicated by the value “1,” the mean of the binary 
variable would be 0.7. Certain mining techniques, particularly certain types of neural 
networks, can use this kind of variable to create probability predictions of the states of the 
outputs. 

 

 

 

 Other Discrete Variables  
 
 

 

All of the other variables, apart from the constants and dichotomous variables, will take on 
at least three or more distinct values. Clearly, a sample of data that contains only 100 
instances cannot have more than 100 distinct values of any variable. However, what is 
important is to understand the nature of the underlying feature that is being measured. If 
there are only 100 instances available, these represent only a sample of all of the possible 
measurements that can be taken. The underlying feature has the properties that are 
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indicated by all of the measurements that could be taken. Much of the full representation 
of the nature of the underlying feature may not be present in the instance values actually 
available for inspection. Such knowledge has to come from outside the measurements, 
from what is known as the domain of inquiry. 

 
 

 

As an example, the underlying value of a variable measuring “points” on a driving license 
in some states cannot take on more than 13 discrete values, 0–12 inclusive. Drivers 
cannot have less than 0 points, and if they get more than 12 their driving licenses are 
suspended. In this case, regardless of the actual range of values encountered in a 
particular sample of a data set, the possible range of the underlying variable can be 
discovered. It may be significant that a sample does, or does not, contain the full range of 
values available in the underlying attribute, but the miner needs to try to establish how the 
underlying attribute behaves. 

 

 
 

 
As the density of discrete values, or the number of different values a variable can take on, 
increases for a given range, so the variable approaches becoming a continuous variable. 

 

 
 

 

In theory, it is easy to determine the transition point from discrete to continuous variables. 
The theory is that if, between any two measurements, it is inherently possible to find 
another measurement, the variable is continuous; otherwise not. In practice it is not 
always so easy, theoretical considerations notwithstanding. The value of a credit card 
balance, for instance, can in fact take on only a specifically limited number of discrete 
values within a specified range. The range is specified by a credit limit at the one end and 
a zero balance (ignoring for the moment the possibility of a credit balance) at the other. 
The discrete values are limited by the fact that the smallest denomination coin used is the 
penny and credit balances are expressed to that level. You will not find a credit card 
balance of “$23.45964829.” There is, in fact, nothing that comes between $23.45 and 
$23.46 on a credit card statement. 

 

 
 

 

Nonetheless, with a modest credit limit of $500 there are 50,000 possible values that can 
occur in the range of the credit balance. This is a very large number of discrete values that 
are represented, and this theoretically discrete variable is usually treated for practical 
purposes as if it were continuous. 

 

 
 

 

On the other hand, if the company for which you work has a group salary scale in place, 
for instance, while the underlying variable probably behaves in a continuous manner, a 
variable measuring which of the limited number of group salary scales you are in probably 
behaves more like a categorical (discrete) variable. 

 

 
 

 

Techniques for dealing with these issues, as well as various ways to estimate the most 
effective technique to use with a particular variable, are discussed later. The point here is 
to be aware of these possible structures in the variables. 

 

 

 

 Continuous Variables  
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Continuous variables, although perhaps limited as to a maximum and minimum value, 
can, at least in theory, take on any value within a range. The only limit is the accuracy of 
representation, which in principle for continuous variables can be increased at any time if 
desired. 

 

 
 

 

A measure of temperature is a continuous variable, since the “resolution” can be increased 
to any amount desired (within the limit of instrumentation technology). It can be measured to 
the nearest degree, or tenth, or hundredth, or thousandth of a degree if so chosen. In 
practice, of course, there is a limit to the resolution of many continuous variables, such as a 
limit in ability to discriminate a difference in temperature. 

 

 
2.4  Scale Measurement Example  
 
 

 

As an example demonstrating the different types of measurement scales, and the 
measurements on those scales, almost anything might be chosen. I look around and see 
my two dogs. These are things that appear as measurable objects in the real world and 
will make a good example, as shown in Table 2.1. 

 

 

 

 TABLE 2.1  Title will go here  
 
 

   
 
 

 Scale Type  
 

 

 Measurement 
 

 
 

 Measured Value  
 

 
 

 Note  
 

 

 

   
 
 

 Nominal  
 

 

 Name  
  

 

 •  Fuzzy  

 

 •  Zeus  
 

 

 

 
Distinguishes one from 
the other. 

 

 

 

 

 Categorical  
 

 

 Breed  
 

 

 

 
• 

 
Golden 
Retriever 

 

 

 
• 

 
Golden 
Retriever 

 

 

 

 

 
Could have chosen 
other categories. 

 

  

 

 
Categorical 
(Dichotomous) 

 

 

 

 Gender  
  

 

 •  Female  

 

 •  Male  
 

 

  

  
  

 

 
Categorical 
(Binary) 

 

 

 

 

Shots up to 
Date 
(1=Yes;0=No)

 

 

 

 

 •  1  

 

 •  1  
 

 

  

  
  



 

 
Categorical 
(Missing) 

 

 

 

 Eye color  
 

 

 

 
• 

 
Value exists in 
real world 

 

 

 

  

  
 

 

 

 
Categorical 
(Empty) 

 

 

 

 
Drivers  
License # 

 

 

 

 

 
• 

 
No such value  
in real world 

 

 

 

  

  
 

 

 

 Ordinal  
 

 

 Fur length  
  

 

 •  Longer  

 

 •  Shorter  
 

 

 

 
Comparative length 
allowing ranking. 

 

 

 

 

 Interval  
 

 

 Date of Birth  
  

 

 •  1992  

 

 •  1991  
 

 

  

  
  

 

 Ratio  
 

 

 Weight  
  

 

 •  78 lbs  

 

 •  81 lbs  
 

 

  

  
  

 

 
Ratio 
(Dimensionless) 

 

 

 

 
Height / 
Length 

 

 

 

 

 •  0.5625  

 

  •  0.625 
 

 
2.5  Transformations and Difficulties—Variables, Data, and 
Information 

 

 
 

 

Much of this discussion has pivoted on information—information in a data set, information 
content of various scales, and transforming information. The concept of information is 
crucial to data mining. It is the very substance enfolded within a data set for which the 
data set is being mined. It is the reason to prepare the data set for mining—to best expose 
the information contained in it to the mining tool. Indeed, the whole purpose for mining 
data is to transform the information content of a data set that cannot be directly used and 
understood by humans into a form that can be understood and used. 

 

 
 

 

Part of Chapter 11 takes a more detailed look at some of the technical aspects of 
information theory, and how they can be usefully used in the data preparation process. 
Information theory provides very powerful and useful tools, not only for preparing data, but 
also for understanding exactly what is enfolded in a data set. However, while within the 
confines of information theory the term “information” has a mathematically precise 
definition, Claude Shannon, principal pioneer of information theory, also provided a very 
apt and succinct definition of the word. In the seminal 1949 work The Mathematical 
Theory of Communication, Claude E. Shannon and Warren Weaver defined information 
as “that which reduces uncertainty.” This is about as concise and practical a definition of 
information as you can get. 

 

 



 

 

Data forms the source material that the miner examines for information. The extracted 
information allows better predictions of the behavior of some aspect of the world. The 
improved prediction means, of necessity, that the level of uncertainty about the outcome is 
reduced. Incorporating the information into a predictive or inferential framework provides 
knowledge of how to act in order to bring about some desired result. The information will 
usually not be perfect, so some uncertainty will remain, perhaps a great deal, and thus the 
knowledge will not be complete. However, the better the information, the more predictive or 
powerfully inferential the knowledge framework model will be. 

 

 
2.6  Building Mineable Data Representations  
 
 

 

In order to use the variables for mining, they have to be in the form of data. Originally the 
word “datum” was used to indicate the same concept that is indicated here, in part, by 
“measurement” or “value.” That is, a datum was a single instance value of a variable. 
Here measurement both signifies a datum, and also is extended to indicate the values of 
several features (variables) taken under some validating condition. 

 

 
 

 

A collection of data points was called data, and the word was also used as a plural form of 
datum. Computer users are more familiar with using data as a singular noun, which is the 
style adopted here. However, there is more to the use of the term than simply a collection 
of individual measurements. Data, at least as a source for mining, implies that the data 
points, the values of the measurements, are all related in some identifiable way. One of 
the ways the variables have to be structured has already been mentioned—they have to 
have some validating phenomenon associated with a set of measurements. For example, 
with each instance of a customer of cellular phone service who decides to leave a carrier, 
a process called churning, the various attributes are captured and associated together. 

 

 
 

 

The validating phenomenon for data is an intentional feature of the data, an integral part 
of the way the data is structured. There are many other intentional features of data, 
including basic choices such as what measurements to include and what degree of 
precision to use for the measurements. All of the intentional, underlying assumptions and 
choices form the superstructure for the data set. Three types of structure are discussed in 
the next chapter. Superstructure, however, is the only one specifically involved in turning 
variables into data. 

 

 
 

 

Superstructure forms the framework on which the measurements hang. It is the 
deliberately erected scaffolding that supports the measurements and turns them into data. 
Putting such scaffolding in place and adding many instances of measured values is what 
makes a data set. Superstructure plus instance values equals data sets. 

 

 

 

 2.6.1  Data Representation  
 
 

 The sort of data that is amenable to mining is always available on a computer system.  
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This makes discussions of data representation easy. Regardless of how the internal 
operations of the computer system represent the data, whether a single computer or a 
network, data can almost universally be accessed in the form of a table. In such a table 
the columns represent the variables, and the records, or rows, represent instances. This 
representation has become such a standardized form that it needs little discussion. It is 
also very convenient that this standard form can also easily be discussed as a matrix, with 
which the table is almost indistinguishable. Not only is the table indistinguishable from a 
matrix for all practical purposes, but both are indistinguishable from a spreadsheet. 

 
 

 

Spreadsheets are of limited value in actual mining due to their limited data capacity and 
inability to handle certain types of operations needed in data preparation, data surveying, 
and data modeling. For exploring small data sets, and for displaying various aspects of 
what is happening, spreadsheets can be very valuable. Wherever such visualization is 
used, the same row/column assumption is made as with a table. 

 

 
 

 

So it is that throughout the book the underlying assumption about data representation is 
that the data is present in a matrix, table, or spreadsheet format and that, for discussion 
purposes, such representation is effectively identical and in every way equivalent. 
However, it is not assumed that all of the operations described can be carried out in any of 
the three environments. Explanations in the text of actual manipulations, and the 
demonstration code, assume only the table structure form of data representation. 

 

 

 

 2.6.2  Building Data—Dealing with Variables  
 
 

 

The data representation can usefully be looked at from two perspectives: as data and as a 
data set. The terms “data” and “data set” are used to describe the different ways of 
looking at the representation. Data, as used here, implies that the variables are to be 
considered as individual entities, and their interactions or relationships to other variables 
are secondary. When discussing the data set, the implication is that not only the variables 
themselves are considered, but the interactions and interrelationships have equal or 
greater import. Mining creates models and operates exclusively on data sets. Preparation 
for mining involves looking at the variables individually as well as looking at the data set 
as a whole. 

 

 
 

 

Variables can be characterized in a number of useful ways as described in this chapter. 
Having described some features of variables, we now turn our attention to the types of 
actions taken to prepare variables and to some of the problems that need to be 
addressed. 

 

 

 

 Variables as Objects  
 
 

 

In order to find out if there are problems with the variables, it is necessary to look at a 
summary description and discover what can be learned about the makeup of the variable 
itself. This is the foundation and source material for deciding how to prepare each 
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variable, as well as where the miner looks at the variable itself as an object and 
scrutinizes its key features and measurements. 

 
 

 

Naturally it is important that the measurements about the variable are actually valid. That 
is to say, any inferences made about the state of the features of the variable represent the 
actual state of the variable. How could it be that looking at the variable wouldn’t reveal the 
actual state of the variable? The problem here is that it may be impossible to look at all of 
the instances of a variable that could exist. Even if it is not actually impossible, it may be 
impractical to look at all of the instances available. Or perhaps there are not enough 
instance values to represent the full behavior of the variable. This is a very important 
topic, and Chapter 5 is entirely dedicated to describing how it is possible to discover if 
there is enough data available to come to valid conclusions. Suffice it to say, it is 
important to have enough representative data from which to draw any conclusions about 
what needs to be done. 

 

 
 

 

Given that enough data is available, a number of features of the variable are inspected. 
Whatever it is that the features discover, each one inspected yields insight into the 
variable’s behavior and might indicate some corrective or remedial action. 

 

 

 

 Removing Variables  
 
 

 

One of the features measured is a count of the number of instance values. In any sample 
of values there can be only a limited number of different values, that being the size of the 
sample. So a sample of 1000 can have at most only 1000 distinct values. It may very well 
be that some of the values occur more than once in the sample. In some cases—1000 
binary variable instances, for example—it is certain that multiple occurrences exist. 

 

 
 

 

The basic information comprises the number of distinct values and the frequency count of 
each distinct value. From this information it is easy to determine if a variable is entirely 
empty—that is, that it has only a single value, that of “empty” or “missing.” If so, the 
variable can be removed from the data set. Similarly, constants are discovered and can 
also be discarded. 

 

 
 

 

Variables with entirely missing values and variables that contain only a single value can 
be discarded because the lack of variation in content carries no information for modeling 
purposes. Information is only carried in the pattern of change of value of a variable with 
changing circumstances. No change, no information. 

 

 
 

 

Removing variables becomes more problematic when most of the instance values are 
empty, but occasionally a value is recorded. The changing value does indeed present 
some information, but if there are not many actual values, the information density of the 
variable is low. This circumstance is described as sparsity. 

 

 

 

 Sparsity  
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When individual variables are sparsely populated with instance values, the miner needs to 
decide when to remove them because they have insignificant value. Chapter 5 describes 
in some detail how to decide when to remove sparse variables. Essentially, the miner has 
to make an arbitrary decision about confidence levels, that is, how confident the miner 
needs to be in the model. 

 

 
 

 

There is more to consider about sparsity, however, than can be seen by considering 
variables individually. In some modeling applications, sparsity is a very large problem. In 
several applications, such as in telecommunications and insurance, data is collected in 
ways that generate very sparsely populated data sets. The variable count can be high in 
some cases, over 7000 variables in one particular case, but with many of the variables 
very sparsely populated indeed. In such a case, the sparsely populated variables are not 
removed. In general, mining tools deal very poorly with highly sparse data. In order to be 
able to mine them, they need to be collapsed into a reduced number of variables in such a 
way that each carries information from many of the original variables. Chapter 10 
discusses collapsing highly sparse data. 

 

 
 

 

Since each of the instances are treated as points in state space, and state space has 
many dimensions, reducing the number of variables is called dimensionality reduction, or 
collapsing dimensionality. Techniques for dealing with less extreme sparsity, but when 
dimensionality reduction is still needed, are discussed in Chapter 7. State space is 
described in more detail in Chapter 6. 

 

 
 

 

Note that it has to be the miner’s decision if a particular variable should be eliminated 
when some sparsity threshold is reached, or if the variable should be collapsed in 
dimensionality with other variables. The demonstration software makes provision for 
flagging variables that need to be retained and collapsed. If not flagged, the variables are 
treated individually and removed if they fall below the selected sparsity threshold. 

 

 

 

 Monotonicity  
 
 

 

A monotonic variable is one that increases without bound. Monotonicity can also exist in 
the relationship between variables in which as one variable increases, the other does not 
decrease but remains constant, or also increases. At the moment, while discussing 
variable preparation, it is the monotonic variable itself that is being considered, not a 
monotonic relationship. 

 

 
 

 

Monotonic variables are very common. Any variable that is linked to the passage of time, 
such as date, is a monotonic variable. The date always increases. Other variables not 
directly related to time are also monotonic. Social security numbers, record numbers, 
invoice numbers, employee numbers, and many, many other such indicators are 
monotonic. The range of such categorical or nominal values increases without bound. 
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The problem here is that they almost always have to be transformed into some 
nonmonotonic form if they are to be used in mining. Unless it is certain that every possible 
value of the monotonic variable that will be used is included in the data set, transformation 
is required. Transformation is needed because only some limited part of the full range of 
values can possibly be included in any data set. Any other data set, specifically the 
execution data set, will contain values of the monotonic variable that were not in the 
training data set. Any model will have no reference for predicting, or inferring, the meaning 
of the values outside its training range. Since the mined model will not have been 
exposed to such values, predictions or inferences based on such a model will at best be 
suspect. 

 

 
 

 

There are a number of transformations that can be made to monotonic variables, 
depending on their nature. Datestamps, for instance, are often turned into seasonality 
information in which the seasons follow each other consecutively. Another transformation 
is to treat the information as a time series. Time series are treated in several ways that 
limit the nature of the monotonicity, say, by comparing “now” to some fixed distance of 
time in the past. Unfortunately, each type of monotonic variable requires specific 
transformations tailored to best glean information from it. Employee numbers will no doubt 
need to be treated differently from airline passenger ticket numbers, and those again from 
insurance policy numbers, and again from vehicle registration numbers. Each of these is 
monotonic and requires modification if they are to be of value in mining. 

 

 
 

 

It is very hard to detect a monotonic variable in a sample of data, but certain detectable 
characteristics point to the possibility that a variable is in fact monotonic. Two measures 
that have proved useful in giving some indication of monotonicity in a variable (described 
in Chapter 5) are interstitial linearity and rate of detection. Interstitial linearity measures 
the uniformity of spacing between the sampled values, which tends to be more uniform in 
a monotonic variable than in some nonmonotonic ones. Rate of discovery measures the 
rate at which new values are experienced during random sampling of the data set. Rate of 
detection tends to remain uniform for monotonic variables during the whole sampling 
period and falls off for some nonmonotonic variables. 

 

 
 

 

A problem with these metrics is that there are nonmonotonic variables that also share the 
characteristics that are used to detect potential monotonicity. Nonetheless, used as 
warning flags that the variables indicated need looking at more closely for monotonicity or 
other problems, the metrics are very useful. As noted, automatically modifying the 
variables into some different form is not possible. 

 

 

 

 Increasing Dimensionality  
 
 

 

The usual problem in mining large data sets is in reducing the dimensionality. There are 
some circumstances where the dimensionality of a variable needs to be increased. One 
concern is to increase the dimensionality as much as is needed, but only as little as 
necessary, by recoding and remapping variables. Chapter 7 deals in part with these 
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techniques. The types of variables requiring this transformation, which are almost always 
categorical, carry information that is best exposed in more than one dimension. A couple 
of examples illustrate the point. 

 
 

 

Colors can be represented in a variety of ways. Certainly a categorical listing covers the 
range of humanly appreciated color through a multitude of shades. Equally well, for some 
purposes, the spectral frequency might be listed. However, color has been usefully 
mapped onto a color wheel. Such a wheel not only carries color information, but also 
describes color as a continuum, carrying information about what other colors are near and 
far from some selected category. This is very useful information. Since a circle can be 
drawn on a plane, such as a piece of paper, it is easy to see that any point on the circle’s 
circumference can be unambiguously represented by two coordinates, or numbers. 
Mapping the color wheel onto a circle on a graph and using the two coordinates for some 
selected color as the instance values of two variables may form a better description of 
color than a categorical listing. 

 

 
 

 

ZIP codes form a perennial problem in mining. Sometimes, depending on the application, 
it is beneficial to translate the ZIP code from the categorical list into latitude and longitude. 
These values translate the ZIP code into two instance values. The single variable “ZIP” 
translates into two variables, say, “Lat” and “Lon.” 

 

 
 

 
Once again, the decision of whether to expand the dimensionality of a variable must be, in 
many cases, left up to the miner or domain expert. 

 

 

 

 Outliers  
 
 

 

An outlier is a single, or very low frequency, occurrence of the value of a variable that is 
far away from the bulk of the values of the variable. The question miners always ask is: “Is 
this a mistake?” As a general rule of thumb, if it can be established that it is a mistake, it 
can be rectified. (One way to do this, if the correct value cannot be found, is to treat it as a 
missing value, discussed later in this chapter.) The problem is what to do if it cannot be 
pinpointed as an error. It is a problem because, for some modeling methods in particular 
(some types of neural network, for instance), outliers may distort the remaining data to the 
point of uselessness. Figure 2.5(a) shows this sort of situation. 

 

 

 



 

 

 

 
 

 
Figure 2.5  Examples of outliers: as an individual value (a) and as clumps of 
values (b). 

 

   
 
 

 

Insurance data typically suffers considerably from the problem of outliers. Most insurance 
claims are small, but occasionally one comes in for some enormous sum. This is no error, 
and it must be included in modeling. How to do this without distorting the remaining data is 
a problem. 

 

 
 

 

There is also a problem when the outliers are not individual values but clumps of values, 
illustrated in Figure 2.5(b). It’s actually the gaps between the clumps that can pose 
problems. Are these clumps, perhaps, valid measurements from differently biased 
instruments? Once again, it must be determined first that there is not some sort of error. 
Maybe some measurements were made against an incorrect calibration and are biased. 
However, again it might not be possible to determine that an error occurred. In general, 
the miner is constrained to consider that the measurements are not an error until and 
unless it is possible to definitely show that they are. 

 

 
 

 

If indeed the outlying value is not a mistake, or is at least going to be dealt with as if it is 
not, how is it to be treated? Fortunately there is a way of automatically dealing with the 
problem if it is not a mistake. This involves remapping the variable’s values. Part of 
Chapter 7 deals with this remapping. 

 

 

 

 Numerating Categorical Values  
 
 

 

Dealing correctly with categorical values is one of the most important functions of data 
preparation. For many modeling techniques it is necessary to translate categorical values 
into numbers: they simply cannot deal with untranslated categorical values. Experience 
shows that even modeling techniques that can deal well with untranslated categorical 
values benefit from a valid numeration of categoricals. 

 

 
 

 
However, a na‹ve way of making the translation, one that is very commonly done, is 
terribly destructive of information. Simply assigning numbers to the nominals to create a 

 



numbered list is a disastrous way to proceed! To see why, consider the variable “marital 
status,” for instance, which might be measured as married, single, widowed, divorced, or 
never married. To simply assign the numbers 1, 2, 3, 4, and 5 to these is totally 
destructive of the natural structure of the data. If it turned out, for instance, that the natural 
order of this variable, when translated, was in fact (on a scale of 0–1) 

 
 

 Never married  
 

 

 0  
 

 

 

 Single  
 

 

 0.1  
 

 

 

 Divorced  
 

 

 0.15  
 

 

 

 Widowed  
 

 

 0.65  
 

 

 

 Married  
 

 

 1  
 

 

 

 

then the “brute force” assignment of numbers from 1–5 not only destroyed the natural 
ordering of these measures, but even if they were in the right order, it would have 
destroyed the interval information. Interval information is contained in the distance 
between the numbers and may be a significant factor in modeling. Except by pure, 
unadulterated luck, all of the structure contained in this variable would have been 
destroyed. Worse than that, some meaningless artificial structure has been forced into the 
data quite arbitrarily! 

 

 
 

 

But what is the “natural order”? The natural order can be found embedded in the system 
of variables. Recall that the data set reflects to some degree the system of the world. As 
such, the data set itself forms a system. Thus, embedded in the data set is a structure that 
reflects an appropriate ordering and distance for categorical values. Assigning values in 
accord with the system embedded in the data reveals the natural ordering. Arbitrary 
assignment not only destroys the order, and any information carried by the variable, but 
actually introduces an artificial pattern to the data. 

 

 
 

 

It is hard to imagine how more damage can be done to the natural ordering of the data 
than by arbitrary number assignment to categoricals. If it is not intuitively clear how 
damaging this might be, imagine working for a company that pays you for set periods of a 
half-day, a day, a half-week, a week, and a month. Perhaps the rate of pay for these 
periods in dollars might be 

 

 
 

 Time period  
 

 

 Rate of pay ($)  
 

 

 

   
 
 

 Half-day  
 

 

 100  
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 Day  
 

 200  
 

 

 Half-week  
 

 

 500  
 

 

 

 Week  
 

 

 1000  
 

 

 

 Half-month  
 

 

 2000  
 

 

 

 Month  
 

 

 4000  
 

 

 

   
 
 

 

This gives a natural order to these measures. Now, not knowing the actual numerical 
values, in building a model the modeler lists these periods alphabetically for convenience 
and assigns numbers to them: 

 

 
 

 Day  
 

 

 1  
 

 

 

 Half-day  
 

 

 2  
 

 

 

 Half-month  
 

 

 3  
 

 

 

 Half-week  
 

 

 4  
 

 

 

 Month  
 

 

 5  
 

 

 

 Week  
 

 

 6  
 

 

 

 

Would you expect this ranking to accurately reflect anything significant about the 
categories? Compare the relationship between the arbitrary ordering and the monetary 
value: 

 

 
 

 Day  
 

 

 1  
 

 
 

 200  
 

 

 

 Half-day  
 

 

 2  
 

 
 

 100  
 

 

 

 Half-month  
 

 

 3  
 

 
 

 2000  
 

 

 

 Half-week  
 

 

 4  
 

 
 

 500  
 

 

 

 Month  
 

 

 5  
 

 
 

 4000  
 

 

 

 Week  
 

 

 6  
 

 
 

 1000  
 

 

 



 

It is clear that the natural order of these ordinal values has been completely destroyed. It 
would, for instance, be impossible to use the arbitrary value assigned to predict how much 
is earned in each period. Thus, the arbitrary assignment has destroyed the information 
carried in the ordinal labels. 

 

 
 

 

Regardless of what arbitrary order is given to the measures—whether it be alphabetic, 
reverse alphabetic, random selection, or just the order they are encountered in the data 
set—the arbitrary assignment of values destroys information content at best. At worst it 
introduces and creates patterns in the data that are not natural and that reflect throughout 
the data set, wreaking havoc with the modeling process. 

 

 
 

 

A data set reflects the real world to some extent. (If not, any model will be useless 
anyway!) Any variables ordinal or higher in information content are, therefore, in an 
appropriate ordering to some extent. The variables in a data set, because they form an 
interlocking system, all have specific relationships to each other. It is quite easy, at least 
for a computer, to reflect the ordering from the ordinal, or higher variables, into the 
nominal and categorical variables, thus recovering the natural ordering. This process is 
not perfect. If domain knowledge is available for a more appropriate ordering, this is 
preferable. Domain expertise reflects far more knowledge of the real world than is 
enfolded in any data set for mining! Most often, such domain knowledge is unavailable or 
unknown. Using the information at hand can help enormously. 

 

 
 

 

So, natural orderings can be recovered, at least to some extent, by looking at the data. In 
a data set that had the pay periods listed in the above tables as categoricals, but without 
numeric values, it is usually possible to recover, at least to some degree, the natural order 
and spacing of the measures. In the event that full recovery cannot be made, it is still 
possible to assign a ranking and position that turn out to be neutral; that is, even if they 
don’t contribute much information, they at least do not distort the data. One of the key 
principles in data preparation is to do as little damage as possible to the natural structure 
in a data set. 

 

 
 

 

Sometimes a nominal variable will fairly easily translate into a single numeric variable. 
This allows translation of the nominal or categorical, one for one, into a numeric value for 
modeling. This could have been done in the pay-period example described above if it was 
possible to recover the value and spacing information. By simply inserting the recovered 
value, a numeric variable replaces the nominal, one for one, when modeling. 

 

 
 

 

Also note that sometimes a categorical value needs to be expanded into more than one 
numeric value for reasons similar to those mentioned above during the discussion of 
increasing the dimensionality of variables. Fortunately, discovering an appropriate 
numeration of categorical values can be completely automated. Chapter 6 includes a 
detailed discussion of the technique. 

 

 

 

 Anachronisms  
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An anachronism is, literally, something out of place in time. Temporal displacement. 
When mining, an anachronistic variable is one that creeps into the variables to be 
modeled, but that contains information not actually available in the data when a prediction 
is needed. 

 

 
 

 

For example, in mining a data set to predict people who will take a money market account 
with a bank, various fields of interest will be set up, one entitled “investor.” This could be a 
binary field with a “1” indicating people who opened a money market account, and a “0” 
for the others. Obviously, this is a field to predict. The data set might also include a field 
entitled “account number” filled in with the issued account number. So far, so good. 
However, if “account number” is included in the predicting variables, since there is only an 
account number when the money market account has been opened, it is clearly 
anachronistic—information not available until after the state of the field to be predicted is 
known. (Such a model makes pretty good predictions, about 100% accurate—always a 
suspicious circumstance!) 

 

 
 

 

“Account number” is a fairly straightforward example, but is based on a real occurrence. 
Easy to spot with hindsight, but when the model has 400–500 variables, it is easy to miss 
one. Other forms of “leakage” of after-the-fact information can easily happen. It can 
sometimes be hard to find where the leakage is coming from in a large model. In one 
telephone company churn application, the variables did not seem to be at all 
anachronistic. However, the models seemed to be too good to be believed. In order to get 
information about their customers, the phone company had built a database accumulated 
over time based on customer interviews. One field was a key that identified which 
interviewer had conducted the interview. It turned out that some interviewers were 
conducting general interviews, and others were conducting interviews after the customer 
had left, or churned. In fact, the interviewer code was capturing information about who 
had churned! Obviously an anachronistic variable, but subtle, and in this case hard to find.

 

 
 

 
One of the best rules of thumb is that if the results seem to good to be true, they probably 
are. Anachronistic variables simply have to be removed. 

 

 

 

 2.6.3  Building Mineable Data Sets  
 
 

 

Looking at data sets involves considering the relationships between variables. There is 
also a natural structure to the interrelationships between variables that is just as critical to 
maintain as it is within variables. Mining tools work on exploring the interactions, or 
relationships, that exist between the collected variables. Unfortunately, simply preparing 
the variables does not leave us with a fully prepared data set. Two separate areas need to 
be looked at in the data set: exposing the information content and getting enough data. 

 

 
 

 
A first objective in preparing the data set is to make things as easy as possible for the 
mining tool. It is to prepare the data in such a way that the information content is best 
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revealed for the tool to see. Why is it important to make the mining tools’ job easier? 
Actually, there are important reasons. A brief discussion follows in the next section. 

 
 

 

Some types of relationships cause problems for modeling tools. A second objective in 
preparing the data set, then, is to obviate the problems where possible. We will look 
briefly at some of those. If it is possible to detect such potentially damaging relationships, 
even without being able to ameliorate them automatically, that is still very useful 
information. The miner may be able to take corrective or remedial action, or at least be 
aware of the problem and make due allowance for it. If there is some automatic action that 
can correct the problem, so much the better. 

 

 

 

 Exposing the Information Content  
 
 

 Since the information is enfolded in the data, why not let the mining tool find it?  
 
 

 

One reason is time. Some data sets contain very complex, involved relationships. Often, 
these complex relationships are known beforehand. Suppose in trying to predict stock 
market performance it is believed that the “trend” of the market is important. If indeed that 
is the case, and the data is presented to a suitable modeling tool in an appropriate way, 
the tool will no doubt develop a “trend detector.” Think, for a moment, of the complexity of 
calculation involved in creating a trend measurement. 

 

 
 

 

A simple measurement of trend might be to determine that if the mean of the last three 
days’ closing prices is higher than the mean of the previous three days’ prices, the trend is 
“up.” If the recent mean is lower than the older mean, the trend is “down.” If the means are 
the same, the trend is “flat.” Mathematically, such a relationship might be expressed as 

 

 

 

 
 

 

 
 

 

where t is trend and p is closing price for day i. This is a modestly complex expression 
yielding a positive or negative number that can be interpreted as measuring trend. For a 
human it takes insight and understanding, plus a knowledge of addition, subtraction, 
multiplication, and division, to devise this measure. An automated learning tool can learn 
this. It takes time, and repeated attempts, but such relationships are not too hard. It may 
take a long time, however, especially if there are a large number of variables supplied to 
the mining tool. The tool has to explore all of the variables, and many possible 
relationships, before this one is discovered. 

 

 
 

 

For this discussion we assumed that this relationship was in fact a meaningful one, and 
that after a while, a mining tool could discover it. But why should it? The relationship was 
already known, and it was known that it was a useful relationship. So the tool would have 
discovered a known fact. Apart from confirmation (which is often a valid and useful reason 
for mining), nothing new has yet been achieved. We could have started from this point, 
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not worked to get here. Giving the tool this relationship to begin with would have sped up 
the process, perhaps very much. The more complex the relationship, the more the speed 
is improved. 

 
 

 

However, a second reason for providing as much help as possible to the tool is much 
more important for the end result, but directly related to the time factor. The reason is 
noise. The longer that training continues, the more likely it is that noise will be learned 
along with the underlying pattern. In the training set, the noisy relationship is every bit as 
real as any other. The tool cannot discriminate, inside the training set, between the noise 
and target patterns. 

 

 
 

 

The relationships in data are known as features of the data. The trend that, for this 
example, is assumed to be a valid relationship is called a predictive feature. Naturally, it’s 
desirable for the tool to learn all of the valid predictive features (or inferential features if it 
is an inferential model that is needed) without learning noise features. However, as 
training continues it is quite possible that the tool learns the noise and thereby misses 
some other feature. This obscuring of one feature by another is called feature swamping. 

 

 
 

 

By including relevant domain knowledge, the mining tool is able to spend its time looking 
for other features enfolded in the data, and not busy itself rediscovering already known 
relationships. In fact, there is a modeling technique that involves building the best model 
prior to overfitting, taking a new data set, using the model to make predictions, and 
feeding the predictions plus new training data into another round of mining. This is done 
precisely to give the second pass with the tool a “leg up” so that it can spend its time 
looking for new features, not learning old ones. 

 

 
 

 

In summary, exposing the information content is done partly to speed the modeling 
process, but also to avoid feature swamping. Searching for meaningful fine structure 
involves removing the coarser structure. In other words, if you want to find gold dust, 
move the rocks out of the way first! 

 

 

 

 Getting Enough Data  
 
 

 

The discussion about preparing variables started with getting sufficient data to be sure 
that there were enough instance values to represent the variable’s actual features. The 
same is true for data sets. Unfortunately, getting enough of each variable to ensure that it 
is representative does not also assure that a representative sample of the data set has 
been captured. Why? Because now we’re interested in the interactions between 
variables, not just the pattern existing within a variable. 

 

 
 

 

Figure 2.6 explains why there is a difference. Consider two variables, instance values of 
one of them plotted on the vertical axis, and the other on the horizontal axis. The marks 
on the axes indicate the range of the individual variables. In addition to distributing the 
individual values on the axes, there is a joint range of values that is shown by the ellipse. 
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This ellipse shows for this hypothetical example where the actual real-world values might 
fall. High values of variable 1 always correspond with low values of variable 2, and vice 
versa. It is quite possible to select joint values that fall only in some restricted part of the 
joint distribution, and yet still cover the full range of the individual variables. One way in 
which this could occur is shown in the shaded part of the ellipse. If joint values were 
selected that fell only inside the shaded area, it would be possible to have the full range of 
each variable covered and yet only cover part of the joint distribution. In fact, in the 
example, half of the joint distribution range is not covered at all. The actual method used 
to select the instance values means that there is only a minute chance that the situation 
used for the illustration would ever occur. However, it is very possible that simply having 
representative distributions for individual variables will not produce a fully representative 
joint distribution for the data set. In order to assure complete coverage of the joint 
distribution, every possible combination of variables has to be checked, and that can 
become impossible very quickly indeed! 

 

 

 

 

 

 
 

 

Figure 2.6  Joint occurrence of two variables may not cover the individual range 
of each. Values falling in only part of the full range, illustrated by half of the ellipse, 
may cover the full range of each variable, but not the full joint range. 

 

   
 

 

 The Combinatorial Explosion  
 
 

 

With five variables, say, the possible combinations are shown in Figure 2.7. You can see 
that the total number of combinations is determined by taking the five variables two at a 
time, then three at a time, then four at a time. So, for any number of variables, the number 
of combinations is the sum of all combinations from two to the total number of variables. 
This number gets very large, very quickly! Table 2.2 shows just how quickly. 

 

 

 



 

 

 

 
 

 
Figure 2.7  Combinations of five variables compared against each other, from 
two at a time andÿ20increasing to five at a time. 

 

   
 

 

 TABLE 2.2  The combinatorial explosion.  
 
 

   
 
 

 Number of variables  
 

 

 Number of combinations  
 

 

 

   
 
 

 5  
 

 

              26  
 

 

 

 7  
 

 

            120  
 

 

 

 9  
 

 

            502  
 

 

 

 20  
 

 

 1,048,555  
 

 

 

 25  
 

 

 33554406  
 

 

 

   
 
 

 

This “blowup” in the number of combinations to consider is known as the combinatorial 
explosion and can very quickly defeat any computer, no matter how fast or powerful. 
(Calculating combinations is briefly described in the Supplemental Material section at the 
end of this chapter.) Because there is no practical way to check for every combination that 
the intervariable variability has been captured for the data set, some other method of 
estimating (technical talk for guessing!) if the variability has been captured needs to be 

 



used. After all, some estimate of variability capture is needed. Without such a measure, 
there is no way to be certain how much data is needed to build a model. 

 
 

 

The expression of certainty is the key here and is an issue that is mentioned in different 
contexts many times in this book. While it may not be possible to have 100% confidence 
that the variability has been captured, it reduces the computational work enormously if 
some lesser degree of confidence is acceptable. Reducing the demanded confidence 
from 100% to 99%, depending on the number of variables, often changes the task from 
impossible to possible but time-consuming. If 98% or 95% confidence is acceptable, the 
estimating task usually becomes quite tractable. While confidence measures are used 
throughout the preparation process, their justification and use are discussed in Chapter 5. 
Chapter 10 includes a discussion on capturing the joint variability of multiple variables. 

 

 

 

 Missing and Empty Values  
 
 

 

As you may recall, the difference between “empty” and “missing” is that the first has no 
corresponding real-world value, while the second has an underlying value that was not 
captured. Determining if any particular value is empty rather than missing requires domain 
knowledge and cannot be automatically detected. If possible, the miner should 
differentiate between the two in the data set. Since it is impossible to automatically 
differentiate between missing and empty, if the miner cannot provide discriminating 
information, it is perforce necessary to deal with all missing values in a similar way. In this 
discussion, they will all be referred to as missing. 

 

 
 

 

Some mining tools use techniques that do not require the replacement of missing values. 
Some are able to simply ignore the missing value itself, where others have to ignore the 
instance (record) altogether. Other tools cannot deal with missing values at all, and have 
to have some default replacement for the missing value. Default replacement techniques 
are often damaging to the structure of the data set. The discussion on numerating 
categorical values discusses how arbitrary value replacement can damage information 
content. 

 

 
 

 

The general problem with missing values is twofold. First, there may be some information 
content, predictive or inferential, carried by the actual pattern of measurements missing. 
For example, a credit application may carry useful information in noting which fields the 
applicant did not complete. This information needs to be retained in the data set. 

 

 
 

 

The second problem is in creating and inserting some replacement value for the missing 
value. The objective is to insert a value that neither adds nor subtracts information from 
the data set. It must introduce no bias. But if it introduces no new information, why do it? 

 

 
 

 

First, default replacement methods often do introduce bias. If not correctly determined, a 
poorly chosen value adds information to the data set that is not really present in the world, 
thus distorting the data. Adding noise and bias of this sort is always detrimental to 
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modeling. If a suitable value can be substituted for the missing values, it prevents the 
distortion introduced by poorly chosen defaults. 

 
 

 

Second, for those modeling tools that have to ignore the whole instance when one of the 
values is missing, plugging the holes allows the instance to be used. That instance may 
carry important information in the values that are present, and by plugging the holes that 
information is made available to the modeling tool. 

 

 
 

 

There are several methods that can be used to determine information-neutral values to 
replace the missing values. Chapter 8 discusses the issues and techniques used. All of 
them involve caveats and require knowledgeable care in use. 

 

 
 

 

Although the values of individual variables are missing, this is an issue in preparing the 
data set since it is only by looking at how the variable behaves vis-…-vis the other 
variables when it is present that an appropriate value can be determined to plug in when it 
is missing. Of course, this involves making a prediction, but in a very careful way such that 
no distortion is introduced—at least insofar as that is possible. 

 

 

 

 The Shape of the Data Set  
 
 

 
The question of the shape of the data set is not a metaphorical one. To understand why, 
we have to introduce the concept of state space. 

 

 
 

 

State space can be imagined to be a space like any other—up to a point. It is called state 
space because of the nature of the instances of data. Recall that each instance captures 
a number of measurements, one per variable, that were measured under some validating 
circumstance. An instance, then, represents the state of the object at validation. That is 
where the “state” part of the phrase comes from. It is a space that reflects the various 
states of the system as measured and captured in the instance values. 

 

 
 

 

That’s fine, but where does “space” come from? Figure 2.6, used earlier to discuss the 
variability of two variables, shows a graphical representation of them. One variable is 
plotted on one axis, and the other variable is plotted on the other axis. The values of the 
combined states of the two variables can easily be plotted as a single point on the graph. 
One point represents both values simultaneously. If there were three variables’ values, 
they could be plotted on a three-dimensional graph, perhaps like the one shown in Figure 
2.8. Of course, this three-dimensional object looks like something that might exist in the 
world. So the two- and three-dimensional representations of the values of variables can 
be thought of as determining points in some sort of space. And indeed they do—in state 
space. 

 

 

 



 

 

 

 
 

 
Figure 2.8  Points plotted in a 3D phase space (left) can be represented by a 
manifold (right). 

 

   
 
 

 

State space can be extended to as many dimensions as there are variables. It is 
mathematically and computationally fairly easy to deal with state spaces of large numbers 
of dimensions. For description, it is very difficult to imagine what is going on in 
high-dimensional spaces, except by analogy with two- and three-dimensional spaces. 
When describing what is going on in state space, only two or three dimensions will be 
used here. 

 

 
 

 

The left image in Figure 2.8 shows a three-dimensional state space, actually an x, y, z plot 
of the values of three variables. Wherever these points fall, it is possible to fit a sheet (a 
flexible two-dimensional plane) through them. If the sheet is flexible enough, it is possible 
to bend it about in state space until it best fits the distribution of points. (We will leave 
aside the issue of defining “best” here.) The right-hand image in Figure 2.8 shows how 
such a sheet might look. There may be some points that do not fall onto the sheet exactly 
when the best fit is made, making a sort of “fuzz” around the sheet. 

 

 
 

 

State space is not limited to three dimensions. However, a sheet squeezed into two 
dimensions is called a line. What would it be called in four dimensions? Or five? Or six? A 
general name for the n-dimensional extension of a line or sheet is a manifold. It is 
analogous to a flexible sheet as it exists in three dimensions, but it can be spread into as 
many dimensions as required. 

 

 
 

 

In state space, then, the instance values can all be represented as points defined by the 
values of the variables—one variable per dimension. A manifold can in some “best fit” way 
be spread through state space so it represents the distribution of the points. The fit of the 
manifold to the points may not be perfect, so that the points cluster about the manifold’s 
surface, forming “fuzz.” 

 

 
 

 

The actual shape of the manifold may be exceedingly complex, and in some sense, 
mining tools are exploring the nature of the shape of the manifold. In the same way that 
the X, Y graph in two dimensions represents the relationship of one variable to another, 
so the manifold represents the joint behavior of the variables, one to another, and one to 
all of the others. However, we are now in a position to examine the question asked at the 
beginning of this section: What shape is the data in? 
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 The question now becomes one of characterizing the manifold.  
 
 

  
• 
 
If, for instance the “fuzz” is such that the manifold hardly represents the data at all over 
some portion of its surface, modeling in that area is not likely to produce good results. 

 

 
 

  

• 
 

In another area there may be very few data points around in state space to define the 
shape of the manifold. Here, explore the shape as we might, the results will be poor too, 
but for a different reason than described above. 

 

 
 

  

• 
 

Elsewhere the shape of the manifold may be well defined by the data, but have 
problematic shapes. For instance, it might be folded over on itself rather like a breaking 
wave. Many modeling tools simply cannot deal with such a shape. 

 

 
 

  
• 
 
It is possible that the manifold has donutlike holes in it, or higher-dimensional forms of 
them anyway. 

 

 
 

  •  There could be tunnels through the manifold.  
 
 

 

There are quite a number of problems with data sets that can be described as problems 
with the shape of the manifold. In several of these cases, adjustments can be made. 
Sometimes it is possible to change the shape of the manifold to make it easier to explore. 
Sometimes the data can be enriched or enhanced to improve the manifold definition. 

 

 
 

 

Many of these techniques for evaluating the data for problems are a part of data surveying. 
The data survey is made prior to modeling to better understand the problems and limitations 
of the data before mining. Where this overlaps with data preparation is that sometimes 
adjustments can be made to ameliorate problems before they arise. Chapter 6 explores the 
concept of state space in detail. Chapter 11 discusses the survey and those survey 
techniques that overlap with data preparation. In itself, making the survey is as large a topic 
as data preparation, so the discussion is necessarily limited. 

 

 
2.7  Summary  
 
 

 

This chapter has looked at how the world can be represented by taking measurements 
about objects. It has introduced the ideas of data and the data set, and various ways of 
structuring data in order to work with it. Problems that afflict the data and the data set (and 
also the miner!) were introduced. All of this data, and the data set, enfolds information, 
which is the reason for mining data in the first place. 

 

 
 

 

The next chapter looks at the process of mining. Just as this chapter briefly examined the 
nature of data to provide a framework for the rest of the book, so the next chapter introduces 
the nature of what it is to prepare data for mining. And just as this chapter did not solve the 
problems discussed, so too the next chapter does not solve all of the problems of mining or 



data preparation! Solving the problems discussed must wait until later chapters when this 
introductory look at the territory is complete. This point is halfway through the introduction to 
the nature of the territory. We’ve looked at how data connects to the world, and now turn our 
attention to how preparation addresses data. 

 

 
Supplemental Material  
 

 

 Combinations  
 
 

 
The formula for determining how many combinations may be taken from n objects, r at a 
time, is 

 

 
 

 
 

 

 
 

 

The symbol ! indicates that the factorial of the quantity is to be used. A factorial of any 
number may be found by multiplying the number by one less than itself, and one less than 
that, and so on from the number to 1. So 

 

 
 

 8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40,320  
 
 

 If n = 5 and r = 3, then  
 
 

 
 

 

 
 

 
In determining the full number of variable comparisons needed for 10 variables, all of the 
combinations of variables from 2 to 10 have to be summed: 

 

 
 

 
 

 
 
 

 A more convenient way of writing this expression is to use the summation notation:  
 
 

 

 

 

 
 

 

The sigma symbol “x” indicates repetitive addition. The “i = 2” indicates that in the 
expression to the right of the sigma, the symbol i should first be replaced with a “2.” The 
“10” above the sigma indicates that the replacement should continue until 10 is reached. 
The expression to the right of the sigma is the notation indicating combination. 

 

 
 

 Thus it is that  
 
 



 

 

 

 
 

 The only difference is that the sigma notation is more compact. 
 

 



 

Chapter 3: Data Preparation as a Process  

 

 

 Overview  
 
 

 

Data preparation has been placed in the context of data exploration, in which the problem 
to be solved, rather than the technology, is paramount. Without identifying the problem to 
solve, it is hard to define how to extract value from the data mining activities that follow. 
Equally important is specifying the form of a solution. Without a firm idea of what success 
looks like, it is hard to determine if indeed the result found, and the form that it is delivered 
in, have actually succeeded. Having specified what a suitable solution looks like, and 
collected or discovered appropriate data, you can begin the process of data mining. 

 

 
 

 

Data mining is about working with data, which to a greater or lesser degree reflects some 
real-world activity, event, or object. In this discussion of data preparation for mining, there 
is a close focus on exploring more exactly what data represents, how and why it is 
transformed, and what can be done with and said about it. Much more will be said about 
data as the techniques for manipulating it are introduced. However, before examining how 
and why data is manipulated, a missing piece still remains to be addressed. Data needs 
to be prepared so that the information enfolded within it is most easily accessed by the 
mining tools. The missing piece, the bridge to understanding, is the explanation of what 
the overall process looks like. The overview of the process as a whole provides a 
framework and a reference to understand where each component fits into the overall 
design. This chapter provides the overview. Most detail is deliberately left out so that the 
process may be seen holistically. The questions that must arise from such a quick dash 
across the landscape of data preparation are answered in later chapters when each area 
is revisited in more detail. 

 

 
 

 

Preparation of data is not a process that can be carried out blindly. There is no automatic 
tool that can be pointed at a data set and told to just “fix” the data. Maybe one day, when 
artificial intelligence techniques are a good bit more intelligent than they are today, fully 
automatic data preparation will become more feasible. Until that day there will remain as 
much art as science in good data preparation. However, just because there is art involved 
in data preparation does not mean that powerful techniques are not available or useful. 

 

 
 

 

Because data preparation techniques cannot be completely automated, it is necessary to 
apply them with knowledge of their effect on the data being prepared. Understanding their 
function and applicability may be more important than understanding how the tools 
actually work. The functionality of each tool can be captured in computer code and 
regarded as a “black box.” So long as the tools perform reliably and as intended, 
knowledge of how the transformations are actually performed is far less important than 
understanding the appropriate use and limitations of each of the encapsulated 
techniques. 
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Art there may be, but successful practice of the art is based on understanding the overall 
issues and objectives, and how all the pieces relate together. Gaining that understanding of 
the broad picture is the purpose of this chapter. It connects the description of the data 
exploration process, data, data sets, and mining tools with data preparation into a whole. 
Later chapters discuss the detail of what needs to be done to prepare data, and how to do it. 
This chapter draws together these themes and discusses when and why particular 
techniques need to be applied and how to decide which technique, from the variety 
available, needs to be used. 

 

 
3.1  Data Preparation: Inputs, Outputs, Models, and 
Decisions 

 

 
 

 

The process takes inputs and yields outputs. The inputs consist of raw data and the 
miner’s decisions (selecting the problem, possible solution, modeling tools, confidence 
limits, etc.). The outputs are two data sets and the Prepared Information Environment 
(PIE) modules. Figure 3.1 illustrates this. The decisions that have to be made concern the 
data, the tools to be used for mining, and those required by the solution. 

 

 

 

 

 

 

 
 

 
Figure 3.1  The data preparation process illustrating the major decisions, data, 
and process inputs and outputs. 

 

   
 
 

 This section explains  
 
 

  •  What the inputs are, what the outputs are, what they do, and why they’re needed  
 
 

  •  How modeling tools affect what is done  
 
 

  •  The stages of data preparation and what needs to be decided at each stage  
 
 

 
The fundamental purpose of data preparation is to manipulate and transform raw data so 
that the information content enfolded in the data set can be exposed, or made more easily 

 



accessible. The best way to actually make the changes depends on two key decisions: 
what the solution requires and what the mining tool requires. While these decisions affect 
how the data is prepared, the inputs to and outputs from the process are not affected. 

 
 

 

During this overview of data preparation, the actual inner workings of the preparation 
process will be regarded as a black box. The focus here is in what goes into and what 
comes out of the preparation process. By ignoring the details of the actual preparation 
process at this stage, it is easier to see why each of the inputs is needed, and the use of 
each of the output pieces. The purpose here is to try to understand the relationships 
between all of the pieces, and the role of each piece. With that in place, it is easier to 
understand the necessity of each step of the preparation process and how it fits into the 
whole picture. 

 

 
 

 At the very highest level, mining takes place in three steps:  
 
 

  1.  Prepare the data  
 
 

  2.  Survey the data  
 
 

  3.  Model the data  
 
 

 

Each of these steps has different requirements in the data preparation process. Each step 
takes place separately from the others, and each has to be completed before the next can 
begin. (Which doesn’t mean that the cycle does not repeat when results of using the 
model are discovered. Getting the model results might easily mean that the problem or 
solution needs to be redefined, or at least that more/different/better data is found, which 
starts off the cycle afresh.) 

 

 

 

 3.1.1  Step 1: Prepare the Data  
 
 

 

Figure 3.1 shows the major steps in the data preparation process. Problem selection is a 
decision-and-selection process affecting both solution selection and data selection. This 
has been extensively discussed in Chapter 1 and will not be reiterated here. Modeling tool 
selection is driven by the nature of the specified solution and by the data available, which 
is discussed later in this chapter in “Modeling Tools and Data Preparation.” Chapter 12 
discusses tool use and the effect of using prepared data with different techniques. 

 

 
 

 

Some initial decisions have to be made about how the data is to be prepared. In part, the 
nature of the problem determines tool selection. If rules are needed, for example, it is 
necessary to select a tool that can produce them. In turn, tool selection may influence how 
the data is prepared. Inspection of the data may require reformatting or creating some 
additional features. Looking at the preliminary decisions that need to be made before 
applying the appropriate techniques is covered in part in this chapter and also in the next.
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The miner must determine how the data is to be appropriately prepared. This is based on 
the nature of the problem, the tools to be used, and the types of variables in the data set. 
With this determined, preparation begins. Preparation has to provide at least four 
separate components as outputs: 

 

 
 

  •  A training data set  
 
 

  •  A testing data set  
 
 

  •  A PIE-I (Prepared Information Environment Input module)  
 
 

  •  A PIE-O (Prepared Information Environment Output module)  
 
 

 

Each of these is a necessary output and has a specific function, purpose, and use. Each 
is needed because of the nature of data sets extracted from the real world. These four 
components are the absolute minimum required for mining, and it is likely that additional 
data sets will be needed. For example, a validation data set may also be considered 
essential. It is not included in the list of four essential components since valid models can 
be created without actually validating them at the time the miner creates them. If there is 
insufficient data on hand for three representative data sets, for instance, the model could 
be validated later when more data is available. But in some sense, each of these four 
components is indispensable. Why these four? 

 

 
 

 

The training data set is required to build a model. A testing data set is required for the 
modeling tool to detect overtraining. The PIE-I is what allows the model to be applied to 
other data sets. The PIE-O translates the model’s answers into applicable measured 
values. Since these are the critical output components of the data preparation process, 
we must look at each of these four components more closely. 

 

 
 

 

A mining tool’s purpose is to learn the relationships that exist between the variables in the 
data set. Preparation of the training data set is designed to make the information enfolded 
in the data set as accessible and available as possible to the modeling tool. So what’s the 
purpose of the test data set? 

 

 
 

 

Data sets are not perfect reflections of the world. Far from it. Even if they were, the nature 
of the measuring process necessarily captures uncertainty, distortion, and noise. This 
noise is integral to the nature of the world, not just the result of mistakes or poor 
procedures. There are a huge variety of errors that can infect data. Many of these errors 
have already been discussed in Chapter 2—for instance, measurement error. Some of 
these errors are an inextricable part of the data and cannot be removed or “cleaned.” The 
accumulated errors, and other forms of distortion of “true” values, are called noise. The 
term “noise” comes from telephony, where the added error to the true signal is actually 
heard as the noise of a hiss in a telephone earpiece. AM radio also suffers from noise in 
the transmitted signal, especially if lightning is nearby. In general, noise simply means 
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distortion of the original signal. Somehow a modeling tool must deal with the noise in the 
data. 

 
 

 

Each modeling tool has a different way of expressing the nature of the relationships that it 
finds between variables. But however it is expressed, some of the relationship between 
variables exists because of the “true” measurement and some part is made up of the 
relationship caused by the noise. It is very hard, if not impossible, to precisely determine 
which part is made up from the underlying measurement and which from the noise. 
However, in order to discover the “true” underlying relationship between the variables, it is 
vital to find some way of estimating which is relationship and which is noise. 

 

 
 

 

One problem with noise is that there is no consistent detectable pattern to it. If there were, 
it could be easily detected and removed. So there is an unavoidable component in the 
training set that should not be characterized by the modeling tool. There are ways to 
minimize the impact of noise that are discussed later, but there always remains some 
irreducible minimum. In fact, as discussed later, there are even circumstances when it is 
advantageous to add noise to some portion of the training set, although this deliberately 
added noise is very carefully constructed. 

 

 
 

 

Ideally, a modeling tool will learn to characterize the underlying relationships inside the 
data set without learning the noise. If, for example, the tool is learning to make predictions 
of the value of some variable, it should learn to predict the true value rather than some 
distorted value. During training there comes a point at which the model has learned the 
underlying relationships as well as is possible. Anything further learned from this point will
be the noise. Learning noise will make predictions from data inside the training set better. 
In any two subsets of data drawn from an identical source, the underlying relationship will 
be the same. The noise, on the other hand, not representing the underlying relationship, 
has a very high chance of being different in the two data sets. In practice, the chance of 
the noise patterns being different is so high as to amount to a practical certainty. This 
means that predictions from any data set other than the training data set will very likely be 
worse as noise is learned, not better. It is this relationship between the noise in two data 
sets that creates the need for another data set, the test data set. 

 

 
 

 

To illustrate why the test data set is needed, look at Figure 3.2. The figure illustrates 
measurement values of two variables; these are shown in two dimensions. Each data 
point is represented by an X. Although an X is shown for convenience, each X actually 
represents a fuzzy patch on the graph. The X represents the actual measured value that 
may or may not be at the center of the patch. Suppose the curved line on the graph 
represents the underlying relationship between the two variables. The Xs cluster about 
the line to a greater or lesser degree, displaced from it by the noise in the relationship. 
The data points in the left-hand graph represent the training data set. The right-hand 
graph represents the test data set. The underlying relationship is identical in both data 
sets. The difference between the two data sets is only the noise added to the 
measurements. The noise means that the actual measured data points are not identically 
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positioned in the two data sets. However, although different in values, note that by using 
the appropriate data preparation techniques discussed later in the book (see, for example, 
Chapter 11), it can be known that both data sets do adequately represent the underlying 
relationship even though the relationship itself is not known. 

 

 

 

 

 

 
 

 
Figure 3.2  The data points in the training and test data sets with the underlying 
relationship illustrated by the continuous curved lines. 

 

   
 
 

 

Suppose that some modeling tool trains and tests on the two data sets. After each attempt 
to learn the underlying relationship, some metric is used to measure the accuracy of the 
prediction in both the training and test data sets. Figure 3.3 shows four stages of training, 
and also the fit of the relationship proposed by the tool at a particular stage. The graphs 
on the left represent the training data set; the graphs on the right represent the test data 
set. 

 

 

 

 

 

 

 
 

 

Figure 3.3  The four stages of training with training data sets (left) and test data 
sets (right): poor fit (a), slightly improved fit due to continued training (b), 
near-perfect fit (c), and noise as a result of continued training beyond best fit point 
(d). 

 

   
 



 

 

In Figure 3.3(a), the relationship is not well learned, and it fits both data sets about equally 
poorly. After more training, Figure 3.3(b) shows that some improvement has occurred in 
learning the relationship, and again the error is now lower in both data sets, and about 
equal. In Figure 3.3(c), the relationship has been learned about as well as is possible from 
the data available, and the error is low, and about equal in both data sets. In Figure 3.3(d), 
learning has continued in the training (left) data set, and an almost perfect relationship 
has been extracted between the two variables. The problem is that the modeling tool has 
learned noise. When the relationship is tried in the test (right) data set, it does not fit the 
data there well at all, and the error measure has increased. 

 

 
 

 

As is illustrated here, the test data set has the same underlying “true” relationships as the 
training data set, but the two data sets contain noise relationships that are different. 
During training, if the predictions are tested in both the training and test data sets, at first 
the predictions will improve in both. So the tool is improving its real predictive power as it 
learns the underlying relationships and improves its performance based on those 
relationships. In the example shown in Figure 3.3, real-world improvement continues until 
the stage shown in Figure 3.3(c). At that point the tool will have learned the underlying 
relationships as well as the training data set allows. Any further improvement in prediction 
will then be caused by learning noise. Since the noise differs between the training set and 
the test set, this is the point at which predictive performance will degrade in the test set. 
This degradation begins if training continues after the stage shown in Figure 3.3(c), and 
ends up with the situation shown in Figure 3.3(d). The time to stop learning is at the stage 
in Figure 3.3(c). 

 

 
 

 

As shown, the relationships are learned in the training data set. The test data set is used 
as a check to try to avoid learning noise. Here is a very important distinction: the training 
data set is used for discovering relationships, while the test data set is used for 
discovering noise. The instances in the test data set are not valid for independently testing 
any predictions. This is because the test data has in fact been used by the modeling tool 
as part of the training, albeit for noise. In order to independently test the model for 
predictive or inferential power, yet another data set is needed that does not include any of 
the instances in either the training or test data sets. 

 

 
 

 

So far, the need for two learning sets, training and test, has been established. It may be 
that the miner will need another data set for assessing predictive or inferential power. The 
chances are that all of these will be built from the same source data set, and at the same 
time. But whatever modifications are made to one data set to prepare it for modeling must 
also be made to any other data set. This is because the mining tool has learned the 
relationships in prepared data. The tool has to have data prepared in all data sets in an 
identical way. Everything done in one has to be done in all. But what do these prepared 
data sets look like? How does the preparation process alter the data? 

 

 
 

 Figure 3.4 shows the data view of what is happening during the data preparation process.  
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The raw training data in this example has a couple of categorical values and a couple of 
numeric values. Some of the values are missing. This raw data set has to be converted 
into a format useful for making predictions. The result is that the training and test sets will 
be turned into all numeric values (if that is what is needed) and normalized in range and 
distribution, with missing values appropriately replaced. These transformations are 
illustrated on the right side of Figure 3.4. It is obvious that all of the variables are present 
and normalized. (Figure 3.4 also shows the PIE-I and PIE-O. These are needed for later 
use.) 

 

 

 

 

 

 
 

 
Figure 3.4  Data preparation process transforms raw data into prepared training 
and test sets, together with the PIE-I and PIE-O modules. 

 

   
 

 

 3.1.2  Step 2: Survey the Data  
 
 

 

Mining includes surveying the data, that is, taking a high-level overview to discover what 
is contained in the data set. Here the miner gains enormous and powerful insight into the 
nature of the data. Although this is an essential, critical, and vitally important part of the 
data mining process, we will pass quickly over it here to continue the focus on the process 
of data preparation. 

 

 

 

 3.1.3  Step 3: Model the Data  
 
 

 

In this stage, the miner applies the selected modeling tool to the training and test data 
sets to produce the desired predictive, inferential, or other model desired. (See Figure 
3.5.) Since this book focuses on data preparation, a discussion of modeling issues, 
methods, and techniques is beyond the present scope. For the purposes here it will be 
assumed that the model is built. 

 

 

 



 

 

 

 
 

 Figure 3.5  Mining the inferential or predictive model.  

   
 

 

 3.1.4  Use the Model  
 
 

 

Having created a satisfactory model, in order to be of practical use it must be applied to 
“live” data, also called the execution data. Presumably, it is very similar in character to the 
training and test data. It should, after all, be drawn from the same population (discussed in 
Chapter 5), or the model is not likely to be applicable. Because the execution data is in its 
“raw” form, and the model works only with prepared data, it is necessary to transform the 
execution data in the same way that the training and test data were transformed. That is 
the job of the PIE-I: it takes execution data and transforms it as shown in Figure 3.6(a). 
Figure 3.6(b) shows what the actual data might look like. In the example it is variable V4 
that is missing and needs to be predicted. 

 

 

 

 

 

 

 
 

 
Figure 3.6  Run-time prediction or inferencing with execution data set (a). Stages 
that the data goes through during actual inference/prediction process (b). 

 

   
 
 

 
Variable V4 is a categorical variable in this example. The data preparation, however, 
transformed all of the variables into scaled numeric values. The mined model will 

 



therefore predict the result in the form of scaled numeric values. However, the prediction 
must be given as a categorical value. This is the purpose of the PIE-O. It “undoes” the 
effect of the PIE-I. In this case, it converts the mined model outputs into the desired 
categorical values. 

 
 

 

The whole purpose of the two parts of the PIE is to sit between the real-world data, cleaning 
and preparing the incoming data stream identically with the way the training and test sets 
were prepared, and converting predicted, transformed values back into real-world values. 
While the input execution data is shown as an assembled file, it is quite possible that the 
real-world application has to be applied to real-time transaction data. In this case, the PIE 
dynamically prepares each instance value in real time, taking the instance values from 
whatever source supplies them. 

 

 
3.2  Modeling Tools and Data Preparation  
 
 

 

As always, different tools are valuable for different jobs. So too it is with the modeling tools 
available. Prior to building any model, the first two questions asked should be: What do 
we need to find out? and Where is the data? Deciding what to find out leads to the next 
two questions: Exactly what do we want to know? and In what form do we want to know 
it? (These are issues discussed in Chapter 1.) A large number of modeling tools are 
currently available, and each has different features, strengths, and weaknesses. This is 
certainly true today and is likely to be even more true tomorrow. The reason for the 
greater differences tomorrow lies in the way the tools are developing. 

 

 
 

 

For a while the focus of data mining has been on algorithms. This is perhaps natural since 
various machine-learning algorithms have competed with each other during the early, 
formative stage of data exploration development. More and more, however, makers of 
data exploration tools realize that the users are more concerned with business problems 
than algorithms. The focus on business problems means that the newer tools are being 
packaged to meet specific business needs much more than the early, general-purpose 
data exploration tools. There are specific tools for market segmentation in database 
marketing, fraud detection in credit transactions, churn management for telephone 
companies, and stock market analysis and prediction, to mention only four. However, 
these so-called “vertical market” applications that focus on specific business needs do 
have drawbacks. In becoming more capable in specific areas, usually by incorporating 
specific domain knowledge, they are constrained to produce less general-purpose output. 
As with most things in life, the exact mix is a compromise. 

 

 
 

 

What this means is that the miner must take even more care now than before to 
understand the requirements of the modeling tool in terms of data preparation, especially 
if the data is to be prepared “automatically,” without much user interaction. Consider, for 
example, a futures-trading automation system. It may be intended to predict the 
movement, trend, and probability of profit for particular spreads for a specific futures 
market. Some sort of hybrid model works well in such a scenario. If past and present 
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market prices are to be included, they are best regarded as continuous variables and are 
probably well modeled using a neural-network-based approach. The overall system may 
also use input from categorized news stories taken off a news wire. News stories are 
read, categorized, and ranked according to some criteria. Such categorical data is better 
modeled using one of the rule extraction tools. The output from both of these tools will 
itself need preparation before being fed into some next stage. The user sees none of the 
underlying technicality, but the builder of the system will have to make a large number of 
choices, including those about the optimal data preparation techniques to meet each 
objective. Categorical data and numeric data may well, and normally do, require different 
preparation techniques. 

 
 

 

At the project design stage, or when directly using general-purpose modeling tools, it is 
important to be aware of the needs, strengths, and weaknesses of each of the tools 
employed. Each tool has a slightly different output. It is harder to produce humanly 
comprehensible rules from any neural network product than from one of the rule 
extraction variety, for example. Almost certainly it is possible to transform one type of 
output to another use—to modify selection rules, for instance, into providing a score—but 
it is frequently easier to use a tool that provides the type of output required.  

 

 

 

 3.2.1  How Modeling Tools Drive Data Preparation  
 
 

 

Modeling tools come in a wide variety of flavors and types. Each tool has its strengths and 
weaknesses. It is important to understand which particular features of each tool affect 
how data is prepared. 

 

 
 

 

One main factor by which mining tools affect data preparation is the sensitivity of the tool 
to the numeric/categorical distinction. A second is sensitivity to missing values, although 
this sensitivity is largely misunderstood. To understand why these distinctions are 
important, it is worth looking at what modeling tools try to do. 

 

 
 

 

The way in which modeling tools characterize the relationships between variables is to 
partition the data such that data in particular partitions associates with particular 
outcomes. Just as some variables are discrete and some variables are continuous, so 
some tools partition the data continuously and some partition it discretely. In the examples 
shown in Figures 3.2 and 3.3 the learning was described as finding some “best-fit” line 
characterizing the data. This actually describes a continuous partitioning in which you can 
imagine the partitions are indefinitely small. In such a partitioning, there is a particular 
mathematical relationship that allows prediction of output value(s) depending on how far 
distant, and in exactly what direction (in state space), the instance value lies from the 
optimum. Other mining tools actually create discrete partitions, literally defining areas of 
state space such that if the predicting values fall into that area, a particular output is 
predicted. In order to examine what this looks like, the exact mechanism by which the 
partitions are created will be regarded as a black box. 
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We have already discussed in Chapter 2 how each variable can be represented as a 
dimension in state space. For ease of description, we’ll use a two-dimensional state 
space and only two different types of instances. In any more realistic model there will 
almost certainly be more, maybe many more, than two dimensions and two types of 
instances. Figure 3.7 shows just such a two-dimensional space as a graph. The Xs and 
Os in Figure 3.7(a) show the positions of instances of two different instance types. It is the 
job of the modeling tool to find optimal ways of separating the instances. 

 

 

 

 

 

 

 
 

 

Figure 3.7  Modeling a data set: separating similar data points (a), straight lines 
parallel to axes of state space (b), straight lines not parallel to axes of state space 
(c), curves (d), closed area (e), and ideal arrangement (f). 

 

   
 
 

 

Various “cutting” methods are directly analogous to the ways in which modeling tools 
separate data. Figure 3.7(b) shows how the space might be cut using straight lines 
parallel to the axes of the graph. Figure 3.7(c) also shows cuts using straight lines, but in 
this figure they are not constrained to be parallel to the axes. Figure 3.7(d) shows cuts 
with lines, but they are no longer constrained to be straight. Figure 3.7(e) shows how 
separation may be made using areas rather than lines, the areas being outlined.  

 

 
 

 

Whichever method or tool is used, it is generally true that the cuts get more complex 
traveling from Figure 3.7(b) to 3.7(e). The more complex the type of cut, the more 
computation it takes to find exactly where to make the cut. More computation translates 
into “longer.” Longer can be very long, too. In large and complex data sets, finding the 
optimal places to cut can take days, weeks, or months. It can be a very difficult problem to 
decide when, or even if, some methods have found optimal ways to divide data. For this 
reason, it is always beneficial to make the task easier by attempting to restructure the 
data so that it is most easily separated. There are a number of “rules of thumb” that work 
to make the data more tractable for modeling tools. Figure 3.7(f) shows how easy a time 
the modeling tool would have if the data could be rearranged as shown during 

 



preparation! Maybe automated preparation cannot actually go as far as this, but it can go 
at least some of the way, and as far as it can go is very useful. 

 
 

 

In fact, the illustrations in Figure 3.7 do roughly correspond with the ways in which 
different tools separate the data. They are not precisely accurate because each vendor 
modifies “pure” algorithms in order to gain some particular advantage in performance. It is 
still worthwhile considering where each sits, since the underlying method will greatly affect 
what can be expected to be learned from each tool. 

 

 

 

 3.2.2  Decision Trees  
 
 

 

Decision trees use a method of logical conjunctions to define regions of state space. 
These logical conjunctions can be represented in the form of “If . . . then” rules. Generally 
a decision tree considers variables individually, one at a time. It starts by finding the 
variable that best divides state space and creating a “rule” to specify the split. The 
decision tree algorithm finds for each subset of the instances another splitting rule. This 
continues until the triggering of some stopping criterion. Figure 3.8 illustrates a small 
portion of this process. 

 

 

 

 

 

 

 
 

 Figure 3.8  A decision tree cutting state space.  

   
 
 

 

Due to the nature of the splitting rules, it can easily be seen that the splits have to be 
parallel to one of the axes of state space. The rules can cut out smaller and smaller 
pieces of state space, but always parallel to the axes. 

 

 

 

 3.2.3  Decision Lists  
 
 

 

Decision lists also generate “If . . . then” rules, and graphically appear similar to decision 
trees. However, decision trees consider the subpopulation of the “left” and “right” splits 
separately and further split them. Decision lists typically find a rule to well characterize 

 



some small portion of the population that is then removed from further consideration. At 
that point it seeks another rule for some portion of the remaining instances. Figure 3.9 
shows how this might be done. 

 

 

 

 

 

 
 

 
Figure 3.9  A decision list inducing rules that cover portions of the remaining data 
until all instances are accounted for. 

 

   
 
 

 

(Although this is only the most cursory look at basic algorithms, it must be noted that 
many practical tree and list algorithms at least incorporate techniques for allowing the cuts 
to be other than parallel to the axes.) 

 

 

 

 3.2.4  Neural Networks  
 
 

 

Neural networks allow state space to be cut into segments with cuts that are not parallel to 
the axes. This is done by having the network learn a series of “weights” at each of the 
“nodes.” The result of this learning is that the network produces gradients, or sloping lines, 
to segment state space. In fact, more complex forms of neural networks can learn to fit 
curved lines through state space, as shown in Figure 3.10. This allows remarkable 
flexibility in finding ways to build optimum segmentation. Far from requiring the cuts to be 
parallel to the axes, they don’t even have to be straight. 

 

 

 



 

 

 

 
 

 Figure 3.10  Neural network training.  

   
 
 

 

As the cuts become less linear, and not parallel to the axes, it becomes more and more 
difficult to express the rules in the form of logical conjunctions—the “If . . . then” rules. The 
expression of the relationships becomes more like fairly complex mathematical equations. 
A statistician might say they resemble “regression” equations, and indeed they do. 

 

 
 

 
(Chapter 10 takes a considerably more detailed look at neural networks, although not for 
the purposes of predictive or inferential modeling.) 

 

 

 

 3.2.5  Evolution Programs  
 
 

 

In fact, using a technique called evolution programming, it is possible to perform a type of 
regression known as symbolic regression. It has little in common with the process of 
finding regression equations that is used in statistical analysis, but it does allow for the 
discovery of particularly difficult relationships. It is possible to use this technique to 
discover the equation that would be needed to draw the curve in Figure 3.7(e). 

 

 

 

 3.2.6  Modeling Data with the Tools  
 
 

 

There are more techniques available than those listed here; however, these are fairly 
representative of the techniques used in data mining tools available today. Demonstration 
versions of commercial tools based on some of these ideas are available on the CD-ROM 
accompanying this book. They all extend the basic ideas in ways the vendor feels 
enhances performance of the basic algorithm. These tools are included as they generally 
will benefit from having the data prepared in different ways. 

 

 
 

 
Considered at a high level, modeling tools separate data using one of two approaches. 
The first way that tools use is to make a number of cuts in the data set, separating the 

 



total data set into pieces. This cutting continues until some stopping criterion is met. The 
second way is to fit a flexible surface, or at least a higher-dimensional extension of one (a 
manifold), between the data points so as to separate them. It is important to note that in 
practice it is probably impossible, with the information contained in the data set, to 
separate all of the points perfectly. Often, perfect separation is not really wanted anyway. 
Because of noise, the positioning of many of the points may not be truly representative of 
where they would be if it were possible to measure them without error. To find a perfect fit 
would be to learn this noise. As discussed earlier, the objective is for the tool to discover 
the underlying structure in the data without learning the noise. 

 
 

 

The key difference to note between tools is that the discrete tools—those that cut the data 
set into discrete areas—are sensitive to differences in the rank, or order, of the values in 
the variables. The quantitative differences are not influential. Such tools have advantages 
and disadvantages. You will recall from Chapter 2 that a rank listing of the joint distances 
between American cities carries enough information to recover their geographical layout 
very accurately. So the rank differences do carry a very high information content. Also, 
discrete tools are not particularly troubled by outliers since it is the positioning in rank that 
is significant to them. An outlier that is in the 1000th-rank position is in that position 
whatever its value. On the other hand, discrete tools, not seeing the quantitative 
difference between values, cannot examine the fine structure embedded there. If there is 
high information content in the quantitative differences between values, a tool able to 
model continuous values is needed. Continuous tools can extract both quantitative and 
qualitative (or rank) information, but are very sensitive to various kinds of distortion in the 
data set, such as outliers. The choice of tool depends very much on the nature of the data 
coupled with the requirements of the problem. 

 

 
 

 

The simplified examples shown in Figure 3.7 assume that the data is to be used to predict 
an output that is in one of two states—O or X. Typically, tools that use linear cuts do have 
to divide the data into such binary predictions. If a continuous variable needs to be 
predicted, the range of the variable has to be divided into discrete pieces, and a separate 
model built for predicting if the range is within a particular subrange. Tools that can 
produce nonlinear cuts can also produce the equations to make continuous predictions. 
This means that the output range does not have to be chopped up in the way that the 
linear cutting tools require. 

 

 
 

 

These issues will be discussed again more fully later. It is also important to reiterate that, 
in practice, mining tool manufacturers have made various modifications so that the 
precise compromises made for each tool have to be individually considered. 

 

 

 

 3.2.7  Predictions and Rules  
 
 

 

Tool selection has an important impact on exactly which techniques are applied to the 
unprepared data. All of the techniques described here produce output in one of two 
forms—predictions or rules. Data modeling tools end up expressing their learning either 
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as a predicted number, a predicted categorical, or as a set of rules that can be used to 
separate the data in useful ways. 

 
 

 

For instance, suppose that it is required as part of a solution to model the most likely value 
of the mortgage rate. The mortgage rate is probably best regarded as a continuous 
variable. Since a prediction of a continuous variable is needed, it indicates that the most 
appropriate tool to use for the model would be one that is capable of continuous 
predictions. Such a tool would probably produce some sort of equation to express the 
relationship of input values to the predicted value. Since a continuous value is required as 
output, it is advantageous, and works best, when the input values are also continuous. 
Thus, indications about the type of tools and some of the data preparation decisions are 
already made when the solution is selected. 

 

 
 

 

Having decided on a predicted mortgage rate, perhaps it is required to make a model to 
determine if a particular prospective customer is or is not likely to respond to a solicitation 
with this rate. For this solution it might be most appropriate to use a model with a binary, 
yes/no output. The most appropriate tool is some sort of classifier that will classify records 
into the yes/no dichotomy required. Preparing data for a yes/no dichotomy may benefit 
from techniques such as binning that enhance the ability of many tools to separate the 
data. Binning is a technique of lumping small ranges of values together into categories, or 
“bins,” for the purpose of reducing the variability (removing some of the fine structure) in a 
data set. For instance, customer information response cards typically ask for household 
income using “from-to” ranges in which household income falls. Those categories are 
“bins” that group ranges of income. There are circumstances in mining in which this can 
be useful. 

 

 
 

 

Continuous and dichotomous modeling methods can be used for more than just making 
predictions. When building models to understand what is “driving” certain effects in the 
data set, the models are often used to answer questions about what features are 
important in particular areas of state space. Such modeling techniques are used to 
answer questions like “What are the underlying factors associated with fraudulent 
transactions in the branch offices?” Since the affecting factors may possibly be different 
from area to area of state space, it is important to use preparation techniques that retain 
as much of the fine structure—that is, the detailed fluctuations in the data set—over the 
full range of variability of the variables. 

 

 
 

 

Looking for affecting factors is a form of inferential modeling. Examination of what is 
common to sets of rules is one way to discover the common themes present in particular 
situations, such as the branch office fraud alluded to above. The ability to give clear 
reasons for action are particularly important in several situations, such as credit approval 
or denial, where there is a legal requirement for explanation to be available. Generation of 
such rules can also be expressed, say, as SQL statements, if it is needed to extract parts 
of a data set. Perhaps a mailing list is required for all people meeting particular criteria. 
What is important here is to focus on how the required output affects the preparation of 
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the input data, rather than the use to which the solution will be put. 
 

 

 3.2.8  Choosing Techniques  
 
 

 

In summary, the effect that the choice of modeling tools has on data preparation is 
determined by the tool’s characteristics. Is the tool better able to model continuous or 
categorical data? Since actual tools are all modifications of “pure” algorithms, this is a 
question that is hard to answer in its general form. Each tool has to be evaluated 
individually. Practically speaking, it is probably best to try several preparation techniques, 
preparing the data as continuous and also using several binning options to create 
categorized data. However, it is also important to use a mining tool that produces output 
appropriate to the needs of the solution. If the solution required calls for a categorical 
prediction, the tool needs to be able to produce such a solution and will probably benefit 
from categorical training, test, and execution data. The data preparation techniques 
discussed in this book are designed to allow preparation of the data set in a variety of 
ways. They allow the data to be manipulated as needed, so the miner can focus attention 
on deciding which are the appropriate techniques and tools to use in a particular situation.

 

 

 

 3.2.9  Missing Data and Modeling Tools  
 
 

 

Missing values form a very important issue in preparing data and were discussed in 
Chapter 2. Whenever there are missing values, it is vital that something be done about 
them. There are several methods for determining a suitable replacement value, but under 
no circumstances should the missing values be ignored or discarded. Some tools, 
particularly those that handle categorical values well, such as decision trees, are said to 
handle missing values too. Some really can; others can’t. Some discrete-type modeling 
tools can actually elegantly ignore missing values, while others regard a missing value as 
just another categorical value, which is not really a satisfactory approach. Other tools, 
such as neural networks, require that each input be given a numeric value and any record 
that has a missing value has to be either completely ignored, or some default for the 
missing value must be created. 

 

 
 

 

There are going to be problems with whatever default replacement approach is taken—very 
often major problems. At the very least, left untreated except by the default solution, missing 
values cause considerable distortion to the fabric of the data set. Not all missing values, for 
instance, can be assumed to represent the same value. Yet that is what a decision tree does 
if it assigns missing values to a separate category—assumes that they all have the same 
measured value. Similar distortions occur if some default numerical value is assigned. 
Clearly, a better solution needs to be found. Several choices are available, and the pros and 
cons of each method are discussed in detail in Chapter 8. For the time being, note that this is 
one of the issues that must be dealt with effectively for the best models to be built. 

 

 
3.3  Stages of Data Preparation  
 
 

chenliangA
Highlight

chenliangA
Highlight



 

Data preparation involves two sets of preparatory activities. The first are nonautomated 
activities that are procedural, or activities that result in a decision about the approach that 
the miner decides to take. There are many activities and decisions to be made in this 
stage that can be described as “basic preparation,” and they are discussed in detail in the 
next chapter. The second set of activities are automated preparation activities. Detailed 
descriptions of the techniques used in the automated preparation stage, the 
demonstration code, and the process and decision points that go into data preparation 
round out the remaining chapters. What follows is a brief overview of the eight stages: 

 

 
 

  1.  Accessing the data  
 
 

  2.  Auditing the data  
 
 

  3.  Enhancing and enriching the data  
 
 

  4.  Looking for sampling bias  
 
 

  5.  Determining data structure  
 
 

  6.  Building the PIE  
 
 

  7.  Surveying the data  
 
 

  8.  Modeling the data  
 

 

 3.3.1  Stage 1: Accessing the Data  
 
 

 

The starting point for any data preparation project is to locate the data. This is sometimes 
easier said than done! There are a considerable variety of issues that may hinder access 
to the nominated data, ranging from legal to connectivity. Some of these commonly 
encountered issues are reviewed later, but a comprehensive review of all issues is almost 
impossible, simply because every project provides unique circumstances. Nonetheless, 
locating and securing the source of data supply and ensuring adequate access is not only 
the first step, it is absolutely essential. 

 

 
 

 

You might say, “Well, I have part of the problem licked because I have access to a data 
warehouse.” It is a fact that data warehouses are becoming repositories of choice. More 
and more it is a warehouse that is to be mined. However, a warehouse is by no means 
essential in order to mine data. In fact, a warehouse can be positively detrimental to the 
mining effort, depending on how the data was loaded. Warehouses also have other 
drawbacks, a significant one being that they are often created with a particular structure to 
reflect some specific view of the enterprise. This imposed structure can color all modeling 
results if care is not taken to avoid bias. 
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 3.3.2  Stage 2: Auditing the Data  
 
 

 
Assuming that suitable data is available, the first set of basic issues that have to be 
addressed concern 

 

 
 

  •  The source of supply  
 
 

  •  The quantity of data  
 
 

  •  The quality of the data  
 
 

 

Building robust models requires data that is sufficient in quantity, and of high enough 
quality to create the needed model. A data audit provides a methodology for determining 
the status of the data set and estimates its adequacy for building the model. The reality is 
that the data audit does not so much assure that the model will be able to be built, but at 
least assures that the minimum requirements have been met. 

 

 
 

 

Auditing requires examining small samples of the data and assessing the fields for a 
variety of features, such as number of fields, content of each field, source of each field, 
maximum and minimum values, number of discrete values, and many other basic metrics.
When the data has been assessed for quantity and quality, a key question to ask is, Is 
there a justifiable reason to suppose that this data has the potential to provide the 
required solution to the problem? Here is a critical place to remove the expectation of 
magic. Wishful thinking and unsupported hopes that the data set that happens to be 
available will actually hold something of value seldom results in a satisfactory model. The 
answer to whether the hopes for a solution are in fact justified lies not in the data, but in 
the hopes! An important part of the audit, a nontechnical part, is to determine the true 
feasibility of delivering value with the resources available. Are there, in fact, good reasons 
for thinking that the actual data available can meet the challenge? 

 

 

 

 3.3.3  Stage 3: Enhancing and Enriching the Data  
 
 

 

With a completed audit in hand, there is at least some firm idea of the adequacy of the 
data. If the audit revealed that the data does not really support the hopes founded on it, it 
may be possible to supplement the data set in various ways. Adding data is a common 
way to increase the information content. Many credit card issuers, for instance, will 
purchase information from outside agencies. Using this purchased data allows them to 
better assess the creditworthiness of their existing customers, or of prospects who are not 
yet their customers. 

 

 
 

 

There are several ways in which the existing data can be manipulated to extend its 
usefulness. Such manipulation, for example, is to calculate price/earnings (P/E) ratios for 
modeling the value of share prices. So-called “fundamentalist” investors feel that this ratio 
has predictive value. They may be right. If they are, you may ask, “Since the price and the 
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earnings are present in the source data, how would providing information about the P/E 
ratio help?” First, the P/E ratio represents an insight into the domain about what is 
important. This insight adds information to the modeling tool’s input. Second, presenting 
this precalculated information saves the modeling tool from having to learn division! 
Modeling tools can and do learn multiplicative relationships. Indeed, they can learn 
relationships considerably more complicated than that. However, it takes time and system 
resources to discover any relationship. Adding enough domain knowledge and learning 
assistance about important features can boost performance and cut development time 
dramatically. In some cases, it turns the inability to make any model into the ability to 
make useful models. 

 

 

 3.3.4  Stage 4: Looking for Sampling Bias  
 
 

 

Sampling bias presents some particularly thorny problems. There are some automated 
methods for helping to detect sampling bias, but no automated method can match 
reasoned thought. There are many methods of sampling, and sampling is always 
necessary for reasons discussed in Chapter 5. Sampling is the process of taking a small 
piece of a larger data set in such a way that the small piece accurately reflects the 
relationships in the larger data set. The problem is that the true relationships that exist in 
the fullest possible data set (called the population) may, for a variety of reasons, be 
unknowable. That means that it is impossible to actually check to see if the sample is 
representative of the population in fact. It is critical to bend every effort to making sure that 
the data captured is as representative of the true state of affairs as possible. 

 

 
 

 

While sampling is discussed in many statistical texts, miners face problems not addressed 
in such texts. It is generally assumed that the analyst (statistician/modeler) has some 
control over how the data is generated and collected. If not the analyst, at least the creator 
or collector of the data may be assumed to have exercised suitable control to avoid 
sampling bias. Miners, however, sometimes face collections of data that were almost 
certainly gathered for purposes unknown, by processes unsure, but that are now 
expected to assist in delivering answers to questions unthought of at the time. With the 
provenance of the data unknown, it is very difficult to assess what biases are present in 
the data, and that, if uncorrected, will produce erroneous and inapplicable models. 

 

 

 

 
3.3.5  Stage 5: Determining Data Structure (Super-, Macro-, 
and Micro-) 

 

 
 

 

Structure refers to the way in which the variables in a data set relate to each other. It is 
this structure that mining sets out to explore. Bias, mentioned above, stresses the natural 
structure of a data set so that the distorted data is less representative of the real world 
than unbiased data. But structure itself has various forms: super, macro, and micro. 

 

 
 

 
Superstructure refers to the scaffolding erected to capture the data and form a data set. 
The superstructure is consciously and deliberately created and is easy to see. When the 
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data set was created, decisions had to be made as to exactly which measurements were 
to be captured, measured in which ways, and stored in which formats. Point-of-sale 
(POS) data, for instance, captures information about a purchasing event at the point that 
the sale takes place. A vast wealth of possible information could be captured at this point, 
but capturing it all would swamp the system. Thus, POS information typically does not 
include any information about the weather, the length of the checkout line, local traffic 
information affecting access to the store, or the sort of bag the consumer chose for 
carrying away purchases. This kind of information may be useful and informative, but the 
structure created to capture data has no place to put it. 

 
 

 

Macrostructure concerns the formatting of the variables. For example, granularity is a 
macro structural feature. Granularity refers to the amount of detail captured in any 
measurement—time to the nearest minute, the nearest hour, or simply differentiating 
morning, afternoon, and night, for instance. Decisions about macro structure have an 
important impact on the amount of information that a data set carries, which, in turn, has a 
very significant effect on the resolution of any model built using that data set. However, 
macro structure is not part of the scaffolding consciously erected to hold data, but is 
inherent in the nature of the measurements. 

 

 
 

 

Microstructure, also referred to as fine structure, describes the ways in which the 
variables that have been captured relate to each other. It is this structure that modeling 
explores. A basic assessment of the state of the micro structure can form a useful part of 
the data audit (Stage 2 above). This brief examination is a simple assessment of the 
complexity of the variables’ interrelationships. Lack of complexity does not prevent 
building successful predictive models. However, if complex and unexpected results are 
desired, additional data will probably be needed. 

 

 

 

 3.3.6  Stage 6: Building the PIE  
 
 

 
The first five steps very largely require assessing and understanding the data that is 
available. Detailed scrutiny of the data does several things: 

 

 
 

  •  It helps determine the possibility, or necessity, of adjusting or transforming the data.  
 
 

  •  It establishes reasonable expectations of achieving a solution.  
 
 

  •  It determines the general quality, or validity, of the data.  
 
 

  •  It reveals the relevance of the data to the task at hand.  
 
 

 

Many of these activities require the application of thought and insight rather than of 
automated tools. Of course, much of the assessment is supported by information gained 
by application of data preparation and other discovery tools, but the result is information 
that affects decisions about how to prepare and use the data. 
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By this stage, the data’s limitations are known, at least insofar as they can be. Decisions 
have been made based on the information discovered. Fully automated techniques for 
preparing the data (such as those on the CD-ROM accompanying this book) can now be 
used. 

 

 
 

 

The decisions made so far determine the sequence of operations. In a production 
environment, the data set may be in any machine-accessible form. For ease of discussion 
and explanation, it will be assumed that the data is in the form of a flat file. Also, for ease 
of illustration, each operation is discussed sequentially. In practice the techniques are not 
likely to be applied exactly as described. It is far easier to aggregate information that will 
be used by several subsequent stages during one pass through the file. This description 
is intended as thematic, to provide an overview and introduction to preparation activities. 

 

 

 

 Data Issue: Representative Samples  
 
 

 

A perennial problem is determining how much data is needed for modeling. One tenet of 
data mining is “all of the data, all of the time.” That is a fine principle, and if it can be 
achieved, a worthwhile objective. However, for various reasons it is not a practical 
solution. Even if as much data as possible is to be examined, survey and modeling still 
require at least three data sets—a training set, a test set, and an execution set. Each data 
set needs to be representative. Feature enhancement, discussed in Chapters 4 and 10, 
may require a concentration of instances exhibiting some particular feature. Such a 
concentration can only be made if a subset of data is extracted from the main data set. So 
there is always a need to decide how large a data set is required to be an accurate 
reflection of the data’s fine structure. 

 

 
 

 

In this case, when building the PIE, it is critical that it is representative of the fine structure. 
Every effort must be made to ensure that the PIE itself does not introduce bias! Without 
checking the whole population of instances, which may be an impossibility, there is no 
way to be 100% certain that any particular sample is, in fact, representative. However, it is 
possible to be some specified amount less than 100% certain, say, 99% or 95% certain. It 
is these certainty measures that allow samples to be taken. Selecting a suitable level of 
certainty is an arbitrary decision. 

 

 

 

 Data Issue: Categorical Values  
 
 

 

Categoricals are “numerated,” or assigned appropriate numbers. Even if, in the final 
prepared data, the categoricals are to be modeled as categorical values, they are still 
numerated for estimating missing values. 

 

 
 

 

Chapter 2 contains an example showing that categoricals have a natural ordering that 
needs to be preserved. It is an ordering that actually exists in the world and is reflected in 
the categorical measurements. When building predictive or inferential models, it is critical 
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that the natural order of the categorical values be preserved insofar as that is possible. 
Changing this natural ordering is imposing a structure. Even imposing a random structure 
loses information carried by the categorical measurement. If it is not random, the situation 
is worse because it introduces a pattern not present in the world. 

 
 

 

The exact method of numeration depends on the structure of the data set. In a mixed 
numeric/categorical data set, the numeric values are used to reflect their order into the 
categoricals. This is by far the most successful method, as the numeric values have an 
order and magnitude spacing. In comprehensive data sets, this allows a fair recovery of 
the appropriate ordering. In fact, it is interesting to convert a variable that is actually 
numeric into a categorical value and see the correct ordering and separation recovered. 

 

 
 

 

Data sets that consist entirely of categorical measurements are slightly more problematic. 
It is certainly possible to recover appropriate orderings of the categoricals. The problem is 
that without numeric variables in the data set, the recovered values are not anchored to 
real-world phenomena. The numeration is fine for modeling and has in practice produced 
useful models. It is, however, a dangerous practice to use the numerated orderings to 
infer anything absolute about the meaning of the magnitudes. The relationships of the 
variables, one to another, hold true, but are not anchored back to the real world in the way 
that numerical values are. 

 

 
 

 

It is important to note that no automated method of recovering order is likely to be as 
accurate as that provided by domain knowledge. Any data set is but a pale reflection of 
the real world. A domain expert draws on a vastly broader range of knowledge of the 
world than can be captured in any data set. So, wherever possible, ordered categorical 
values should be placed in their appropriate ordering as ordinal values. However, as it is 
often the case when modeling data that there is no domain expert available, or that no 
ordinal ranking is apparent, the techniques used here have been effective. 

 

 

 

 Data Issue: Normalization  
 
 

 

Several types of normalization are very useful when modeling. The normalization 
discussed throughout this book has nothing in common with the sort of normalization 
used in a database. Recall that the assumption for this discussion is that the data is 
present as a single table. Putting data into its various normal forms in a database requires 
use of multiple tables. The form of normalization discussed here requires changing the 
instance values in specific and clearly defined ways to expose information content within 
the data and the data set. Although only introduced here, the exact normalization 
methods are discussed in detail in Chapter 7. 

 

 
 

 

Some tools, such as neural networks, require range normalization. Other tools do not 
require normalization, but do benefit from having normalized data. Once again, as with 
other issues, it is preferable for the miner to take control of the normalization process. 
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Variables in the data set should be normalized both across range and in distribution. 
There is also very much to be learned from examining the results of normalization, which 
is briefly looked at in Chapter 7. In addition to range normalization, distribution 
normalization deals with many problems, such as removing much of the distortion of 
outliers and enhancing linear predictability. 

 

 

 

 Data Issue: Missing and Empty Values  
 
 

 

Dealing with missing and empty values is very important. Unfortunately, there is no 
automated technique for differentiating between missing and empty values. If done at all, 
the miner has to differentiate manually, entering categorical codes denoting whether the 
value is missing or empty. If it can be done, this can produce useful results. Usually it 
can’t be, or at any rate isn’t, done. Empty and missing values simply have to be treated 
equally. 

 

 
 

 

All modeling tools have some means of dealing with missing values, even if it is to ignore 
any instance that contains a missing value. Other strategies include assigning some fixed 
value to all missing values of a particular variable, or building some estimate of what the 
missing value might have been, based on the values of the other variables that are 
present. There are problems with all of these approaches as each represents some form 
of compromise. 

 

 
 

 

In some modeling applications, there is high information content in noting the patterns of 
variables that are missing. In one case this proved to be the most predictive variable! 
When missing values are replaced, unless otherwise captured, information about the 
pattern of values that are missing is lost. A pseudo-categorical is created to capture this 
information that has a unique value for each missing value pattern. Only after this 
information has been captured are the values replaced. Chapter 8 discusses the issues 
and choices. 

 

 

 

 Data Issue: Displacement Series  
 
 

 

At this point in the preparation process the data is understood, enhanced, enriched, 
adequately sampled, fully numerated, normalized in two dimensions (range and 
distribution), and balanced. If the data set is a displacement series (time series are the 
most common), the data set is treated with various specialized preparatory techniques. 
The most important action here, one that cannot be automated safely, requires inspection 
of the data by the miner. Detrending of displacement series can be a ruinous activity to 
information content if in fact the data has no real trend! Caution is an important 
watchword. Here the miner must make a number of decisions and perhaps smooth and/or 
filter to prepare the data. Chapter 9 covers the issues. 

 

 
 

 
(At this point the PIE is built. This can take one of several forms—computer program, 
mathematical equations, or program code. The demonstration program and code included 

 

chenliangA
Highlight



on the CD-ROM that accompanies this book produce parameters in a file that a separate 
program reads to determine how to prepare raw data. The previous activities have 
concentrated on preparing variables. That is to say, each variable has been considered in 
isolation from its relationship with other variables. With the variables prepared, the next 
step is to prepare data sets, which is to say, to consider the data as a whole.) 

 

 

 Data Set Issue: Reducing Width  
 
 

 

Data sets for mining can be thought of as being made from a two-dimensional table with 
columns representing variable measurements, and rows representing instances, or 
records. Width describes the number of columns, whereas depth describes the number of 
rows. 

 

 
 

 

One of the knottiest problems facing a miner deals with width. More variables presumably 
carry more information. But too many variables can bring any computational algorithm to 
its knees. This is referred to as the combinatorial explosion (discussed in Chapter 2). The 
number of relationships between variables increases multiplicatively as the variable count 
increases; that is, with 10 variables the first variable has to be compared with 9 neighbors, 
the second with 8 (the second was already compared with the first, so that doesn’t have to 
be done again), and so on. The number of interactions is 9 x 8 x 7 x 6 . . . ,  which is 
362,880 comparisons. With 13 variables the number of interactions is up to nearly 40 
million. By 15 variables it is at nearly 9 billion. Most algorithms have a variety of ways to 
reduce the combinatorial complexity of the modeling task, but too many variables can 
eventually defeat any method. 

 

 
 

 

Thus it is that the miner may well want to reduce the number of columns of data in a data 
set, if it’s possible to do so without reducing its information content. There are several 
ways to do this if required, some more arbitrary than others. Chapter 10 discusses the 
pros and cons of several methods. 

 

 

 

 Data Set Issue: Reducing Depth  
 
 

 

Depth does not have quite the devastating impact that width can have. However, while 
there is a genuine case in data mining for “all of the data, all of the time,” there are 
occasions when that is not required. There is still a need for assurance that the subset of 
data modeled does in fact reflect all of the relationships that exist in the full data set. This 
requires another look at sampling. This time the sampling has to consider the interactions 
between the variables, not just the variability of individual variables considered alone. 

 

 

 

 Data Set/Data Survey Issue: Well- and Ill-Formed Manifolds  
 
 

 

This is really the first data survey step as well as the last data preparation step. The data 
survey, discussed briefly in Chapter 11, deals with deciding what is in the data set prior to 
modeling. However, it forms the last part of data preparation too because if there are 
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problems with the shape of the manifold, it may be possible to manipulate the data to 
ameliorate some of them. The survey is not concerned with manipulating data, but with 
giving the miner information that will help with the modeling. 

 
 

 

As the last step in data preparation, this look at the manifold seeks to determine if there 
are problems that can be eliminated by manipulation. If the manifold is folded, for 
instance, there will be problems. In two dimensions a fold might look like an “S.” A vertical 
line drawn through the “S” will cut it in three places. The vertical line will represent a single 
value of one variable for which three values of the other variable existed. The problem 
here is that there is no additional information available to decide which of the three values 
will be appropriate. If, as in Figure 3.11, there is some way of “rotating” the “S” through 90 
degrees, the problem might be solved. It is these sorts of problems, and others together 
with possible solutions, that are sought in this stage. 

 

 

 

 

 

 

 
 

 
Figure 3.11  Deliberately introduced and controlled distortion of the manifold can 
remove problems. 

 

   
 

 

 3.3.7  Stage 7: Surveying the Data  
 
 

 

The data survey examines and reports on the general properties of the manifold in state 
space. In a fairly literal sense it produces a map of the properties of the manifold, focusing 
on the properties that the miner finds most useful and important. It cannot be an actual 
map if, as is almost invariably the case, state space exists in more than three dimensions. 
The modeler is interested in knowing many features, such as the relative density of points 
in state space, naturally occurring clusters, uncorrectable distortions and where they 
occur, areas of particular relative sparsity, how well defined the manifold is (its 
“fuzzyness”), and a host of other features. Unfortunately, it is impossible, within the 
confines of this book, to examine the data survey in any detail at all. Chapter 11 discusses 
the survey mainly from the perspective of data preparation, discussing briefly some other 
aspects. Inasmuch as information discovered in the data survey affects the way data is 
prepared, it forms a part of the data preparation process. 

 

 

 

 3.3.8  Stage 8: Modeling the Data  
 
 



 

The whole purpose of preparation and surveying is to understand the data. Often, 
understanding needs to be turned into an active or passive model. As with the data survey, 
modeling is a topic too broad to cover here. Some deficiencies and problems only appear 
when modeling is attempted. Inasmuch as these promote efforts to prepare the data 
differently in an attempt to ameliorate the problems, modeling too has some role in data 
preparation. Chapter 12 looks at modeling in terms of how building the models interacts with 
data preparation and how to use the prepared data effectively. 

 

 
3.4  And the Result Is . . . ?  
 
 

 

Having toured the territory, even briefly, this may seem like a considerable effort, both 
computationally and in human time, effort, and expertise. Do the results justify the effort? 
Clearly, some minimal data preparation has to be done for any modeling tool. Neural 
networks, for instance, require all of the inputs to be numerated and range normalized. 
Other techniques require other minimal preparation. The question may be better framed in 
terms of the benefit to be gained by taking the extra steps beyond the minimum. 

 

 
 

 

Most tools are described as being able to learn complex relationships between variables. 
The problem is to have them learn the “true” relationships before they learn noise. This is 
the purpose of data preparation: to transform data sets so that their information content is 
best exposed to the mining tool. It is also critical that if no good can be done in a particular 
data set, at least no harm be done. In the data sets provided on the CD-ROM included 
with this book, most are in at least mineable condition with only minimal additional 
preparation. Comparing the performance of the same tools on the same data sets in both 
their minimally prepared and fully prepared states gives a fair indication of what can be 
expected. Chapter 12 looks at this comparison. 

 

 
 

 

There are some data sets in which there is no improvement in the prediction error rate. In 
these cases it is important to note that neither is there any degradation! The error rate of 
prediction is unaffected. This means that at least no harm is done. In most cases there is 
improvement—in some cases a small amount, in other cases much more. Since the 
actual performance is so data dependent, it is hard to say what effect will be found in any 
particular case. Error rates are also materially affected by the type of 
prediction—classification and accuracy may be very differently impacted using the same 
model and the same data set. (See the examples in Chapter 12.) In most cases, however 
error rate is determined, there is usually a significant improvement in model performance 
when the models are built and executed on prepared data. 

 

 
 

 

However, there is far more to data preparation than just error rate improvement. Variable 
reduction has often sped mining time 10 to 100 times over unprepared data. Moreover, 
some data sets were so dirty and distorted prior to preparation that they were effectively 
unusable. The data preparation techniques made the data at least useable, which was a 
very considerable gain in itself. Not least is the enormous insight gained into the data 
before modeling begins. This insight can be more valuable than any improvement in 
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modeling performance. This is where the preparation of the miner brings the benefit that 
the miner, through insight, builds better models than without the insight. And the effect of 
that is impossible to quantify. 

 
 

 

Considering that application of these techniques can reduce the error rate in a model, reduce 
model building time, and yield enormous insight into the data, it is at least partly the miner’s 
call as to where the most important benefits accrue. This brief tour of the landscape has 
pointed out the terrain. The remaining chapters look in detail at preparing data and 
addressing the issues raised here. 
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Chapter 4: Getting the Data—Basic 

Preparation 

 

 

 

 Overview  
 
 

 

Data preparation requires two different types of activities: first, finding and assembling the 
data set, and second, manipulating the data to enhance its utility for mining. The first 
activity involves the miner in many procedural and administrative activities. The second 
requires appropriately applying automated tools. However, manipulating the data cannot 
begin until the data to be used is identified and assembled and its basic structure and 
features are understood. In this chapter we look at the process of finding and assembling 
the data and assessing the basic characteristics of the data set. This lays the groundwork 
for understanding how to best manipulate the data for mining. 

 

 
 

 

What does this groundwork consist of? As the ancient Chinese proverb says: “A journey 
of a thousand miles begins with a single step.” Basic data preparation requires three such 
steps: data discovery, data characterization, and data set assembly. 

 

 
 

  •  Data discovery consists of discovering and actually locating the data to be used.  
 
 

  

• 
 

Data characterization describes the data in ways useful to the miner and begins the 
process of understanding what is in the data—that is, is it reliable and suitable for the 
purpose? 

 

 
 

  

• 
 

Data set assembly builds a standard representation for the incoming data so that it can 
be mined—taking data found to be reliable and suitable and, usually by building a table, 
preparing it for adjustment and actual mining. 

 

 
 

 

These three stages produce the data assay. The first meaning of the word “assay” in the 
Oxford English Dictionary is “the trying in order to test the virtue, fitness, etc. (of a person 
or thing).” This is the exact intent of the data assay, to try (test or examine) the data to 
determine its fitness for mining. The assay produces detailed knowledge, and usually a 
report, of the quality, problems, shortcomings, and suitability of the data for mining. 
Although simple to state, assaying data is not always easy or straightforward. In practice it 
is frequently extremely time-consuming. In many real-world projects, this stage is the 
most difficult and time-consuming of the whole project. At other times, the basic 
preparation is relatively straightforward, quick, and easy. 

 

 
 

 

As an example, imagine that First National Bank of Anywhere (FNBA) decides to run a 
credit card marketing campaign to solicit new customers. (This example is based on an 
actual mining project.) The marketing solicitations are made to “affinity groups,” that is, 

 



groups of people that share some experience or interest, such as having attended a 
particular college or belonging to a particular country club. FNBA buys lists of names and 
addresses of such groups and decides to use data mining to build market segmentation 
and customer response models to optimize the return from the campaign. As the 
campaign progresses, the models will have to be updated to reflect changing market 
conditions and response. Various models of different types will be required, although the 
details have not yet been pinned down. Figure 4.1 shows an overview of the process. 

 

 

 

 

 

 
 

 

Figure 4.1  Simplified credit card direct-mail solicitation showing six different data 
feeds. Each data feed arrives from a different source, in a different format, at a 
different time and stage in the process. 

 

 
4.1  Data Discovery  
 
 

 

Current mining tools almost always require the data set to be assembled in the form of a 
“flat file,” or table. This means that the data is represented entirely in the row and column 
format described in Chapter 2. Some mining tools represent that they query databases 
and data warehouses directly, but it is the end result of the query, an extracted table, that 
is usually mined. This is because data mining operations are column (variable) oriented. 
Databases and data warehouses are record (instance) oriented. Directly mining a 
warehouse or database places an unsupportable load on the warehouse query software. 
This is beginning to change, and some vendors are attempting to build in support for 
mining operations. These modifications to the underlying structural operation of accessing 
a data warehouse promise to make mining directly from a warehouse more practical at 
some future time. Even when this is done, the query load that any mining tool can levy on 
the warehouse will still present a considerable problem. For present practical purposes, 
the starting point for all current mining operations has to be regarded as a table, or flat file. 
“Discovering data” means that the miner needs to determine the original source from 
which the table will be built. 

 

 
 

 The search starts by identifying the data source. The originating data source may be a  



transaction processing system fed by an ATM machine or a POS terminal in a store. It 
may be some other record-capturing transaction or event. Whatever it is, a record is made 
of the original measurements. These are the founding “droplets” of data that start the 
process. From here on, each individual droplet of data adds to other droplets, and trickle 
adds to trickle until the data forms a stream that flows into a small pool—some sort of data 
repository. In the case of FNBA, the pools are moderately large when first encountered: 
they are the affinity group membership records. 

 
 

 

The affinity group member information is likely stored in a variety of forms. The groups 
may well be almost unknown to each other. Some may have membership records stored 
on PCs, others on Macs. Some will provide their member lists on floppy disk, some on 
8mm tape, some on 4mm tape, some on a Jazz drive, and others on 9-track tape. 
Naturally, the format for each, the field layout and nomenclature, will be equally unique. 
These are the initial sources of data in the FNBA project. This is not the point of data 
creation, but as far as the project is concerned it is the point of first contact with the raw 
data. The first need is to note the contact and source information. The FNBA assay starts 
literally with names, addresses, contact telephone numbers, media type, transmission 
mode, and data format for each source. 

 

 

 

 4.1.1  Data Access Issues  
 
 

 
Before the data can be identified and assessed, however, the miner needs to answer two 
major questions: Is the data accessible? and How do I get it? 

 

 
 

 

There are many reasons why data might not be readily accessible. In many organizations, 
particularly those without warehouses, data is often not well inventoried or controlled. This 
can lead to confusion about what data is actually available. 

 

 
 

  

• 

 

Legal issues. There may well be legal barriers to accessing some data, or some parts of 
a data set. For example, in the FNBA project it is not legal to have credit information 
about identifiable people to whom credit is not actually going to be offered. (The law on 
this point is in constant change and the precise details of what is and is not legally 
permissible varies from time to time.) In other applications, such as healthcare, there 
may be some similar legal restriction or confidentiality requirement for any potential data 
stream. 

 

 
 

  

• 

 

Departmental access. These restrictions are similar to legal barriers. Particularly in 
financial trading companies, data from one operation is held behind a “Chinese Wall” of 
privacy from another operation for ethical reasons. Medical and legal data are often 
restricted for ethical reasons. 

 

 
 

  

• 
 

Political reasons. Data, and particularly its ownership, is often regarded as belonging to 
a particular department, maybe one that does not support the mining initiative for any 
number of reasons. The proposed data stream, while perhaps physically present, is not 

 



practically accessible. Or perhaps it is accessible, but not in a timely or complete 
fashion. 

 
 

  

• 

 

Data format. For decades, data has been generated and collected in many formats. 
Even modern computer systems use many different ways of encoding and storing data. 
There are media format differences (9-track magnetic tape, diskettes, tape, etc.) and 
format differences (ASCII, EBCDIC, binary packed decimal, etc.) that can complicate 
assembling data from disparate sources. 

 

 
 

  

• 

 

Connectivity. Accessing data requires that it be available online and connected to the 
system that will be used for mining. It is no use having the data available on a 
high-density 9-track tape if there is no suitable 9-track tape drive available on the mining 
system. 

 

 
 

  

• 

 

Architectural reasons. If data is sourced from different database architectures, it may be 
extremely difficult, or unacceptably time-consuming, to translate the formats involved. 
Date and time information is notoriously difficult to work with. Some architectures simply 
have no equivalent data types to other architectures, and unifying the data 
representation can be a sizeable problem. 

 

 
 

  

• 

 

Timing. The validating event (described in Chapter 2) may not happen at a comparable 
time for each stream. For example, merging psychographic data from one source with 
current credit information may not produce a useful data set. The credit information may 
be accurate as of 30 days ago, whereas the psychographic information is only current 
as of six months ago. So it is that the various data streams, possibly using different 
production mechanisms, may not be equally current. If a discrepancy is unavoidable, it 
needs to at least remain constant—that is, if psychographic information suddenly began 
to be current as of three months ago rather than six months ago, the relationships within 
the data set would change. 

 

 
 

 

This is not a comprehensive listing of all possible data access issues. Circumstances 
differ in each mining application. However, the miner must always identify and note the 
details of the accessibility of each data stream, including any restrictions or caveats. 

 

 
 

 

Data sources may be usefully characterized also as internal/external. This can be 
important if there is an actual dollar cost to acquiring outside data, or if internal data is 
regarded as a confidential asset of the business. It is particularly worth noting that there is 
always at least a time and effort cost to acquiring data for modeling. Identifying and 
controlling the costs, and getting the maximum economic benefit from each source, can 
be as important as any other part of a successful mining project. 

 

 
 

 

FNBA has several primary data sources to define. For each source it is important to 
consider each of the access issues. Figure 4.2 shows part of the data assay 
documentation for one of the input streams. 

 

 



 

 

 

 

 
 

 Figure 4.2  Part of the description of one of the input streams for FNBA. 
 

 
4.2  Data Characterization  
 
 

 

After finding the source for all of the possible data streams, the nature of the data streams 
has to be characterized, that is, the data that each stream can actually deliver. The miner 
already knows the data format; that is to say, the field names and lengths that comprise 
the records in the data. That was established when investigating data access. Now each 
variable needs to be characterized in a number of ways so that they can be assessed 
according to their usefulness for modeling. 

 

 
 

 

Usually, summary information is available about a data set. This information helps the 
miner check that the received data actually appears as represented and matches the 
summary provided. Most of the remainder of characterization is a matter of looking at 
simple frequency distributions and cross-tabs. The purpose of characterization is to 
understand the nature of the data, and to avoid the “GI” piece of GIGO. 

 

 

 

 4.2.1  Detail/Aggregation Level (Granularity)  
 
 

 

All variables fall somewhere along a spectrum from detailed (such as transaction records) 
to aggregated (such as summaries). As a general rule of thumb, detailed data is preferred 
to aggregated data for mining. But the level of aggregation is a continuum. Even detailed 
data may actually represent an aggregation. FNBA may be able to obtain outstanding 
loan balances from the credit information, but not the patterns of payment that led to those 
balances. Describing what a particular variable measures is important. For example, if a 
variable is discovered to be highly predictive, during the data modeling process the 
strategy for using the predictions will depend on the meaning of the variables involved. 

 

 
 

 The level of detail, or granularity, available in a data set determines the level of detail that  



is possible for the output. Usually, the level of detail in the input streams needs to be at 
least one level of aggregation more detailed than the required level of detail in the output. 
Knowing the granularity available in the data allows the miner to assess the level of 
inference or prediction that the data could potentially support. It is only potential support 
because there are many other factors that will influence the quality of a model, but 
granularity is particularly important as it sets a lower bound on what is possible. 

 
 

 

For instance, the marketing manager at FNBA is interested, in part, in the weekly variance 
of predicted approvals to actual approvals. To support this level of detail, the input stream 
requires at least daily approval information. With daily approval rates available, the miner 
will also be able to build inferential models when the manager wants to discover the 
reason for the changing trends. 

 

 
 

 

There are cases where the rule of thumb does not hold, such as predicting Stock Keeping 
Units (SKU) sales based on summaries from higher in the hierarchy chain. However, even 
when these exceptions do occur, the level of granularity still needs to be known. 

 

 

 

 4.2.2  Consistency  
 
 

 

Inconsistent data can defeat any modeling technique until the inconsistency is discovered 
and corrected. A fundamental problem here is that different things may be represented by 
the same name in different systems, and the same thing may be represented by different 
names in different systems. One data assay for a major metropolitan utility revealed that 
almost 90% of the data volume was in fact duplicate. However, it was highly inconsistent 
and rationalization itself took a vast effort. 

 

 
 

 

The perspective with which a system of variables (mentioned in Chapter 2) is built has a 
huge effect on what is intended by the labels attached to the data. Each system is built for 
a specific purpose, almost certainly different from the purposes of other systems. Variable 
content, however labeled, is defined by the purpose of the system of which it is a part. The 
clearest illustration of this type of inconsistency comes from considering the definition of 
an employee from the perspective of different systems. To a payroll system, an employee 
is anyone who receives a paycheck. The same company’s personnel system regards an 
employee as anyone who has an employee number. However, are temporary staff, who 
have employee numbers for identification purposes, employees to the payroll system? 
Not if their paychecks come from an external temporary agency. So to ask the two 
systems “How many employees are there?” will produce two different, but potentially 
completely accurate answers. 

 

 
 

 

Problems with data consistency also exist when data originates from a single application 
system. Take the experience of an insurance company in California that offers car 
insurance. A field identifying “auto_type” seems innocent enough, but it turns out that the 
labels entered into the system—“Merc,” “Mercedes,” “M-Benz,” and “Mrcds,” to mention 
only a few examples—all represent the same manufacturer. 

 

 



 

 4.2.3  Pollution  
 
 

 

Data pollution can occur for a variety of reasons. One of the most common is when users 
attempt to stretch a system beyond its original intended functionality. In the FNBA data, 
for instance, the miner might find “B” in the “gender” field. The “B” doesn’t stand for “Boy,” 
however, but for “Business.” Originally, the system was built to support personal cards, 
but when corporately held credit cards were issued, there was no place to indicate that 
the responsible party was a genderless entity. 

 

 
 

 

Pollution can came from other sources. Sometimes fields contain unidentifiable garbage. 
Perhaps during copying, the format was incorrectly specified and the content from one 
field was accidentally transposed into another. One such case involved a file specified as 
a comma-delimited file. Unfortunately, the addresses in the field “address” occasionally 
contained commas, and the data was imported into offset fields that differed from record 
to record. Since only a few of the addresses contained embedded commas, visual 
inspection of parts of many thousands of records revealed no problem. However, it was 
impossible to attain the totals expected. Tracking down the problem took considerable 
time and effort. 

 

 
 

 

Human resistance is another source of data pollution. While data fields are often 
optimistically included to capture what could be very valuable information, they can be 
blank, incomplete, or just plain inaccurate. One automobile manufacturer had a very 
promising looking data set. All kinds of demographic information appeared to be captured 
such as family size, hobbies, and many others. Although this was information of great 
value to marketing, the dealer at the point of sale saw this data-gathering exercise as a 
hindrance to the sales process. Usually the sales people discovered some combination of 
entries that satisfied the system and allowed them to move ahead with the real business 
at hand. This was fine for the sales process, but did the data that they captured represent 
the customer base? Hardly. 

 

 

 

 4.2.4  Objects  
 
 

 

Chapter 2 explained that the world can be seen as consisting of objects about which 
measurements are taken. Those measurements form the data that is being characterized, 
while the objects are a more or less subjective abstraction. The precise nature of the 
object being measured needs to be understood. For instance, “consumer spending” and 
“consumer buying patterns” seem to be very similar. But one may focus on the total dollar 
spending by consumers, the other on product types that consumers seek. The information 
captured may or may not be similar, but the miner needs to understand why the 
information was captured in the first place and for what specific purpose. This perspective 
may color the data, just as was described for employees above. 

 

 
 

 It is not necessary for the miner to build entity-relationship diagrams, or use one of the  



other data modeling methodologies now available. Just understand the data, get 
whatever insight is possible, and understand the purpose for collecting it. 

 

 

 4.2.5  Relationship  
 
 

 

With multiple data input streams, defining the relationship between streams is important. 
This relationship is easily specified as a common key that defines the correct association 
between instances in the input streams, thus allowing them to be merged. Because of the 
problems with possible inconsistency and pollution, merging the streams is not 
necessarily as easy to do as it is to describe! Because keys may be missing, it is 
important to check that the summaries for the assembled data set reflect the expected 
summary statistics for each individual stream. This is really the only way to be sure that 
the data is assembled as required. 

 

 
 

 

Note that the data streams cannot be regarded as tables because of the potentially huge 
differences in format, media, and so on. Nonetheless, anyone who knows SQL is familiar 
with many of the issues in discovering the correct relationships. For instance, what should 
be done when one stream has keys not found in the other stream? What about duplicate 
keys in one stream without corresponding duplicates in another—which gets merged with 
what? Most of the SQL “join”-type problems are present in establishing the relationship 
between streams—along with a few additional ones thrown in for good measure. 

 

 

 

 4.2.6  Domain  
 
 

 

Each variable consists of a particular domain, or range of permissible values. Summary 
statistics and frequency counts will reveal any erroneous values outside of the domain. 
However, some variables only have valid values in some conditional domain. Medical and 
insurance data typically has many conditional domains in which the values in one field, 
say, “diagnosis,” are conditioned by values in another field, say, “gender.” That is to say, 
there are some diagnoses that are valid only for patients of one particular gender. 

 

 
 

 

Business or procedural rules enforce other conditional domains. For example, fraud 
investigations may not be conducted for claims of less than $1000. A variable indicating 
that a fraud investigation was triggered should never be true for claims of less than $1000.

 

 
 

 

Perhaps the miner doesn’t know that such business rules exist. There are automated 
tools that can examine data and extract business rules and exceptions by examining data. 
A demonstration version of one such tool, WizRule, is included on the CD-ROM with this 
book. Such a rule report can be very valuable in determining domain consistency. 
Example 2 later in this chapter shows the use of this tool. 

 

 

 

 4.2.7  Defaults  
 
 

 Many data capturing programs include default values for some of the variables. Such  



default values may or may not cause a problem for the miner, but it is necessary to be 
aware of the values if possible. A default value may also be conditional, depending on the 
values of other entries for the actual default entered. Such conditional defaults can create 
seemingly significant patterns for the miner to discover when, in fact, they simply 
represent a lack of data rather than a positive presence of data. The patterns may be 
meaningful for predictive or inferential models, but if generated from the default rules 
inside the data capture system, they will have to be carefully evaluated since such 
patterns are often of limited value. 

 

 

 4.2.8  Integrity  
 
 

 

Checking integrity evaluates the relationships permitted between the variables. For 
instance, an employee may have several cars, but is unlikely to be permitted to have 
multiple employee numbers or multiple spouses. Each field needs to be evaluated to 
determine the bounds of its integrity and if they are breached. 

 

 
 

 

Thinking of integrity in terms of an acceptable range of values leads to the consideration 
of outliers, that is, values potentially out of bounds. But outliers need to be treated 
carefully, particularly in insurance and financial data sets. Modeling insurance data, as an 
example, frequently involves dealing with what look like outliers, but are in fact perfectly 
valid values. In fact, the outlier might represent exactly what is most sought, representing 
a massive claim far from the value of the rest. Fraud too frequently looks like outlying data 
since the vast majority of transactions are not fraudulent. The relatively few fraudulent 
transactions may seem like sparsely occurring outlying values. 

 

 

 

 4.2.9  Concurrency  
 
 

 

When merging separate data streams, it may well be that the time of data capture is 
different from stream to stream. While this is partly a data access issue and is discussed 
in “Data Access Issues” above, it also needs to be considered and documented when 
characterizing the data streams. 

 

 

 

 4.2.10  Duplicate or Redundant Variables  
 
 

 

Redundant data can be easily merged from different streams or may be present in one 
stream. Redundancy occurs when essentially identical information is entered in multiple 
variables, such as “date_of_birth” and “age.” Another example is “price_per_unit,” 
“number_purchased,” and “total_price.” If the information is not actually identical, the 
worst damage is likely to be only that it takes a longer time to build the models. However, 
most modeling techniques are affected more by the number of variables than by the 
number of instances. Removing redundant variables, particularly if there are many of 
them, will increase modeling speed. 

 

 
 

 If, by accident, two variables should happen to carry identical values, some modeling 



techniques—specifically, regression-based methods—have extreme problems digesting 
such data. If they are not suitably protected, they may cause the algorithm to “crash.” Such 
colinearity can cause major problems for matrix-based methods (implemented by some 
neural network algorithms, for instance) as well as regression-based methods. On the other 
hand, if two variables are almost colinear, it is often useful to create a new variable that 
expresses the difference between the nearly colinear variables. 

 

 
4.3  Data Set Assembly  
 
 

 

At this point, the miner should know a considerable amount about the input streams and 
the data in them. Before the assay can continue, the data needs to be assembled into the 
table format of rows and columns that will be used for mining. This may be a simple task 
or a very considerable undertaking, depending on the content of the streams. One 
particular type of transformation that the miner often uses, and that can cause many 
challenges, is a reverse pivot. 

 

 

 

 4.3.1  Reverse Pivoting  
 
 

 

Often, what needs to be modeled cannot be derived from the existing transaction data. If 
the transactions were credit card purchases, for example, the purchasing behavior of the 
cardholders may need to be modeled. The principal object that needs to be modeled, 
then, is the cardholder. Each transaction is associated with a particular account number 
unique to the cardholder. In order to describe the cardholder, all of the transactions for 
each particular cardholder have to be associated and translated into derived fields (or 
features) describing cardholder activity. The miner, perhaps advised by a domain expert, 
has to determine the appropriate derived fields that will contribute to building useful 
models. 

 

 
 

 

Figure 4.3 shows an example of a reverse pivot. Suppose a bank wants to model 
customer activity using transaction records. Any customer banking activity is associated 
with an account number that is recorded in the transaction. In the figure, the individual 
transaction records, represented by the table on the left, are aggregated into their 
appropriate feature (Date, Account Number, etc.) in the constructed Customer Record. 
The Customer Record contains only one entry per customer. All of the transactions that a 
customer makes in a period are aggregated into that customer’s record. Transactions of 
different types, such as loan activity, checking activity, and ATM activity are represented. 
Each of the aggregations represents some selected level of detail. For instance, within 
ATM activity in a customer record, the activity is recorded by dollar volume and number of 
transactions within a period. This is represented by the expansion of one of the 
aggregation areas in the customer record. The “Pn” represents a selected period, with “#” 
the number of transactions and “$” the dollar volume for the period. Such reverse pivots 
can aggregate activity into many hundreds of features. 
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 Figure 4.3  Illustrating the effect of a reverse pivot operation.  

   
 
 

 

One company had many point-of-sale (POS) transactions and wanted to discover the 
main factors driving catalog orders. The POS transactions recorded date and time, 
department, dollar amount, and tender type in addition to the account number. These 
transactions were reverse pivoted to describe customer activity. But what were the 
appropriate derived features? Did time of day matter? Weekends? Public holidays? If so, 
how were they best described? In fact, many derived features proved important, such as 
the time in days to or from particular public holidays (such as Christmas) or from local 
paydays, the order in which departments were visited, the frequency of visits, the 
frequency of visits to particular departments, and the total amount spent in particular 
departments. Other features, such as tender type, returns to particular departments, and 
total dollar returns, were insignificant. 

 

 

 

 4.3.2  Feature Extraction  
 
 

 

Discussing reverse pivoting leads to the consideration of feature extraction. By choosing 
to extract particular features, the miner determines how the data is presented to the 
mining tool. Essentially, the miner must judge what features might be predictive. For this 
reason, reverse pivoting cannot become a fully automated feature of data preparation. 
Exactly which features from the multitudinous possibilities are likely to be of use is a 
judgment call based on circumstance. Once the miner decides which features are 
potentially useful, then it is possible to automate the process of aggregating their contents 
from the transaction records. 

 

 
 

 

Feature extraction is not limited to the reverse pivot. Features derived from other 
combinations of variables may be used to replace the source variables and so reduce the 
dimensionality of the data set. Even if not used to reduce dimensionality, derived features 
can add information that speeds the modeling process and reduces susceptibility to noise. 
Chapter 2 discussed the use of feature extraction as a way of helping expose the 
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information content in a data set. 
 
 

 

Physical models frequently require feature extraction. The reason for this is that when 
physical processes are measured, it is likely that very little changes from one stage to the 
next. Imagine monitoring the weather measured at hourly intervals. Probably the 
barometric pressure, wind speed, and direction change little in an hour. Interestingly, 
when the changes are rapid, they signify changing weather patterns. The feature of 
interest then is the amount of change in the measurements happening from hour to hour, 
rather than the absolute level of the measurement alone. 

 

 

 

 4.3.3  Physical or Behavioral Data Sets  
 
 

 

There is a marked difference in the character of a physical data set as opposed to a 
behavioral data set. Physical data sets measure mainly physical characteristics about the 
world: temperature, pressure, flow rate, rainfall, density, speed, hours run, and so on. 
Physical systems generally tend to produce data that can be easily characterized 
according to the range and distribution of measurements. While the interactions between 
the variables may be complex or nonlinear, they tend to be fairly consistent. Behavioral 
data, on the other hand, is very often inconsistent, frequently with missing or incomplete 
values. Often a very large sample of behavioral data is needed to ensure a representative 
sample. 

 

 
 

 

Industrial automation typically produces physical data sets that measure physical 
processes. But there are many examples of modeling physical data sets for business 
reasons. Modeling a truck fleet to determine optimum maintenance periods and to predict 
maintenance requirements also uses a physical data set. The stock market, on the other 
hand, is a fine example of a behavioral data set. The market reflects the aggregate result 
of millions of individual decisions, each made from individual motivations for each buyer 
or seller. A response model for a marketing program or an inferential model for fraud 
would both be built using behavioral data sets. 

 

 

 

 4.3.4  Explanatory Structure  
 
 

 

Devising useful features to extract requires domain knowledge. Inventing features that 
might be useful without some underlying idea of why such a feature, or set of features, 
might be useful is seldom of value. More than that, whenever data is collected and used 
for a mining project, the miner needs to have some underlying idea, rationale, or theory as 
to why that particular data set can address the problem area. This idea, rationale, or 
theory forms the explanatory structure for the data set. It explains how the variables are 
expected to relate to each other, and how the data set as a whole relates to the problem. 
It establishes a reason for why the selected data set is appropriate to use. 

 

 
 

 
Such an explanatory structure should be checked against the data, or the data against the 
explanation, as a form of “sanity check.” The question to ask is, Does the data work in the 
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way proposed? Or does this model make sense in the context of this data? 
 
 

 

Checking that the explanatory structure actually holds as expected for the data available 
is the final stage in the assay process. Many tools can be used for this purpose. Some of 
the most useful are the wide array of powerful and flexible OLAP (On-Line Analytical 
Processing) tools that are now available. These make it very easy to interactively examine 
an assembled data set. While such tools do not build models, they have powerful data 
manipulation and visualization features. 

 

 

 

 4.3.5  Data Enhancement or Enrichment  
 
 

 

Although the assay ends with validating the explanatory structure, it may turn out that the 
data set as assembled is not sufficient. FNBA, for instance, might decide that affinity 
group membership information is not enough to make credit-offering decisions. They 
could add credit histories to the original information. This additional information actually 
forms another data stream and enriches the original data. Enrichment is the process of 
adding external data to the data set. 

 

 
 

 

Note that data enhancement is sometimes confused with enrichment. Enhancement 
means embellishing or expanding the existing data set without adding external sources. 
Feature extraction is one way of enhancing data. Another method is introducing bias for a 
particular purpose. Adding bias introduces a perspective to a data set; that is, the 
information in the data set is more readily perceived from a particular point of view or for a 
particular purpose. A data set with a perspective may or may not retain its value for other 
purposes. Bias, as used here, simply means that some effect has distorted the 
measurements. 

 

 
 

 

Consider how FNBA could enhance the data by adding a perspective to the data set. It is 
likely that response to a random FNBA mailing would be about 3%, a typical response 
rate for an unsolicited mailing. Building a response model with this level of response 
would present a problem for some techniques such as a neural network. Looking at the 
response data from the perspective of responders would involve increasing the 
concentration from 3% to, say, 30%. This has to be done carefully to try to avoid 
introducing any bias other than the desired effect. (Chapter 10 discusses this in more 
detail.) Increasing the density of responders is an example of enhancing the data. No 
external data is added, but the existing data is restructured to be more useful in a 
particular situation. 

 

 
 

 

Another form of data enhancement is data multiplication. When modeling events that 
rarely occur, it may not be possible to increase the density of the rate of occurrence of the 
event enough to build good models. For example, if modeling catastrophic failure of some 
physical process, say, a nuclear power plant, or indicators predicting terrorist attacks on 
commercial aircraft, there is very little data about such events. What data there is cannot 
be concentrated enough to build a representative training data set. In this case it is 
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possible to multiply the few examples of the phenomena that are available by carefully 
adding constructed noise to them. (See Chapter 10.) 

 
 

 
Proposed enhancement or enrichment strategies are often noted in the assay, although 
they do not form an integral part of it. 

 

 

 

 4.3.6  Sampling Bias  
 
 

 

Undetected sampling bias can cause the best-laid plans, and the most carefully 
constructed and tested model, to founder on the rocks of reality. The key word here is 
“undetected.” 

 

 
 

 

The goal of the U.S. census, for instance, is to produce an unbiased survey of the 
population by requiring that everyone in the U.S. be counted. No guessing, no estimation, 
no statistical sampling; just get out and count them. The main problem is that this is not 
possible. For one thing, the census cannot identify people who have no fixed address: 
they are hard to find and very easily slip through the census takers’ net. Whatever 
characteristics these people would contribute to U.S. demographic figures are simply 
missing. Suppose, simply for the sake of example, that each of these people has an 
extremely low income. If they were included in the census, the “average” income for the 
population would be lower than is actually captured. 

 

 
 

 

Telephone opinion polls suffer from the same problem. They can only reach people who 
have telephones for a start. When reached, only those willing to answer the pollster’s 
questions actually do so. Are the opinions of people who own telephones different from 
those who do not? Are the opinions of those willing to give an opinion over the telephone 
different from those who are not? Who knows? If the answer to either question is “Yes,” 
then the opinions reflected in the survey do not in fact represent the population as a 
whole. 

 

 
 

 

Is this bias important? It may be critical. If unknown bias exists, it is a more or less 
unjustified assumption that the data reflects the real world, and particularly that it has any 
bearing on the issue in question. Any model built on such assumptions reflects only the 
distorted data, and when applied to an undistorted world, the results are not likely to be as 
anticipated. 

 

 
 

 

Sampling bias is in fact impossible to detect using only the data set itself as a reference. 
There are automated methods of deriving measurements about the data set indicating the 
possible presence of sampling bias, but such measurements are no more than indicators. 
These methods are discussed in Chapter 11, which deals with the data survey. The assay 
cannot use these automated techniques since the data survey requires a fully assembled 
and prepared data set. This does not exist when the assay is being made. 

 

 
 

 At this stage, using the explanatory structure for the data, along with whatever domain 
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knowledge is available, the miner needs to discover and explicate any known bias or biases 
that affected the collection of the data. Biasing the data set is sometimes desirable, even 
necessary. It is critical to note intentional biases and to seek out other possible sources of 
bias. 

 

 
4.4  Example 1: CREDIT  
 
 

 

The purpose of the data assay, then, is to check that the data is coherent, sufficient, can 
be assembled into the needed format, and makes sense within a proposed framework. 
What does this look like in practice? 

 

 
 

 

For FNBA, much of the data comes in the form of credit histories purchased from credit 
bureaus. During the solicitation campaign, FNBA contacts the targeted market by mail 
and telephone. The prospective credit card user either responds to the invitation to take a 
credit card or does not respond. One of the data input streams is (or includes) a flag 
indicating if the targeted person responded or not. Therefore, the initial model for the 
campaign is a predictive model that builds a profile of people who are most likely to 
respond. This allows the marketing efforts to be focused on only that segment of the 
population that is most likely to want the FNBA credit card with the offered terms and 
conditions. 

 

 

 

 4.4.1  Looking at the Variables  
 
 

 

As a result of the campaign, various data streams are assembled into a table format for 
mining. (The file CREDIT that is used in this example is included on the accompanying 
CD-ROM. Table 4.1 shows entries for 41 fields. In practice, there will usually be far more 
data, in both number of fields and number of records, than are shown in this example. 
There is plenty of data here for a sample assay.) 

 

 

 

 TABLE 4.1 Status report for the CREDIT file.  
 
 

   
 
 

 FIELD  
 

 

 MAX  
 

 

 

 MIN  
 

 

 

 DISTINCT 
 

 

 

 EMPTY  
 

 

 

 CONF  
 

 

 

 REQ  
 

 

 

 VAR  
 

 

 

 LIN  
 

 

 

 
VAR- 

TYPE 
 

 

 

 

   
 
 

 
AGE 

_INFERR 
 

 

 

 57.0  
 

 

 

 35.0  
 

 

 

 3  
 

 

 

 0  
 

 

 

 0.96  
 

 

 

 280  
 

 

 

 0.8  
 

 

 

 0.9  
 

 

 

 N  
 

 

 

 BCBAL  
 

 

 24251.0  
 

 
 

 0.0  
 

 
 

 3803  
 

 
 

 211  
 

 
 

 0.95  
 

 
 

 1192  
 

 
 

 251.5  
 

 
 

 0.8  
 

 
 

 N  
 

 

 

 BCLIMIT  
 

 

 46435.0  
 

 
 

 0.0  
 

 
 

 2347  
 

 
 

 151  
 

 
 

 0.95  
 

 
 

 843  
 

 
 

 424.5  
 

 
 

 0.9  
 

 
 

 N  
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 BCOPEN  
 

 

 0.0  
 

 
 

 0.0  
 

 
 

 1  
 

 
 

 59  
 

 
 

 0.95  
 

 
 

 59  
 

 
 

 0.0  
 

 
 

 0.0  
 

 
 

 E  
 

 

 

 
BEACON 

_C 
 

 

 

 804.0  
 

 

 

 670.0  
 

 

 

 124  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 545  
 

 

 

 1.6  
 

 

 

 1.0  
 

 

 

 N  
 

 

 

 BUYER  
 

 

 1.0  
 

 
 

 0.0  
 

 
 

 2  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 353  
 

 
 

 0.1  
 

 
 

 0.7  
 

 
 

 N  
 

 

 

 CHILDREN 
 

 

 1.0  
 

 
 

 0.0  
 

 
 

 2  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 515  
 

 
 

 0.0  
 

 
 

 0.8  
 

 
 

 N  
 

 

 

 CRITERIA  
 

 

 1.0  
 

 
 

 1.0  
 

 
 

 1  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 60  
 

 
 

 0.0  
 

 
 

 0.0  
 

 
 

 N  
 

 

 

 
DAS 

_C 
 

 

 

 513.0  
 

 

 

 –202.0  
 

 

 

 604  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 437  
 

 

 

 10.3  
 

 

 

 1.0  
 

 

 

 N  
 

 

 

 
DOB 

_MONTH 
 

 

 

 12.0  
 

 

 

 0.0  
 

 

 

 14  
 

 

 

 8912  
 

 

 

 0.95  
 

 

 

 9697  
 

 

 

 0.3  
 

 

 

 0.6  
 

 

 

 N  
 

 

 

 
DOB 

_YEAR 
 

 

 

 70.0  
 

 

 

 0.0  
 

 

 

 42  
 

 

 

 285  
 

 

 

 0.95  
 

 

 

 879  
 

 

 

 0.5  
 

 

 

 1.0  
 

 

 

 N  
 

 

 

 EQBAL  
 

 

 67950.0  
 

 
 

 0.0  
 

 
 

 80  
 

 
 

 73  
 

 
 

 0.95  
 

 
 

 75  
 

 
 

 0.0  
 

 
 

 1.0  
 

 
 

 E  
 

 

 

 EQCURBAL  
 

 

 220000.0  
 

 
 

 0.0  
 

 
 

 179  
 

 
 

 66  
 

 
 

 0.95  
 

 
 

 67  
 

 
 

 0.0  
 

 
 

 0.0  
 

 
 

 E  
 

 

 

 EQHIGHBAL  
 

 

 237000.0  
 

 
 

 0.0  
 

 
 

 178  
 

 
 

 66  
 

 
 

 0.95  
 

 
 

 67  
 

 
 

 0.0  
 

 
 

 0.0  
 

 
 

 E  
 

 

 

 EQLIMIT  
 

 

 67950.0  
 

 
 

 0.0  
 

 
 

 45  
 

 
 

 73  
 

 
 

 0.95  
 

 
 

 75  
 

 
 

 0.0  
 

 
 

 1.0  
 

 
 

 E  
 

 

 

 
EST 

_INC_C 
 

 

 

 87500.0  
 

 

 

 43000.0  
 

 

 

 3  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 262  
 

 

 

 1514.0  
 

 

 

 0.9  
 

 

 

 N  
 

 

 

 
HOME 

_ED 
 

 

 

 160.0  
 

 

 

 0.0  
 

 

 

 8  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 853  
 

 

 

 3.5  
 

 

 

 0.7  
 

 

 

 N  
 

 

 

 
HOME 

_INC 
 

 

 

 150.0  
 

 

 

 0.0  
 

 

 

 91  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 1298  
 

 

 

 0.7  
 

 

 

 0.9  
 

 

 

 N  
 

 

 

 
HOME 

_VALUE 
 

 

 

 531.0  
 

 

 

 0.0  
 

 

 

 191  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 870  
 

 

 

 2.6  
 

 

 

 0.9  
 

 

 

 N  
 

 

 

 ICURBAL  
 

 

 126424.0  
 

 
 

 0.0  
 

 
 

 4322  
 

 
 

 1075  
 

 
 

 0.96  
 

 
 

 2263  
 

 
 

 397.4  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 IHIGHBAL  
 

 

 116545.0  
 

 
 

 0.0  
 

 
 

 4184  
 

 
 

 573  
 

 
 

 0.96  
 

 
 

 1192  
 

 
 

 951.3  
 

 
 

 0.9  
 

 
 

 N  
 

 



 

 
LST 

_R_OPEN 
 

 

 

 99.0  
 

 

 

 0.0  
 

 

 

 100  
 

 

 

 9  
 

 

 

 0.96  
 

 

 

 482  
 

 

 

 3.6  
 

 

 

 0.9  
 

 

 

 N  
 

 

 

 MARRIED  
 

 

 0.0  
 

 
 

 0.0  
 

 
 

 2  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 258  
 

 
 

 0.2  
 

 
 

 0.0  
 

 
 

 C  
 

 

 

 MOF  
 

 

 976.0  
 

 
 

 0.0  
 

 
 

 528  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 951  
 

 
 

 3.8  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 MTCURBAL  
 

 

 578000.0  
 

 
 

 0.0  
 

 
 

 3973  
 

 
 

 433  
 

 
 

 0.95  
 

 
 

 919  
 

 
 

 3801.7  
 

 
 

 1.0  
 

 
 

 N  
 

 

 

 MTHIGHBAL  
 

 

 579000.0  
 

 
 

 0.0  
 

 
 

 1742  
 

 
 

 365  
 

 
 

 0.95  
 

 
 

 779  
 

 
 

 4019.7  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 
OWN 

_HOME 
 

 

 

 0.0  
 

 

 

 0.0  
 

 

 

 1  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 60  
 

 

 

 0.0  
 

 

 

 0.0  
 

 

 

 N  
 

 

 

 
PRCNT 

_PROF 
 

 

 

 86.0  
 

 

 

 0.0  
 

 

 

 66  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 579  
 

 

 

 0.8  
 

 

 

 1.0  
 

 

 

 N  
 

 

 

 
PRCNT 

_WHIT 
 

 

 

 99.0  
 

 

 

 0.0  
 

 

 

 58  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 568  
 

 

 

 3.3  
 

 

 

 0.6  
 

 

 

 N  
 

 

 

 RBAL  
 

 

 78928.0  
 

 
 

 0.0  
 

 
 

 5066  
 

 
 

 18  
 

 
 

 0.97  
 

 
 

 795  
 

 
 

 600.3  
 

 
 

 0.8  
 

 
 

 N  
 

 

 

 RBALNO  
 

 

 14.0  
 

 
 

 0.0  
 

 
 

 14  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 642  
 

 
 

 0.1  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 
RBAL 

_LIMIT 
 

 

 

 9.0  
 

 

 

 0.0  
 

 

 

 10  
 

 

 

 0  
 

 

 

 0.95  
 

 

 

 618  
 

 

 

 0.1  
 

 

 

 0.8  
 

 

 

 N  
 

 

 

 RLIMIT  
 

 

 113800.0  
 

 
 

 0.0  
 

 
 

 6067  
 

 
 

 11  
 

 
 

 0.95  
 

 
 

 553  
 

 
 

 796.3  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 ROPEN  
 

 

 17.0  
 

 
 

 0.0  
 

 
 

 17  
 

 
 

 0  
 

 
 

 0.96  
 

 
 

 908  
 

 
 

 0.1  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 SEX  
 

 

 0.0  
 

 
 

 0.0  
 

 
 

 3  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 351  
 

 
 

 0.2  
 

 
 

 0.0  
 

 
 

 C  
 

 

 

 TBALNO  
 

 

 370260.0  
 

 
 

 0.0  
 

 
 

 7375  
 

 
 

 9  
 

 
 

 0.95  
 

 
 

 852  
 

 
 

 2383.7  
 

 
 

 0.7  
 

 
 

 N  
 

 

 

 TOPEN  
 

 

 17.0  
 

 
 

 0.0  
 

 
 

 18  
 

 
 

 0  
 

 
 

 0.95  
 

 
 

 617  
 

 
 

 0.1  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 UNSECBAL  
 

 

 23917.0  
 

 
 

 0.0  
 

 
 

 2275  
 

 
 

 781  
 

 
 

 0.95  
 

 
 

 1349  
 

 
 

 420.1  
 

 
 

 0.8  
 

 
 

 N  
 

 

 

 UNSECLIMIT  
 

 

 39395.0  
 

 
 

 0.0  
 

 
 

 1596  
 

 
 

 906  
 

 
 

 0.95  
 

 
 

 1571  
 

 
 

 387.9  
 

 
 

 0.9  
 

 
 

 N  
 

 

 

 YEARS_RES  
 

 

 15.0  
 

 
 

 0.0  
 

 
 

 17  
 

 
 

 21  
 

 
 

 0.95  
 

 
 

 431  
 

 
 

 0.4  
 

 
 

 0.9  
 

 
 

 N  
 

 

                   



 _Q_MVP  
 

 0.0  
 

 0.0  
 

 207  
 

 0  
 

 0.95  
 

 1086  
 

 0.4  
 

 0.1  
 

 C  
 

 

   
 
 

 

How is this data assayed? Start looking at the basic statistics for the file. Table 4.1 shows 
a statistics file produced by the data preparation software on the accompanying CD-ROM 
for the file CREDIT. How does this file help? 

 

 
 

 First, the column headings indicate the following measurements about the variables:  
 
 

  •  FIELD. The name of the field.  
 
 

  •  MAX. The maximum value sampled for numeric variables.  
 
 

  •  MIN. The minimum value sampled for numeric variables.  
 
 

  

• 

 

DISTINCT. The number of distinct values for the variable in the sample. For example, if 
the field “months” was recorded with standardized three-letter abbreviations, there are a 
maximum of 12 valid, distinct values that the field can contain. A missing value counts 
toward the total number of distinct values, so the field “months” can have 13 distinct 
values including the value “missing.” More than 13 values clearly indicates that 
erroneous entries are polluting the data. 

 

 
 

  •  EMPTY. The number of records with missing values.  
 
 

  

• 
 

CONF. The confidence level that the variability was captured. (Confidence levels, and 
how they are discovered and used, are covered in Chapter 5 and are not used in the 
assay.) 

 

 
 

  
• 
 
REQ. The minimum number of records required to establish the confidence level. (See 
Chapter 5.) 

 

 
 

  •  VAR. A measure of the variability in a variable. (See Chapter 5.)  
 
 

  

• 
 

LIN. A measure of interstitial linearity (again, discussed in Chapter 5) and used in the 
assay. Interstitial linearity is one measure used to indicate possible problems with a 
variable, including monotonicity. 

 

 
 

  

• 
 

VARTYPE. The type of variable detected. “N” indicates numeric, “C” indicates 
character, “E” indicates empty. (The demonstration code will only recognize these three 
types.) 

 

 
 

 Now, consider what can be learned about a few of the fields:  
 
 



  
• 
 
AGE_INFERR. This has three discrete values, and every field has one of the three 
values. This is a numeric variable. 

 

 
 

  
• 
 
BCOPEN. This is a completely empty variable; that is, none of the records has an entry 
in this field. Thus it has one distinct value (missing) in all of the records. 

 

 
 

  

• 
 

BEACON_C. As a rule of thumb, if the linearity of a variable (LIN) is above 0.98, it is 
worth checking if the variable is monotonic. (As it happens it isn’t in this case, but 
knowing that requires domain knowledge.) 

 

 
 

  

• 

 

CRITERIA. This is shown as a numeric variable having one DISTINCT value and no 
variance (indicated by the 0.0 entry in VAR). This means that while all of the values are 
populated, they all have the same value. So this is actually a constant, not a variable, 
and it should be removed. 

 

 
 

  

• 

 

EQBAL. What is going on here? It is shown as empty (“E” in VARTYPE) and yet it 
contains 80 DISTINCT values! This is a feature of the sampling process. As shown in 
REQ, it required 75 samples to establish the confidence level needed. Out of those 75 
sampled, 73 were EMPTY, which was sufficient to establish the required level of 
confidence that it was indeed empty below the required threshold. From that point on, 
the variable was no longer sampled. This speeds the sampling process. Other variables 
required far more samples to establish their required confidence level. At the end of the 
sampling process, the data preparation software builds a fully populated sample file with 
prepared data. When the full sample was taken, the full range of what was found in 
EQBAL was noted. The 80 in DISTINCT indicates that although the variable was 
populated at too low a level for use at the required confidence level, it still did have 
some very sparse content and that sparse content did have 80 distinct values. However, 
since it was too empty to use, it is not included in the prepared data. 

 

 
 

  

• 

 

DOB_MONTH. This variable sits almost on the edge of falling below the selected 
sparsity threshold. It is not quite 95% empty, the level required for rejection in this 
example, but it is 92% (8912/9697) empty. Because of the emptiness and distortion, the 
system required 785 (9697 – 8912) nonempty samples to capture its variability. Even if 
the miner elected to use this field in the final model, there is still the question of why 
there are 14 months. To discover what is possibly wrong here, another report produced 
by the demonstration software is needed, the “Complete Content” report. This is a very 
large report listing, among other things, all of the values discovered in the sample along 
with their frequencies. Table 4.2 shows the part of the Complete Content report that 
covers DOB_MONTH, the part of the interest here. From inspection of the CONTENT it 
seems obvious that “00” serves as a surrogate for a missing value. Adding the 646 “00” 
with the 8912 that are missing, this takes the variable below the sparsity threshold 
selected and the variable should be discarded. 

 

 

 

 TABLE 4.2  Part of the Complete Content report for the CREDIT data.  
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 FIELD  
 

 

 CONTENT  
 

 
 

 CCOUNT  
 

 

 

   
 
 

 DOB_MONTH  
 

 

   
 

 
 

 8912  
 

 

 

 DOB_MONTH  
 

 

 00  
 

 
 

 646  
 

 

 

 DOB_MONTH  
 

 

 01  
 

 
 

   12  
 

 

 

 DOB_MONTH  
 

 

 02  
 

 
 

    7  
 

 

 

 DOB_MONTH  
 

 

 03  
 

 
 

   10  
 

 

 

 DOB_MONTH  
 

 

 04  
 

 
 

    9  
 

 

 

 DOB_MONTH  
 

 

 05  
 

 
 

   15  
 

 

 

 DOB_MONTH  
 

 

 06  
 

 
 

   14  
 

 

 

 DOB_MONTH  
 

 

 07  
 

 
 

   11  
 

 

 

 DOB_MONTH  
 

 

 08  
 

 
 

   10  
 

 

 

 DOB_MONTH  
 

 

 09  
 

 
 

   13  
 

 

 

 DOB_MONTH  
 

 

 10  
 

 
 

   10  
 

 

 

 DOB_MONTH  
 

 

 11  
 

 
 

   15  
 

 

 

 DOB_MONTH  
 

 

 12  
 

 
 

   13  
 

 

 

   
 
 

  

• 

 

HOME_VALUE. There are no empty values. Nonetheless, it does not seem likely that 
0.0, shown in MIN as the minimum value, is a reasonable home valuation! There are 
191 DISTINCT values, but how many are “0.0”? The appropriate part of the Complete 
Content report (Table 4.3) again shows what is happening. Once again it may seem 
obvious that the value 000 is a surrogate of a missing value. It may be beneficial to 
replace the 000 with a blank so that the system will treat it as a missing value rather 
than treating it as if it had a valid value of 000. On the other hand, it may be that a 

 



renter, not owning a home, is shown as having a 000 home value. In that case, the 
value acts as a “rent/own” flag, having a completely different meaning and perhaps a 
different significance. Only domain knowledge can really answer this question. 

 

 

 
TABLE 4.3  Part of the Complete Content report showing the first few values of 
HOME_VALUE. 

 

 
 

   
 
 

 FIELD  
 

 

 CONTENT  
 

 
 

 CCOUNT  
 

 

 

   
 
 

 HOME_VALUE  
 

 

 000  
 

 
 

 284  
 

 

 

 HOME_VALUE  
 

 

 027  
 

 
 

   3  
 

 

 

 HOME_VALUE  
 

 

 028  
 

 
 

   3  
 

 

 

 HOME_VALUE  
 

 

 029  
 

 
 

   3  
 

 

 

 HOME_VALUE  
 

 

 030  
 

 
 

   3  
 

 

 

 HOME_VALUE  
 

 

 031  
 

 
 

   2  
 

 

 

 HOME_VALUE  
 

 

 032  
 

 
 

   5  
 

 

 

   
 

 

 4.4.2  Relationships between Variables  
 
 

 

Each field, or variable, raises various questions similar to those just discussed. Is this 
range of values reasonable? Is the distribution of those values reasonable? Should the 
variable be kept or removed? Just the basic report of frequencies can point to a number of 
questions, some of which can only be answered by understanding the domain. Similarly, 
the relationship between variables also needs to be considered. 

 

 
 

 

In every data mining application, the data set used for mining should have some 
underlying rationale for its use. Each of the variables used should have some expected 
relationship with other variables. These expected relationships need to be confirmed 
during the assay. Before building predictive or inferential models, the miner needs at least 
some assurance that the data represents an expected reflection of the real world. An 
excellent tool to use for this exploration and confirmation is a single-variable CHAID 
analysis. Any of the plethora of OLAP tools may also provide the needed confirmation or 
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denial between variable relationships. 
 
 

 

CHAID is an acronym for chi-square automatic interaction detection. CHAID, as its name 
suggests, detects interactions between variables. It is a method that partitions the values 
of one variable based on significant interactions between that variable and another one. 
KnowledgeSEEKER, a commercially available tree tool, uses the CHAID algorithm. 
Instead of letting it grow trees when used as an assaying tool, it is used to make 
single-variable analyses. In other words, after selecting a variable of interest, 
KnowledgeSEEKER compares that variable against only one other variable at a time. 
When allowed to self-select a variable predictive of another, KnowledgeSEEKER selects 
the one with the highest detected interaction. If two selected variables are to be 
compared, that can be done as well. 

 

 
 

 

Using KnowledgeSEEKER to explore and confirm the internal dynamics of the CREDIT 
data set is revealing. As a single example, consider the variable AGE_INFERR (i.e., 
inferred age). If the data set truly reflects the world, it should be expected to strongly 
correlate with the variable DOB_YEAR. 

 

 
 

 

Figure 4.4(a) shows what happened when KnowledgeSEEKER found the most highly 
interacting variable for AGE_INFERR. It discovered DOB_YEAR as expected. Figure 
4.4(b) graphs the interaction, and it can easily be seen that while the match is not perfect, 
the three estimated ages do fit the year of birth very closely. But this leads to other 
questions: Why are both measures in the data set, and are they both needed? This 
seems to be a redundant pair, one of which may be beneficially eliminated. But is that 
really so? And if it is, which should be kept? As with so many things in life, the answer is, 
that depends! Only by possessing domain knowledge, and by examining the differences 
between the two variables and the objectives, can the miner arrive at a good answer. 
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Figure 4.4  KnowledgeSEEKER tree showing interaction between AGE_INFERR 
and the most strongly interacting variable, DOB_YEAR (a). Graphing the detected 
interaction between AGE_INFERR and DOB_YEAR (b). 

 

   
 
 

 

Exploring the data set variable by variable and finding which are the most closely 
interacting variables is very revealing. This is an important part of any assay. It is also 
important to confirm that any expected relationships, such as, say, between HOME_ED 
(the educational level in a home) and PRCNT_PROF (the professional level of the 
applicant), do in fact match expectations, even if they are not the most closely interacting. 
It seems reasonable to assume that professionals have, in general, a higher level of 
education than nonprofessionals. If, for instance, it is not true for this data set, a domain 
expert needs to determine if this is an error. 

 

 
 

 

Some data sets are selected for particular purposes and do not in fact represent the general 
population. If the bias, or distortion, is intentionally introduced, then exactly why that bias is 
considered desirable needs to be made clear. For instance, if the application involves 
marketing child-related products, a data set might be selected that has a far higher 
predominance of child-bearing families than normally occur. This deliberately introduced 
distortion needs to be noted. 

 

 
4.5  Example 2: SHOE  
 
 

 

A national shoe chain wants to model customer profiles in order to better understand their 
market. More than 26,000 customer-purchase profiles are collected from their national 
chain of shoe stores. Their first question should be, Does the collected information help us 
understand customer motivations? The first step in answering this question is to assay the
data. (This sample data set is also included on the accompanying CD-ROM.) 

 

 

 

 4.5.1  Looking at the Variables  
 
 



 
Table 4.4 shows the variable status report from the demonstration preparation software 
for the SHOE data set. 

 

 

 

 TABLE 4.4 Variable Status report for the file SHOE.  
 
 

   
 
 

 FIELD  
 

 

 MAX  
 

 

 

 MIN  
 

 

 

 DISTINCT 
 

 

 

 EMPTY 
 

 

 

 CONF 
 

 

 

 REQ  
 

 

 

 VAR  
 

 

 

 LIN 
 

 

 

 
VAR- 
TYPE

 

 

 

 

   
 
 

 AGE  
 

 

 50.0 
 

 
 

 19.0 
 

 
 

 6  
 

 
 

 89  
 

 
 

 0.95 
 

 
 

 736  
 

 
 

 0.52 
 

 
 

 0.96 
 

 
 

 N  
 

 

 

 CITY  
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 1150  
 

 
 

 0  
 

 
 

 0.95 
 

 
 

 659  
 

 
 

 3.54 
 

 
 

 0.67 
 

 
 

 C  
 

 

 

 GENDER  
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 5  
 

 
 

 6  
 

 
 

 0.95 
 

 
 

 356  
 

 
 

 0.16 
 

 
 

 0.01 
 

 
 

 C  
 

 

 

 
MILES 
_WEEK 

 

 

 

 51.0 
 

 

 

 0.0  
 

 

 

 9  
 

 

 

 322  
 

 

 

 0.95 
 

 

 

 846  
 

 

 

 0.85 
 

 

 

 0.92 
 

 

 

 N  
 

 

 

 PURCHASENU 
 

 

 2.0 
 

 
 

 1.0  
 

 
 

 2  
 

 
 

 0  
 

 
 

 0.95 
 

 
 

 1152  
 

 
 

 0.02 
 

 
 

 0.40 
 

 
 

 N  
 

 

 

 
RACES 
_YEAR 

 

 

 

 10.0 
 

 

 

 0.0  
 

 

 

 7  
 

 

 

 1480  
 

 

 

 0.95 
 

 

 

 2315  
 

 

 

 0.13 
 

 

 

 0.83 
 

 

 

 N  
 

 

 

 SHOECODE 
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 611  
 

 
 

 1  
 

 
 

 0.95 
 

 
 

 378  
 

 
 

 2.19 
 

 
 

 0.57 
 

 
 

 C  
 

 

 

 SOURCE  
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 18  
 

 
 

 0  
 

 
 

 0.95 
 

 
 

 659  
 

 
 

 0.18 
 

 
 

 0.02 
 

 
 

 C  
 

 

 

 STATE  
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 54  
 

 
 

 0  
 

 
 

 0.95 
 

 
 

 910  
 

 
 

 0.45 
 

 
 

 0.05 
 

 
 

 C  
 

 

 

 STORECD 
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 564  
 

 
 

 51  
 

 
 

 0.95 
 

 
 

 389  
 

 
 

 2.10 
 

 
 

 0.50 
 

 
 

 C  
 

 

 

 STYLE  
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 89  
 

 
 

 111  
 

 
 

 0.95 
 

 
 

 691  
 

 
 

 0.48 
 

 
 

 0.09 
 

 
 

 C  
 

 

 

 TRIATHLETE 
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 3  
 

 
 

 62  
 

 
 

 0.95 
 

 
 

 321  
 

 
 

 0.21 
 

 
 

 0.01 
 

 
 

 C  
 

 

 

 YEARSRUNNI  
 

 

 10.0 
 

 
 

 0.0  
 

 
 

 7  
 

 
 

 321  
 

 
 

 0.95 
 

 
 

 1113  
 

 
 

 0.16 
 

 
 

 0.80 
 

 
 

 N  
 

 

 

 ZIP3  
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 513  
 

 
 

 0  
 

 
 

 0.95 
 

 
 

 224  
 

 
 

 2.28 
 

 
 

 0.69 
 

 
 

 C  
 

 

 

 _Q_MVP  
 

 

 0.0 
 

 
 

 0.0  
 

 
 

 66  
 

 
 

 0  
 

 
 

 0.95 
 

 
 

 1035  
 

 
 

 0.25 
 

 
 

 0.05 
 

 
 

 C  
 

 

 



   
 
 

 

Note that there are apparently five DISTINCT values for GENDER, which indicates a 
possible problem. A look at the appropriate part of the Complete Content report (Table 
4.5) shows that the problem is not significant. In fact, in only one case is the gender 
inappropriately given as “A,” which is almost certainly a simple error in entry. The entry 
will be better treated as missing. 

 

 

 

 TABLE 4.5  Complete Content report for the SHOE data set.  
 
 

   
 
 

 FIELD  
 

 

 CONTENT  
 

 
 

 CCOUNT  
 

 

 

   
 
 

 GENDER  
 

 

   
 

 
 

   45  
 

 

 

 GENDER  
 

 

 A  
 

 
 

    1  
 

 

 

 GENDER  
 

 

 F  
 

 
 

 907  
 

 

 

 GENDER  
 

 

 M  
 

 
 

 1155  
 

 

 

 GENDER  
 

 

 U  
 

 
 

 207  
 

 

 

   
 
 

 

Any file might contain various exception conditions that are not captured in the basic 
statistical information about the variables. To discover these exception conditions, the 
miner needs a different sort of tool, one that can discover rules characterizing the data 
and reveal exceptions to the discovered rules. WizRule was used to evaluate the SHOE 
file and discovered many apparent inconsistencies. 

 

 
 

 

Figure 4.5 shows one example: the “Spelling Report” screen generated for this data set. It 
discovered that the city name “Rochester” occurs in the file 409 times and that the name 
“Rocherster” is enough like it that it seems likely (to WizRule) that it is an error. Figure 4.6 
shows another example. This is part of the “Rule Report” generated for the file. Rule 1 
seems to have discovered possible erroneous values for the field TRIATHLETE, and it 
lists the record numbers in which the exception occurs. 

 

 

 



 

 

 

 
 

 

Figure 4.5  WizRule Spelling Report for the table SHOE. WizRule has discovered 
409 instances of “Rochester” and concludes that the value “Rocherster” (shown in 
the left window) is similar enough that it is likely to be an error. 

 

   
 

 

 

 

 

 
 

 
Figure 4.6  WizRule Rule Report for the SHOE file. Rule 1 has discovered four 
possible instance value errors in the TRIATHLETE field. 

 

   
 
 

 

The reports produced by WizRule characterize the data and the data set and may raise 
many questions about it. Actually deciding what is an appropriate course of action 
obviously requires domain knowledge. It is often the case that not much can be done to 
remedy the problems discovered. This does not mean that discovering the problem has 
no value. On the contrary, knowing that there is a potential problem that can’t be fixed is 
very important to judging the value of the data. 

 

 

 

 4.5.2  Relationships between Variables  
 
 



 

When the variables are investigated using the single-variable CHAID technique, one 
relationship stands out. Figure 4.7 shows a graphical output from KnowledgeSEEKER 
when investigating SOURCE. Its main interaction is with a variable _Q_MVP. This is a 
variable that does not exist in the original data set. The data preparation software creates 
this variable and captures information about the missing value patterns. For each pattern 
of missing values in the data set, the data preparation software creates a unique value 
and enters the value in the _Q_MVP field. This information is very useful indeed. Often 
the particular pattern of missing values can be highly predictive. Chapter 8 discusses 
missing values in more detail. 

 

 

 

 

 

 

 
 

 
Figure 4.7  Graph showing the interaction between the variable SOURCE and 
the variable most interacting with it, _Q_MVP, in the file SHOE. 

 

   
 
 

 

In this case it is clear that certain patterns are very highly associated with particular 
SOURCE codes. Is this significant? To know that requires domain knowledge. What is 
important about discovering this interaction is to try to account for it, or if an underlying 
explanation cannot be immediately discovered, it needs to be reported in the assay 
documentation. 

 

 
 4.6  The Data Assay  
 
 

 

So far, various components and issues of the data assay have been discussed. The 
assay literally assesses the quality or worth of the data for mining. Note, however, that 
during the assay there was no discussion of what was to be modeled. The focus of the 
assay is entirely on how to get the data and to determine if the data suits the purpose. It is 
quite likely that issues are raised about the data during the assay that could not be 
answered. It may be that one variable appears to be outside its reasonable limits, or that 
an expected interaction between variables wasn’t found. Whatever is found forms the 
result of the assay. It delineates what is known and what is not known and identifies 
problems with the data. 

 

 



 

 

Creating a report about the state of the data is helpful. This report is unique to each data 
set and may be quite detailed and lengthy. The main purpose of the assay, however, is 
not to produce a voluminous report, but for the miner to begin to understand where the 
data comes from, what is in the data, and what issues remain to be established—in other 
words, to determine the general quality of the data. This forms the foundation for all 
preparation and mining work that follows. Most of the work of the assay involves the miner 
directly finding and manipulating the data, rather than using automated preparation tools. 
Much of the exploratory work carried out during the assay is to discover sources and 
confirm expectations. This requires domain expertise, and the miner will usually spend 
time either with a domain expert or learning sufficient domain knowledge to understand 
the data. 

 

 
 

 

Once the assay is completed, the mining data set, or sets, can be assembled. Given 
assembled data sets, much preparatory work still remains to be done before the data is in 
optimum shape for mining. There remain many data problems to discover and resolve. 
However, much of the remaining preparation can be carried out by the appropriate 
application of automated tools. Deciding which tools are appropriate, and understanding 
their effect and when and how to use them, is the focus of the remaining chapters. 

 

 



 

Chapter 5: Sampling, Variability, and 

Confidence 

 

 

 

 Sampling, or First Catch Your Hare!  
 
 

 

Mrs. Beaton’s famous English cookbook is alleged to have contained a recipe for Jugged 
Hare that started, “First. Catch your hare.” It is too good a line to pass up, true or not. If 
you want the dish, catching the hare is the place to start. If you want to mine data, 
catching the “hare” in the data is the place to start. So what is the “hare” in data? The hare 
is the information content enfolded into the data set. Just as hare is the essence of the 
recipe for Jugged Hare, so information is the essence of the recipe for building training 
and test data sets. 

 

 
 

 

Clearly, what is needed is enough data so that all of the relationships at all 
levels—superstructure, macrostructure, and microstructure—are captured. An easy 
answer would seem to be to use all the data. After all, with all of the data being used, it is 
a sure thing that any relationship of interest that the data contains is there to be found. 
Unfortunately, there are problems with the idea of using all of the data. 

 

 

 

 5.1.1  How Much Data?  
 
 

 

One problem with trying to use all of the data, perhaps the most common problem, is 
simply that all of the data is not available. It is usual to call the whole of data the 
population. Strictly speaking, the data is not the population; the data is simply a set of 
measurements about the population of objects. Nonetheless, for convenience it is simply 
easier to talk about a population and understand that what is being discussed is the data, 
not the objects. When referring to the objects of measurement, it is easy enough to make 
it clear that the objects themselves are being discussed. 

 

 
 

 

Suppose that a model is to be built about global forestry in which data is measured about 
individual trees. The population is at least all of the trees in the world. It may be, 
depending on the actual area of interest, all of the trees that have ever lived, or even all of 
the trees that could possibly live. Whatever the exact extent of the population, it is clearly 
unreasonable to think that it is even close to possible to have data about the whole 
population. 

 

 
 

 

Another problem occurs when there is simply too much data. If a model of credit card 
transactions is proposed, most of these do actually exist on computers somewhere. But 
even if a computer exists that could house and process such a data set, simply 
accumulating all of the records would be at least ridiculously difficult if not downright 
impossible. 

 

 



 

 

Currency of records also presents difficulties. In the case of the credit card transactions, 
even with the data coming in fast and furious, there would be no practical way to keep the 
data set being modeled reflecting the current state of the world’s, or even the nation’s, 
transactions. 

 

 
 

 

For these reasons, and for any other reason that prevents having access to data about 
the whole population, it is necessary to deal with data that represents only some part of 
the population. Such data is called a sample. 

 

 
 

 

Even if the whole of the data is available, it is still usually necessary to sample the data 
when building models. Many modeling processes require a set of data from which to build 
the model and another set of data on which to test it. Some modeling processes, such as 
certain decision tree algorithms, require three data sets—one to build the tree, one to 
prune the tree, and one to test the final result. In order to build a valid model, it is 
absolutely essential that each of the samples reflects the full set of relationships that are 
present in the whole population. If this is not the case, the model does not reflect what will 
be found in the population. Such a model, when used, will give inaccurate or misleading 
results. 

 

 
 

 

So, sampling is a necessary evil. However, when preparing the data for modeling, the 
problem is not quite so great as when actually building the model itself. At least not in the 
early stages. Preparing the variables requires only that sufficient information about each 
individual variable be captured. Building data mining models requires that the data set 
used for modeling captures the full range of interactions between the variables, which is 
considered later, in Chapter 10. For now the focus is on capturing the variations that occur 
within each variable. 

 

 

 

 5.1.2  Variability  
 
 

 

Each variable has features, many of which were discussed in Chapter 2. However, the 
main feature is that a variable can take on a variety of values, which is why it is called a 
variable! The actual values that a variable can have contain some sort of pattern and will 
be distributed across the variable’s range in some particular way. It may be, for example, 
that for some parts of the range of values there are many instances bunched together, 
while for other parts there are very few instances, and that area of the range is particularly 
sparsely populated. Another variable may take on only a limited number of values, maybe 
only 5 or 10. Limited-value distribution is often a feature of categorical variables. 

 

 
 

 
Suppose, for instance, that in a sample representative of the population, a random 
selection of 80 values of a numeric variable are taken as follows: 

 

 
 

 
49, 63, 44, 25, 16, 34, 62, 55, 40, 31, 44, 37, 48, 65, 83, 53, 39, 15, 25, 52 
68, 35, 64, 71, 43, 76, 39, 61, 51, 30, 32, 74, 28, 64, 46, 31, 79, 69, 38, 69 

 



53, 32, 69, 39, 32, 67, 17, 52, 64, 64, 25, 28, 64, 65, 70, 44, 43, 72, 37, 31 
67, 69, 64, 74, 32, 25, 65, 39, 75, 36, 26, 59, 28, 23, 40, 56, 77, 68, 46, 48 

 
 

 

What exactly can we make of them? Is there any pattern evident? If there is, it is certainly 
hard to see. Perhaps if they are put into some sort of order, a pattern might be easier to 
see: 

 

 
 

 

15, 16, 17, 23, 25, 25, 25, 25, 26, 28, 28, 28, 30, 31, 31, 31, 32, 32, 32, 32 
34, 35, 36, 37, 37, 38, 39, 39, 39, 39, 40, 40, 43, 43, 44, 44, 44, 46, 46, 48 
48, 49, 51, 52, 52, 53, 53, 55, 56, 59, 61, 62, 63, 64, 64, 64, 64, 64, 64, 65 
65, 65, 67, 67, 68, 68, 69, 69, 69, 69, 70, 71, 72, 74, 74, 75, 76, 77, 79, 83 

 

 
 

 

Maybe there is some sort of pattern here, but it is hard to tell exactly what it is or to 
describe it very well. Certainly it seems that some numbers turn up more often than 
others, but exactly what is going on is hard to tell. 

 

 
 

 

Perhaps it would be easier to see any pattern if it were displayed graphically. Since the 
lowest number in the sample is 15, and the highest 83, that is the range of this sample. A 
histogram is a type of graph that uses columns to represent counts of features. If the 
sample is displayed as a histogram, some sort of pattern is easier to see, and Figure 5.1 
shows a histogram of this sample. Each column in Figure 5.1 shows, by its height, the 
number of instances of a particular value. Each column represents one particular value. 
The first column on the left, for example, represents the value 15, and the column height 
indicates that there is one of this value in the sample. 

 

 

 

 

 

 

 
 

 

Figure 5.1  Histogram of a numeric variable sample. The column positions 
represent the magnitude of each of the values. The height of each column 
represents the count of instance values of the appropriate measured value. 

 

   
 
 

 
The histogram in Figure 5.1 certainly makes some sort of pattern easier to see, but 
because of the number of columns, it is still hard to detect an overall pattern. Grouping the 

 



values together, shown in Figure 5.2, might make it easier to see a pattern. In this 
histogram each column represents the count of instances that are in a particular range. 
The leftmost column has a zero height, and a range of 0 to 9.99 (less than 10). The next 
column has a range from 10 to less than 20, and a height of 3. This second column 
aggregates the values 15, 16, and 17, which are all there are in the range of the column. 
In this figure the pattern is easier to see than in the previous figure. 

 

 

 

 

 

 
 

 
Figure 5.2  A histogram with vertical columns representing the count for a range 
of values. 

 

   
 
 

 

Another way to see the distribution pattern is to use a graph that uses a continuous line, 
called a curve, instead of columns. Figure 5.3 shows a distribution curve that uses each 
value, just as in Figure 5.1. Again, the curve is very jagged. It would be easier to see the 
nature of the distribution if the curve were smoother. Curves can be easily smoothed, and 
Figure 5.4 shows the curve using two smoothing methods. One method (shown with the 
unbroken line) uses the average of three values; the other (shown with the dashed line) 
uses the average of five values. Smoothing does make the pattern easier to see, but it 
seems to be a slightly different pattern that shows up with each method. Which is the 
“correct” pattern shape for this distribution, if any? 

 

 

 



 

 

 

 
 

 
Figure 5.3  Sample value counts individually plotted and shown by a continuous 
line instead of using columns. 

 

   
 

 

 

 

 

 
 

 

Figure 5.4  Results of two “smoothing methods, both using the average of a 
number of instance values. The solid line uses the average of three values, and 
the dashed line uses the average of five values. 

 

   
 
 

 

There are two problems here. Recall that if this sample is indeed representative of the 
population, and for the purposes of this discussion we will assume that it is, then any other 
representative random sample drawn from the same population will show these patterns. 

 

 
 

 

The first problem is that until a representative sample is obtained, and known to be 
representative, it is impossible to know if the pattern in some particular random sample 
does, in fact, represent the “true” variability of the population. In other words, if the true 
population distribution pattern is unknown, how can we know how similar the sample 
distribution curve is to the true population distribution curve? 

 

 
 

 The second problem is that, while it is obvious that there is some sort of pattern to a  
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distribution, various ways of looking at it seem to produce slightly different patterns. Which 
of all these shapes, if any, is the right one to use? 

 

 

 5.1.3  Converging on a Representative Sample  
 
 

 

The first problem, getting a representative sample, can be addressed by a phenomenon 
called convergence. Taking a sample starts by selecting instance values from a 
population, one at a time and at random. The sample starts at size 0. For any sample size 
a distribution curve can be created for the sample, similar to those shown in the earlier 
figures. In fact, although tedious for a human being, the distribution curve can be 
recalculated every time an instance value is added to the sample. 

 

 
 

 

Suppose that the sample distribution curve is recalculated with each additional instance 
added. What will it look like? At first, when the number of instances in the sample is low, 
each addition will make a big impact on the shape of the curve. Every new instance added 
will make the curve “jump” up quite noticeably. Almost every instance value added to the 
sample will make a large change in the shape of the distribution curve. After a while, 
however, when the number of instances in the sample is modestly large, the overall shape 
of the curve will have settled down and will change little in shape as new instances are 
added. It will continue to increase in height because with more points in the sample, there 
are more points under any particular part of the curve. When there are a large number of 
instances in the sample, adding another instance barely makes any difference at all to the 
overall shape. The important point here is that the overall shape of the curve will settle 
down at some point. 

 

 
 

 

This “settling down” of the overall curve shape is the key. As more instances are added, 
the actual shape of the curve becomes more like some final shape. It may never quite get 
there, but it gets closer and closer to settling into this final, unchanging shape. The curve 
can be thought of as “approaching” this ultimate shape. Things are said to converge when 
they come together, and in this sense the sample distribution curve converges with the 
final shape that the curve would have if some impossibly large number of instances were 
added. This impossibly large number of instances, of course, is the population. So the 
distribution curve in any sample converges with the distribution curve of the population as 
instances selected at random are added to the sample. 

 

 
 

 

In fact, when capturing a sample, what is measured is not the shape of the curve, but the 
variability of the sample. However, the distribution curve shape is produced by the 
variability, so both measures represent very much the same underlying phenomenon. 
(And to understand what is happening, distribution curves are easier to imagine than 
variability.) 

 

 

 

 5.1.4  Measuring Variability  
 
 

 The other problem mentioned was that the distribution curve changes shape with the  
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width of the columns, or the smoothing method. This problem is not so easy to address. 
What is really required instead of using column widths or smoothing is some method of 
measuring variability that does not need any arbitrary decision at all. Ideally, we need 
some method that simply allows the numbers sampled to be “plugged in,” and out comes 
some indication of the variability of the sample. 

 
 

 

Statisticians have had to grapple with the problem of variability over many years and have 
found several measures for describing the characteristics of variables. Detailed 
discussion is beyond the scope of this book, but can be found in many statistical works, 
including those on business statistics. What they have come up with is a description of the 
variability, or variance, of a variable that captures the necessary variability information 
without being sensitive to column width or smoothing. 

 

 
 

 

In many statistical texts, variability is very often described in terms of how far the 
individual instances of the sample are from the mean of the sample. It is, in fact, a sort of 
“average” distance of the instance values from the mean. It is this measure, or one 
derived from it, that will be used to measure variability. The measure is called the 
standard deviation. We need to look at it from a slightly different perspective than is 
usually found in statistics texts. 

 

 

 

 5.1.5  Variability and Deviation  
 
 

 

Deviation is simply the name for what was described above as “a sort of average distance 
of instance values from the mean.” Given the same set of 80 numbers that were used 
before, the mean, often called the arithmetic average, or just average for short, is 
approximately 49.16. In order to find the distance of the instance values from the mean, it 
is only necessary to subtract the one from the other. To take the first five numbers as an 
example: 

 

 
 

 

49 – 49.16 =  –0.16 
63 – 49.16 =  13.84 
44 – 49.16 =  –5.16 
25 – 49.16 = –24.16 
16 – 49.16 = –33.16 

 

 
 

 

Unfortunately, the “–” signs make matters somewhat awkward. Since it is the mean that is 
being subtracted, the sum of all of the differences will add up to 0. That is what the mean 
is! Somehow it is necessary to make the “–” signs disappear, or at least to nullify their 
effect. For various reasons, in the days before computers, when calculations were all 
done by hand (perish the thought!), the easiest way for mathematicians to deal with the 
problem was not to simply ignore the “–” sign. Since “negative times negative is a 
positive,” as you may recall from school, squaring, or multiplying a number by itself, 
solves the problem. So finding the variance of just the first five numbers: The mean of only
the first five numbers is 

 

 



 

 (49 + 63 + 44 + 25 + 16)/5 = 39.4  
 
 

 so squaring the instance value minus the mean:  
 
 

 

(49 – 39.4)2 =   9.62 =  92.16 
(63 – 39.4)2 =  23.62 = 556.96 
(44 – 39.4)2 =   4.62 =  21.16 
(25 – 39.4)2 = –14.42 = 207.36 
(16 – 39.4)2 = –23.42 = 547.56 

 

 
 

 and since the variance is the mean of these differences:  
 
 

 (92.16 + 556.96 + 21.16 + 207.36 + 547.56)/5 = 285.04  
 
 

 

This number, 285.04, is the mean of the squares of the differences. It is therefore a 
variance of 285.04 square units. If these numbers represent some item of interest, say, 
percentage return on investments, it turns out to be hard to know exactly what a variance 
of 285.04 square percent actually means. Square percentage is not a very familiar or 
meaningful measure in general. In order to make the measure more meaningful in 
everyday terms, it is usual to take the square root, the opposite of squaring, which would 
give 16.88. For this example, this would now represent a much more meaningful variance 
of 16.88 percent. 

 

 
 

 

The square root of the variance is called the standard deviation. The standard deviation is 
a very useful thing to know. There is a neat, mathematical notation for doing all of the 
things just illustrated: 

 

 
 

 Standard deviation =   
 
 

 where  
 
 

 
 

 
 

 

 means to take the square root of everything under it  
 

 

 

 Σ  
 

 

 means to sum everything in the brackets following it  
 

 

 

 x  
 

 

 is the instance value  
 

 

 

 m  
 

 

 is the mean  
 

 

 

 n  
 

 

 is the number of instances  
 

 

 

 
(For various technical reasons that we don’t need to get into here, when the number is 
divided by n, it is known as the standard deviation of the population, and when divided by 

 



n – 1, as the standard deviation of the sample. For large numbers of instances, which will 
usually be dealt with in data mining, the difference is miniscule.) 

 
 

 

There is another formula for finding the value of the standard deviation that can be found 
in any elementary work on statistics. It is the mathematical equivalent of the formula 
shown above, but gives a different perspective and reveals something else that is going 
on inside this formula—something that is very important a little later in the data 
preparation process: 

 

 
 

 
 

 

 
 

 

What appears in this formula is “Σx2,” which is the sum of the instance values squared. 
Notice also that “nm2,” which is the number of instances multiplied by the mean, squared. 
Since the mean is just the sum of the x values divided by the number of values (or Σx/n), 
the formula could be rewritten as 

 

 
 

 
 

 
 
 

 But notice that n(Σx/n) is the same as Σx, so the formula becomes  
 
 

 
 

 

 
 

 
(being careful to note that Σx2 means to add all the values of x squared, whereas (Σx)2 
means to take the sum of the unsquared x values and square the total). 

 

 
 

 
This formula means that the standard deviation can be determined from three separate 
pieces of information: 

 

 
 

  1.  The sum of x2, that is, adding up all squares of the instance values  
 
 

  2.  The sum of x, that is, adding up all of the instance values  
 
 

  3.  The number of instances  
 
 

 

The standard deviation can be regarded as exploring the relationship among the sum of 
the squares of the instance values, the sum of the instance values, and the number of 
instances. The important point here is that in a sample that contains a variety of different 
values, the exact ratio of the sum of the numbers to the sum of the squares of the 
numbers is very sensitive to the exact proportion of numbers of different sizes in the 
sample. This sensitivity is reflected in the variance as measured by the standard 
deviation. 

 

 
 



 

Figure 5.5 shows distribution curves for three separate samples, each from a different 
population. The range for each sample is 0–100. The linear (or rectangular) distribution 
sample is a random sample drawn from a population in which each number 0–100 has an 
equal chance of appearing. This sample is evidently not large enough to capture this 
distribution well! The bimodal sample was drawn from a population with two “humps” that 
do show up in this limited sample. The normal sample was drawn from a population with a 
normal distribution—one that would resemble the “bell curve” if a large enough sample 
was taken. The mean and standard deviation for each of these samples is shown in Table 
5.1. 

 

 

 

 

 

 

 
 

 Figure 5.5  Distribution curves for samples drawn from three populations.  

   
 

 

 TABLE 5.1  Sample statistics for three distributions.  
 
 

   
 
 

 
Sample 
distribution 

 

 

 

 Mean  
 

 

 

 
Standard  
deviation 

 

 

 

 

   
 
 

 Linear  
 

 

 47.96  
 

 
 

 29.03  
 

 

 

 Bimodal  
 

 

 49.16  
 

 
 

 17.52  
 

 

 

 Normal  
 

 

 52.39  
 

 
 

 11.82  
 

 

 

   
 
 

 

The standard deviation figures indicate that the linear distribution has the highest 
variance, which is not surprising as it would be expected to have the greatest average 
distance between the sample mean and the instance values. The normal distribution 

 



sample is the most bunched together around its sample mean and has the least standard 
deviation. The bimodal is more bunched than the linear, and less than the normal, and its 
standard deviation indicates this, as expected. 

 
 

 

Standard deviation is a way to determine the variability of a sample that only needs to have 
the instance values of the sample. It results in a number that represents how the instance 
values are scattered about the average value of the sample. 

 

 
5.2  Confidence  
 
 

 

Now that we have an unambiguous way of measuring variability, actually capturing it 
requires enough instances of the variable so that the variability in the sample matches the 
variability in the population. Doing so captures all of the structure in the variable. 
However, it is only possible to be absolutely 100% certain that all of the variability in a 
variable has been captured if all of the population is included in the sample! But as we’ve 
already discussed, that is at best undesirable, and at worst impossible. Conundrum. 

 

 
 

 

Since sampling the whole population may be impossible, and in any case cannot be 
achieved when it is required to split a collected data set into separate pieces, the miner 
needs an alternative. That alternative is to establish some acceptable degree of 
confidence that the variability of a variable is captured. 

 

 
 

 

For instance, it is common for statisticians to use 95% as a satisfactory level of 
confidence. There is certainly nothing magical about that number. A 95% confidence 
means, for instance, that a judgment will be wrong 1 time in 20. That is because, since it is 
right 95 times in 100, it must be wrong 5 times in 100. And 5 times in 100 turns out to be 1 
time in 20. The 95% confidence interval is widely used only because it is found to be 
generally useful in practice. “Useful in practice” is one of the most important metrics in 
both statistical analysis and data mining. 

 

 
 

 

It is this concept of “level of confidence” that allows sampling of data sets to be made. If 
the miner decided to use only a 100% confidence level, it is clear that the only way that 
this can be done is to use the whole data set complete as a sample. A 100% sample is 
hardly a sample in the normal use of the word. However, there is a remarkable reduction 
in the amount of data needed if only a 99.99% confidence is selected, and more again for 
a 95% confidence. 

 

 
 

 

A level of confidence in this context means that, for instance, it is 95% certain that the 
variability of a particular variable has been captured. Or, again, 1 time in 20 the full variability 
of the variable would not have been captured at the 95% confidence level, but some lesser 
level of variability instead. The exact level of confidence may not be important. Capturing 
enough of the variability is vital. 

 

 
5.3  Variability of Numeric Variables  
 



 

 

Variability of numeric variables is measured differently from the variability of nonnumeric 
variables. When writing computer code, or describing algorithms, it is easy to abbreviate 
numeric and nonnumeric to the point of confusion—“Num” and “Non.” To make the 
difference easier to describe, it is preferable to use distinctive abbreviations. This 
distinction is easy when using “Alpha” for nominals or categoricals, which are measured in 
nonnumeric scales, and “Numeric” for variables measured using numeric scales. Where 
convenient to avoid confusion, that nomenclature is used here. 

 

 
 

 

Variability of numeric variables has been well described in statistical literature, and the 
previous sections discussing variability and the standard deviation provide a conceptual 
overview. 

 

 
 

 

Confidence in variability capture increases with sample size. Recall that as a sample size 
gets larger, so the sample distribution curve converges with the population distribution 
curve. They may never actually be identical until the sample includes the whole 
population, but the sample size can, in principle, be increased until the two curves 
become as similar as desired. If we knew the shape of the population distribution curve, it 
would be easy to compare the sample distribution curve to it to tell how well the sample 
had captured the variability. Unfortunately, that is almost always impossible. However, it is 
possible to measure the rate of change of a sample distribution curve as instance values 
are added to the sample. When it changes very little with each addition, we can be 
confident that it is closer to the final shape than when it changes faster. But how 
confident? How can this rate of change be turned into a measure of confidence that 
variability has been captured? 

 

 

 

 5.3.1  Variability and Sampling  
 
 

 

But wait! There is a critical assumption here. The assumption is that a larger sample is in 
fact more representative of the population as a whole than a smaller one. This is not 
necessarily the case. In the forestry example, if only the oldest trees were chosen, or only 
those in North America, for instance, taking a larger sample would not be representative. 
There are several ways to assure that the sample is representative, but the only one that 
can be assured not to introduce some bias is random sampling. A random sample 
requires that any instance of the population is just as likely to be a member of the sample 
as any other member of the population. With this assumption in place, larger samples will, 
on average, better represent the variability of the population. 

 

 
 

 

It is important to note here that there are various biases that can be inadvertently 
introduced into a sample drawn from a population against which random sampling 
provides no protection whatsoever. Various aspects of sampling bias are discussed in 
Chapters 4 and 10. However, what a data miner starts with as a source data set is almost 
always a sample and not the population. When preparing variables, we cannot be sure 
that the original data is bias free. Fortunately, at this stage, there is no need to be. (By 
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Chapter 10 this is a major concern, but not here.) What is of concern is that the sample 
taken to evaluate variable variability is representative of the original data sample. Random 
sampling does that. If the original data set represents a biased sample, that is evaluated 
partly in the data assay (Chapter 4), again when the data set itself is prepared (Chapter 
10), and again during the data survey (Chapter 11). All that is of concern here is that, on a 
variable-by-variable basis, the variability present in the source data set is, to some 
selected level of confidence, present in the sample extracted for preparation. 

 

 

 5.3.2  Variability and Convergence  
 
 

 

Differently sized, randomly selected samples from the same population will have different 
variability measures. As a larger and larger random sample is taken, the variability of the 
sample tends to fluctuate less and less between the smaller and larger samples. This 
reduction in the amount of fluctuation between successive samples as sample size 
increases makes the number measuring variability converge toward a particular value. 

 

 
 

 

It is this property of convergence that allows the miner to determine a degree of 
confidence about the level of variability of a particular variable. As the sample size 
increases, the average amount of variability difference for each additional instance 
becomes less and less. Eventually the miner can know, with any arbitrary degree of 
certainty, that more instances of data will not change the variability by more than a 
particular amount. 

 

 
 

 

Figure 5.6 shows what happens to the standard deviation, measured up the side of the 
graph, as the number of instances in the sample increases, which is measured along the 
bottom of the graph. The numbers used to create this graph are from a data set provided 
on the CD-ROM called CREDIT. This data set contains a variable DAS that is used 
through the rest of the chapter to explore variability capture. 

 

 

 

 

 

 

 
 

 

Figure 5.6  Measuring variability DAS in the CREDIT data set. Each sample 
contains one more instance than the previous sample. As the sample size 
increases, the variability seems to approach, or converge, toward about 130. 
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Figure 5.6 shows incremental samples, starting with a sample size of 0, and increasing 
the sample size by one each time. The graph shows the variability in the first 100 
samples. Simply by looking at the graph, intuition suggests that the variability will end up 
somewhere about 130, no matter how many more instances are considered. Another way 
of saying this is that it has converged at about 130. It may be that intuition suggests this to 
be the case. The problem now is to quantify and justify exactly how confident it is possible 
to be. There are two things about which to express a level of confidence—first, to specify 
exactly the expected limits of variability, and second, to specify how confident is it 
possible to be that the variability actually will stay within the limits. 

 

 
 

 

The essence of capturing variability is to continue to add samples until both of those 
confidence measures can be made at the required level—whatever that level may be. 
However, before considering the problem of justifying and quantifying confidence, the next 
step is to examine capturing variability in alpha-type variables. 

 

 
5.4  Variability and Confidence in Alpha Variables  
 
 

 

So far, much of this discussion has described variability as measured in numeric 
variables. Data mining often involves dealing with variables measured in nonnumeric 
ways. Sometimes the symbolic representation of the variable may be numeric, but the 
variable still is being measured nominally—such as SIC and ZIP codes. 

 

 
 

 

Measuring variability in these alpha-type variables is every bit as important as in 
numerical variables. (Recall this is not a new variable type, just a clearer name for 
qualitative variables—nominals and categoricals—to save confusion.) 

 

 
 

 

A measure of variability in alpha variables needs to work similarly to that for numeric 
variables. That is to say, increases in sample size must lead to convergence of variability. 
This convergence is similar in nature to that of numerical variables. So using such a 
method, together with standard deviation for numeric variables, gives measures of 
variability that can be used to sample both alpha and numeric variables. How does such a 
method work? 

 

 
 

 

Clearly there are some alpha variables that have an almost infinite number of 
categories—people’s names, for instance. Each name is an alpha variable (a nominal in 
the terminology used in Chapter 2), and there are a great many people each with different 
names! 

 

 
 

 

For the sake of simplicity of explanation, assume that only a limited number of alpha 
labels exist in a variable scale. Then the explanation will be expanded to cover alpha 
variables with very high numbers of distinct values. 

 

 
 



 

In a particular population of alpha variables there will be a specific number of instances of 
each of the values. It is possible in principle to count the number of instances of each 
value of the variable and determine what percentage of the time each value occurs. This 
is exactly similar to counting how often each numeric instance value occurred when 
creating the histogram in Figure 5.1. Thus if, in some particular sample, “A” occurred 124 
times, “B” 62 times, and “C” 99 times, then the ratio of occurrence, one to the others, is as 
shown in Table 5.2. 

 

 

 

 TABLE 5.2  Sample value frequency counts.  
 
 

   
 
 

 
Sample 
distribution 

 

 

 

 Mean  
 

 

 

 
Standard  
deviation 

 

 

 

 

   
 
 

 A  
 

 

 124  
 

 
 

   43.51  
 

 

 

 B  
 

 

   62  
 

 
 

   21.75  
 

 

 

 C  
 

 

   99  
 

 
 

   34.74  
 

 

 

 Total  
 

 

 285  
 

 
 

 100.00  
 

 

 

   
 
 

 

If the population is sampled randomly, this proportion will not be immediately apparent. 
However, as the sample size increases, the relative proportion will become more and 
more nearly what is present in the population; that is, it converges to match that of the 
population. This is altogether similar to the way that the numeric variable variability 
converges. The main difference here is that since the values are alpha, not numeric, 
standard deviation can’t be calculated. 

 

 
 

 

Instead of determining variability using standard deviation, which measures the way 
numeric values are distributed about the mean, alpha variability measures the rate of 
change of the relative proportion of the values discovered. This rate of change is 
analogous to the rate of change in variability for numerics. Establishing a selected degree 
of confidence that the relative proportion of alpha values will not change, within certain 
limits, is analogous to capturing variability for a numeric variable. 

 

 

 

 5.4.1  Ordering and Rate of Discovery  
 
 

 One solution to capturing the variability of alpha variables might be to assign numbers to  



each alpha and use those arbitrarily assigned numbers in the usual standard deviation 
formula. There are several problems with this approach. For one thing, it assumes that 
each alpha value is equidistant from one another. For another, it arbitrarily assigns an 
ordering to the alphas, which may or may not be significant in the variability calculation, 
but certainly doesn’t exist in the real world for alphas other than ordinals. There are other 
problems so far as variability capture goes also, but the main one for sampling is that it 
gives no clue whether all of the unique alpha values have been seen, nor what chance 
there is of finding a new one if sampling continues. What is needed is some method that 
avoids these particular problems. 

 
 

 

Numeric variables all have a fixed ordering. They also have fixed distances between 
values. (The number “1” is a fixed distance from “10”—9 units.) These fixed relationships 
allow a determination of the range of values in any numeric distribution (described further 
in Chapter 7). So for numeric variables, it is a fairly easy matter to determine the chance 
that new values will turn up in further sampling that are outside of the range so far 
sampled. 

 

 
 

 

Alphas have no such fixed relationship to one another, nor is there any order for the alpha 
values (at this stage). So what is the assurance that the variability of an alpha variable has 
been captured, unless we know how likely it is that some so far unencountered value will 
turn up in further sampling? And therein lies the answer—measuring the rate of discovery 
of new alpha values. 

 

 
 

 

As the sample size increases, so the rate of discovery (ROD) of new values falls. At first, 
when the sample size is low, new values are often discovered. As the sampling goes on, 
the rate of discovery falls, converging toward 0. In any fixed population of alphas, no 
matter how large, the more values seen, the less new ones there are to see. The chance 
of seeing a new value is exactly proportional to the number of unencountered values in 
the population. 

 

 
 

 

For some alphas, such as binary variables, ROD falls quickly toward 0, and it is soon easy to 
be confident (to any needed level of confidence) that new values are very unlikely. With 
other alphas—such as, say, a comprehensive list of cities in the U.S.—the probability would 
fall more slowly. However, in sampling alphas, because ROD changes, the miner can 
estimate to any required degree of confidence the chance that new alpha values will turn up. 
This in turn allows an estimate not only of the variability of an alpha, but of the 
comprehensiveness of the sample in terms of discovering all the alpha labels. 

 

 
5.5  Measuring Confidence  
 
 

 

Measuring confidence is a critical part of sampling data. The actual level of confidence 
selected is quite arbitrary. It is selected by the miner or domain expert to represent some 
level of confidence in the results that is appropriate. But whatever level is chosen, it is so 
important in sampling that it demands closer inspection as to what it means in practice, 

 



and why it has to be selected arbitrarily. 
 

 

 5.5.1  Modeling and Confidence with the Whole Population  
 
 

 

If the whole population of instances were available, predictive modeling would be quite 
unnecessary. So would sampling. If the population really is available, all that needs to be 
done to “predict” the value of some variable, given the values of others, is to look up the 
appropriate case in the population. If the population is truly present, it is possible to find an 
instance of measurements that represents the exact instance being predicted—not just 
one similar or close to it. 

 

 
 

 

Inferential modeling would still be of use to discover what was in the data. It might provide 
a useful model of a very large data set and give useful insights into related structures. No 
training and test sets would be needed, however, because, since the population is 
completely represented, it would not be possible to overtrain. Overtraining occurs when 
the model learns idiosyncrasies present in the training set but not in the whole population. 
Given that the whole population is present for training, anything that is learned is, by 
definition, present in the population. (An example of this is shown in Chapter 11.) 

 

 
 

 

With the whole population present, sampling becomes a much easier task. If the 
population were too large to model, a sample would be useful for training. A sample of 
some particular proportion of the population, taken at random, has statistically well known 
properties. If it is known that some event happens in, say, a 10% random sample with a 
particular frequency, it is quite easy to determine what level of confidence this implies 
about the frequency of the event in the population. When the population is not available, 
and even the size of the population is quite unknown, no such estimates can be made. 
This is almost always the case in modeling. 

 

 
 

 

Because the population is not available, it is impossible to give any level of confidence in 
any result, based on the data itself. All levels of confidence are based on assumptions 
about the data and about the population. All kinds of assumptions are made about the 
randomness of the sample and the nature of the data. It is then possible to say that if 
these assumptions hold true, then certain results follow. The only way to test the 
assumptions, however, is to look at the population, which is the very thing that can’t be 
done! 

 

 

 

 5.5.2  Testing for Confidence  
 
 

 

There is another way to justify particular levels of confidence in results. It relies on the 
quantitative discriminatory power of tests. If, for instance, book reviewers can consistently 
and accurately predict a top 10 best-selling book 10% of the time, clearly they are wrong 
90% of the time. If a particular reviewer stated that a particular book just reviewed was 
certain to be a best-seller, you would be justified in being skeptical of the claim. In fact, 
you would be quite justified in being 10% sure (or confident) that it would be a success, 

 



and 90% confident in its failure. However, if at a convention of book reviewers, every one 
of hundreds or thousands of reviewers each separately stated that the book was sure to 
be a best-seller, even though each reviewer had only a 10% chance of success, you 
would become more and more convinced of the book’s chance of success. 

 
 

 

Each reviewer performs an independent reading, or test, of the book. It is this 
independence of tests that allows an accumulation of confidence. The question is, how 
much additional confidence is justified if two independent tests are made, each with a 
10% accuracy of being correct in their result, and both agree? In other words, suppose 
that after the first reviewer assured you of the book’s success, a second one did the 
same. How much more confident, if at all, are you justified in being as a result of the 
second opinion? What happens if there are third and fourth confirming opinions? How 
much additional confidence are you justified in feeling? 

 

 
 

 

At the beginning you are 100% skeptical. The first reviewer’s judgment persuades you to 
an opinion of 10% in favor, 90% against the proposition for top 10 success. If the first 
reviewer justified a 10/90% split, surely the second does too, but how does this change 
the level of confidence you are justified in feeling? 

 

 
 

 

Table 5.3 shows that after the first reviewer’s assessment, you assigned 10% confidence 
to success and 90% to skepticism. The second opinion (test) should also justify the 
assignment of an additional 10%. However, you are now only 90% skeptical, so it is 10% 
of that 90% that needs to be transferred, which amounts to an additional 9% confidence. 
Two independent opinions justify a 19% confidence that the book will be a best-seller. 
Similar reasoning applies to opinions 3, 4, 5, and 6. More and more positive opinions 
further reinforce your justified confidence of success. With an indefinite amount of 
opinions (tests) available, you can continue to get opinions until any particular level of 
confidence in success is justified. 

 

 

 

 TABLE 5.3  Reviewer assurance charges confidence level.  
 
 

   
 
 

 
Reviewer 
number 

 

 

 

 
Start 
level 

 

 
 

 

 

Transfer 
amount 
(start 
level x10%) 

 

 

 

 

 
Confidence
of success 

 

 
 

 

 
Your remaining 
skeptical balance 

 

 
 

 

   
 
 

 1  
 

 

 100%  
 

 
 

 10  
 

 
 

 10  
 

 
 

 90  
 

 

 

 2  
 

 

 90%  
 

 
 

 9  
 

 
 

 9  
 

 
 

 81  
 

 

         



 3  
 

 81%  
 

 8.1  
 

 27.1  
 

 72.9  
 

 

 4  
 

 

 72.9%  
 

 
 

 7.29  
 

 
 

 34.39  
 

 
 

 65.61  
 

 

 

 5  
 

 

 65.61%  
 

 
 

 6.561  
 

 
 

 40.951  
 

 
 

 59.049  
 

 

 

 6  
 

 

 59.049%  
 

 
 

 5.9049%  
 

 
 

 46.8559  
 

 
 

 53.1441  
 

 

 

   
 
 

 

Of course, a negative opinion would increase your skepticism and decrease your 
confidence in success. Unfortunately, without more information it is impossible to say by 
how much you are justified in revising your opinion. Why? 

 

 
 

 

Suppose each reviewer reads all available books and predicts the fate of all of them. One 
month 100 books are available, 10 are (by definition) on the top 10 list. The reviewer 
predicts 10 as best-sellers and 90 as non-best-sellers. Being consistently 10% accurate, 
one of those predicted to be on the best-seller list was on it, 9 were not. Table 5.4 shows 
the reviewer’s hit rate this month. 

 

 

 

 TABLE 5.4  Results of the book reviewer’s predictions for month 1.  
 
 

   
 
 

 Month 1  
 

 

 Best-seller  
 

 
 

 Non-best seller  
 

 

 

   
 
 

 Predicted bestseller  
 

 

 1  
 

 
 

   9  
 

 

 

 Predicted non-best-seller  
 

 

 9  
 

 
 

 81  
 

 

 

   
 
 

 

Since one of the 10 best-sellers was predicted correctly, we see a 10% rate of accuracy. 
There were also 90 predicted to be non-best-sellers, of which 81 were predicted correctly 
as non-best-sellers. (81 out of 90 = 81/90 = 90% incorrectly predicted.) 

 

 
 

 

In month 2 there were 200 books published. The reviewer read them all and made 10 
best-seller predictions. Once again, a 10% correct prediction was achieved, as Table 5.5 
shows. 

 

 

 

 TABLE 5.5  Results of the book reviewer’s predictions for month 2.  
 
 



   
 
 

 Month 1  
 

 

 Best-seller  
 

 
 

 Non-best seller  
 

 

 

   
 
 

 Predicted bestseller  
 

 

 1  
 

 
 

     9  
 

 

 

 Predicted non-best-seller  
 

 

 9  
 

 
 

 181  
 

 

 

   
 
 

 

Once again, there are 10 best-sellers and one was correctly predicted for a correct pick 
rate of 10%. However, there were 190 books predicted to be non-best-sellers this month, 
of which 181 were correctly predicted because they weren’t best-sellers. However, 181 
out of 190 is a correct prediction rate for non-best-sellers of 95.26%! 

 

 
 

 

What is going on here? The problem is that predicting best-sellers and predicting 
non-best-sellers are not two sides of the same problem, although they look like they might 
be. The chances of being right about best-sellers are not the opposite of the chances of 
being right about non-best-sellers. This is because of the old bugaboo of knowledge of the 
size of the population. What changed here is the size of the population from 100 to 200. 
The number of best-sellers is always 10 because they are defined as being the 10 
best-selling books. The number of non-best-sellers depends entirely on how many books 
are published that month. 

 

 
 

 

However (and this is a very important point), deciding how much confidence can be 
justified after a given number of tests depends only on the success ratio of the tests. This 
means that if the success/fail ratio of the test is known, or assumed, knowledge of the size 
of the population is not needed in order to establish a level of confidence. With this 
knowledge it is possible to construct a test that doesn’t depend on the size of the 
population, but only on the consecutive number of confirmatory tests. 

 

 
 

 

The confidence generated in the example is based on predicting best-sellers. The number 
of best-sellers is a purely arbitrary number. It was just chosen to suit the needs of the 
selector. After all, it could have been the top 12, or 17, or any other number. The term 
“best-seller” was defined to suit someone’s convenience. It is very likely that the success 
of reviewers in picking best-sellers would change if the definition of what constituted a 
best-seller changed. The point here is that if the chosen assumptions meet the needs of 
whoever selected them, then a rational assessment of confidence can be made based on 
those assumptions. 

 

 

 

 5.5.3  Confidence Tests and Variability  
 
 



 

The consequence for determining variability of a variable is that the modeler must make 
assumptions that meet the modeler’s needs. Choosing a 95% level of confidence implies 
saying, among other things, “If this test is wrong 95% of the time, how many times must 
independent tests confirm its correctness before the cumulative judgment can be 
accepted as correct at least 95% of the time?” 

 

 
 

 

In practical terms (using the 95% level of confidence for this discussion), this implies 
several consequences. Key, based on the level of confidence, is that a single test for 
convergence of variability is incorrect 95% of the time and correct 5% of the time. From 
that it is possible to rationally accumulate confidence in a continuing series of positive 
results. (Positive results indicate variability convergence.) After some unbroken series of 
positive results, a level of confidence is accumulated that exceeds 95%. When that 
happens you can be sure that accepting the convergence as complete will only be a 
mistake 1 time in 20, or less. 

 

 
 

 
At the end, the result is a very simple formula that is transformed a little and used in the 
demonstration software to know when enough is enough. That is, 

 

 
 

 s = et  
 
 

   
 
 

 where  
 
 

 s = Justified level of skepticism  
 
 

 e = Error rate  
 
 

 t = Number of positive tests  
 
 

 
Results of this formula, using the 90% confidence level from the best-seller example, are 
given in Table 5.6. 

 

 

 

 TABLE 5.6  Results of the book reviewer’s predictions for month 2.  
 
 

   
 
 

 Skepticism  
 

 

 Error rate  
 

 
 

 Number of tests  
 

 

 

   
 
 

 0.9  
 

 

 0.9  
 

 
 

 1  
 

 

 

 0.81  
 

 

 0.9  
 

 
 

 2  
 

 



 

 0.729  
 

 

 0.9  
 

 
 

 3  
 

 

 

 0.6561  
 

 

 0.9  
 

 
 

 4  
 

 

 

 0.59049  
 

 

 0.9  
 

 
 

 5  
 

 

 

 0.531441  
 

 

 0.9  
 

 
 

 6  
 

 

 

   
 
 

 

This is the same series of numbers shown in the “Your remaining skeptical balance” 
column in Table 5.3 except that these are expressed as decimals rather than 
percentages. 

 

 
 

 

Of course, this diminishing level of skepticism indicates the confidence that you are 
wrong. The confidence that you are right is what is left after subtracting the confidence 
that you are wrong! The confidence level in being right is, therefore, 

 

 
 

 c = 1 – et  
 
 

 where  
 
 

 c = Confidence  
 
 

 e = Error rate  
 
 

 t = Number of positive tests  
 
 

 

The Supplemental Material section at the end of this chapter briefly shows the 
transformation from this statement into one that allows the number of consecutive true tests 
to be directly found from the error rate. It is this version of the formula that is used in the 
demonstration software. However, for those who need only to understand the concepts and 
issues, that section may be safely skipped. 

 

 
5.6  Confidence in Capturing Variability  
 
 

 

Capturing the variability of a variable means, in practice, determining to a selected level of 
confidence that the measured variability of a sample is similar to that of the population, 
within specified limits. The measure of sample variability closeness to population 
variability is measured by convergence in increasingly larger samples. In other words, 
converged variability means that the amount of variability remains within particular limits 
for enough independent tests to be convincing that the convergence is real. When the 
variability is converged, we are justified in accepting, to a certain level of confidence, that 

 



the variability is captured. This leads to two questions. First, exactly what is measured to 
determine convergence, and second, what are the “particular limits” and how they are 
discovered? 

 
 

 

On the accompanying CD-ROM there is a data set CREDIT. This includes a sample of 
real-world credit information. One of the fields in that data set is “DAS,” which is a 
particular credit score rating. All of the data used in this example is available on the 
CD-ROM, but since the sample is built by random selection, it is very unlikely that the 
results shown here will be duplicated exactly in any subsequent sample. The chance of a 
random sampling procedure encountering exactly the same sequence of instance values 
is very, very low. (If it weren’t, it would be of little value as a “random” sequence!) 
However, the results do remain consistent in that they converge to the same variability 
level, for a given degree of confidence, but the precise path to get there may vary a little. 

 

 

 

 5.6.1  A Brief Introduction to the Normal Distribution  
 
 

 

Capturing variability relies on assuming normality in the distribution of the test results, and 
using the known statistical properties of the normal distribution. The assumption of 
normality of the distribution of the test results is particularly important in estimating the 
probability that variability has actually converged. A brief and nontechnical examination of 
some facets of the normal distribution is needed before looking at variability capture. 

 

 
 

 

The normal distribution is well studied, and its properties are well known. Detailed 
discussion of this distribution, and justification for some of the assertions made here, can 
be found in almost any statistical text, including those on business statistics. Specifically, 
the distribution of values within the range of a normally distributed variable form a very 
specific pattern. When variables’ values are distributed in this way, the standard deviation 
can be used to discover exactly how likely it is that any particular instance value will be 
found. To put it another way, given a normally distributed sample of a particular number of 
instances, it is possible to say how many instances are likely to fall between any two 
values. 

 

 
 

 

As an example, about 68% of the instance values of a normally distributed variable fall 
inside the boundary values set at the mean-plus-1 standard deviation and the 
mean-minus-1 standard deviation. This is normally expressed as m ± s, where m is the 
mean and s the standard deviation. It is also known, for instance, that about 95.5% of the 
sample’s instance values will lie within m ± 2s, and 99.7% within m ± 3s. 

 

 
 

 

What this means is that if the distance and direction from the mean is known in standard 
deviation units for any two values, it is possible to determine precisely the probability of 
discovering instance values in that range. For instance, using tables found in any 
elementary statistics text, it is easy to discover that for a value of the mean-minus-1 
standard deviation, approximately 0.1587 (i.e., about 16%) of the instances lie in the 
direction away from the mean, and therefore 0.8413 (about 84%) lie in the other direction.

 

 



 

 

The normal curve shown in Figure 5.7 plots values in the sample along the horizontal axis 
(labeled Standard deviation) and the probability of finding a value on the vertical axis. In a 
normally distributed sample of numbers, any value has some probability of occurring, but 
with a vanishingly small probability as the distance of the values moves far from the 
mean. The curve is centered on the sample mean and is usually measured in standard 
deviation units from the mean. The total area under the curve corresponds to a probability 
of 100% for finding a value in the distribution. The chance of finding a specific value 
corresponds to the area under the curve for that value. It is easier to imagine finding a 
value in some interval between two values. 

 

 

 

 

 

 

 
 

 
Figure 5.7  Normal distribution curve with values plotted for standard deviation 
(x-axis) and probability of finding a value (y-axis). 

 

   
 
 

 

This figure shows the normal curve with the interval between –1 and –0.8 standard 
deviations. It can be found, by looking in standard deviation tables, that approximately 
15.87% of the instance values lie to the left of the mean-minus-1 standard deviation line, 
78.81% lie to the right of the –0.8 standard deviation line, which leaves 5.32% of the 
distribution between the two (100% – 78.81% – 15.78% = 5.32%). So, for instance, if it 
were known that some feature fell between these two limits consistently, then the feature 
is “pinned down” with a 94.68% confidence (100% – 5.32% = 94.68%). 

 

 

 

 5.6.2  Normally Distributed Probabilities  
 
 

 
Measuring such probabilities using normally distributed phenomena is only important, of 
course, if the phenomena are indeed normally distributed. 

 

 
 

 

Looking back at Figure 5.6 will very clearly show that the variability is not normally 
distributed, nor even is the convergence. Fortunately, the changes in convergence, that 
is, the size of the change in variance from one increment to the next increment, can easily 
be adjusted to resemble a normal distribution. This statement can be theoretically 
supported, but it is easy to intuitively see that this is reasonable. 

 

 
 

 Early in the convergence cycle, the changes tend to be large compared to later changes.  



This is true no matter how long the convergence cycle continues. This means that the 
proportion of relatively small changes always predominates. In turn, this leads to the 
conclusion that the more instances that are considered, the more the later changes in 
variance cluster about the mean. Relatively large changes in variance, both positive and 
negative, are much less likely than small changes. And that is exactly what the normal 
distribution describes. 

 
 

 

To be sure, this is only a descriptive insight, not proof. Unfortunately, proof of this takes us 
beyond the scope of this book. The Further Reading section at the end of this book has 
pointers to where to look for further exploration of this and many other areas. 

 

 
 

 

It must be noted that the variance distribution is not actually normal since convergence 
can continue arbitrarily long, which can make the number of small changes in variability 
far outweigh the large changes. Figure 5.8 shows part of the distribution for the first 100 
samples of DAS variance. This distribution is hardly normal! However, although outside 
the scope of this conceptual introduction, adjustment for the reduction in change of size of 
variance with the sample is fairly straightforward. Figure 5.9 shows the effect of making 
the adjustment, which approximately normalizes the distribution of changes in 
variance—sufficient to make the assumptions for testing for convergence workably valid. 
Figure 5.9 shows the distribution for 1000 variability samples. 

 

 

 

 

 

 

 
 

 
Figure 5.8  The actual distribution of the changes in variability of DAS for the first 
100 samples shown in Figure 5.6. 

 

   
 

 



 

 

 

 
 

 
Figure 5.9  The variability of DAS for a 1000-instance sample when adjusted for 
sample size. 

 

   
 

 

 
5.6.3  Capturing Normally Distributed Probabilities: An 
Example 

 

 
 

 

After much preamble, we are at last ready to actually capture DAS variability. Recall that 
Figure 5.6 showed how the variance of DAS changes as additional instances are 
sampled. The variance rises very swiftly in the early instances, but settles down 
(converges) to remain, after 100 samples, somewhere about 130. Figure 5.10 shows the 
process of capturing variability for DAS. At first glance there is a lot on this graph! In order 
to get everything onto the same graph together, the figure shows the values “normalized” 
to fit into a range between 0 and 1. This is only for the purposes of displaying everything 
on the graph. 

 

 

 

 

 

 

 
 

 
Figure 5.10  Various features shown on a common scale so that their 
relationships are more easily seen. 

 

   
 
 



 

This example uses a 95% confidence level, which requires that the variability be inside 
0.05 (or 5%) of its range for 59 consecutive tests. In this example, the sampling is 
continued long after variability was captured to see if the confidence was justified. A total 
of 1000 instance-value samples are used. 

 

 
 

 

As the variance settles down, the confidence level that the variability has been captured 
rises closer to “1,” which would indicate 100% confidence. When the confidence of 
capture reaches 0.95, in actual data preparation, the needed confidence level is reached 
and sampling of this variable can stop. It means that at that point there is a 95% 
confidence that at least 95% of the variability has been captured. 

 

 
 

 

Because the example does not stop there, the variability pops out of limits from time to 
time. Does this mean that the measurement of variability failed? When the variability first 
reached the 0.95 confidence level, the variability was 127.04. After all 1000 samples were 
completed, the variability was at 121.18. The second variance figure is 4.6% distant from 
the first time the required confidence level was reached. The variance did indeed stay 
within 5% for the measured period. Perhaps it might have moved further distant if more 
instances had been sampled, or perhaps it might have moved closer. The measurement 
was made at the 95% confidence interval for a 95% variability capture. So far as was 
measured, this confidence level remains justified. 

 

 

 

 5.6.4  Capturing Confidence, Capturing Variance  
 
 

 

This is a complex subject, and it is easy to confuse what actually has been captured here. 
In the example the 95% level was used. The difficulty is in distinguishing between 
capturing 95% of the DAS variability, and having a 95% confidence that the variability is 
captured. Shouldn’t the 95% confidence interval of capturing 95% of the variability really 
indicate a 0.95 x 0.95 = 0.9025 confidence? 

 

 
 

 

The problem here is the difficulty of comparing apples and oranges. Capturing 95% of the 
variability is not the same as having 95% confidence that it is captured. An example might 
help to clarify. 

 

 
 

 

If you have an interest-bearing bank account, you have some degree of assurance, based 
on past history, that the interest rate will not vary more than a certain amount over a given 
time. Let’s assume that you think it will vary less than 5% from where it is now over the 
next six months. You could be said to be quite certain that you have locked in at least 95% 
of the current interest rate. But how certain are you? Perhaps, for the sake of this 
discussion, you can justify a 95% confidence level in your opinion. 

 

 
 

 

So, you are 95% confident of capturing 95% of the current interest rate. By some strange 
coincidence, those are the numbers that we had in capturing the variability! Ask this: 
because 0.95 x 0.95 = 0.9025, does this mean that you are really 90.25% confident? 
Does it mean the interest rate is only 90.25% of what you thought it was? No. It means 

 



only that you are 95% confident of getting 95% of the present interest rate. 
 
 

 

Remember that the 95% intervals were arbitrarily chosen. There is no inherent or intrinsic 
connection between them, nor any necessity that they be at the same level. For convenience 
in writing the demonstration software accompanying the book, they are taken to be the 
same. You could make changes, however, to choose other levels, such as being 99% 
certain that 80% of the variability has been captured. These are arbitrary choices of the user.

 

 
5.7  Problems and Shortcomings of Taking Samples Using 
Variability 

 

 
 

 

The discussion so far has established the need for sampling, for using measurement of 
variability as a means to decide how much data is enough, and the use of confidence 
measures to determine what constitutes enough. Taken together, this provides a firm 
foundation to begin to determine how much data is enough. Although the basic method 
has now been established, there are a number of practical issues that need to be 
addressed before attempting to implement this methodology. 

 

 

 

 5.7.1  Missing Values  
 
 

 
Missing or empty values present a problem. What value, if any, should be in the place of 
the missing value cannot yet be determined. 

 

 
 

 

The practical answer for determining variability is that missing values are simply ignored 
as if they did not exist. Simply put, a missing value does not count as an instance of data, 
and the variability calculation is made using only those instances that have a measured 
value. 

 

 
 

 

This implies that, for numerical variables particularly, the difference between a missing 
value and the value 0 must be distinguished. In some database programs and data 
warehouses, it is possible to distinguish variables that have not been assigned values. 
The demonstration program works with data in character-only format (.txt files) and 
regards values of all space as missing. 

 

 
 

 

The second problem with missing values is deciding at what threshold of density the 
variable is not worth bothering with. As a practical choice, the demonstration program 
uses the confidence level here as a density measure. A 95% confidence level will 
generate a minimum density requirement of 5% (100 – 95). This is very low, and in 
practice such low-density variables probably contribute little information of value. It’s 
probably better to remove them. The program does, however, measure the density of all 
variables. The cutoff occurs when an appropriate confidence level can be established that 
the variable is below the minimum density. For the 95% confidence level, this translates 
into being 95% certain that the variable is less than 5% populated. 

 

 

 



 5.7.2  Constants (Variables with Only One Value)  
 
 

 

A problem similar in some respects to missing values is that of variables that are in fact 
constants. That is to say, they contain only a single value. These should be removed 
before sampling begins. However, they are easy to overlook. Perhaps the sample is about 
people who are now divorced. From a broader population it is easy to extract all those 
who are presently divorced. However, if there is a field answering the question “Was this 
person ever married?” or “Is the tax return filed jointly?” obviously the answer to the first 
question has to be “Yes.” It’s hard to get divorced if you’ve never married. Equally, 
divorced people do not file joint tax returns. 

 

 
 

 

For whatever reason, variables with only one value do creep unwittingly into data sets for 
preparation. The demonstration program will flag them as such when the appropriate level 
of confidence has been reached that there is no variability in the variable. 

 

 

 

 5.7.3  Problems with Sampling  
 
 

 

Sampling inherently has limitations. The whole idea of sampling is that the variability is 
captured without inspecting all of the data. The sample specifically does not examine all of 
the values present in the data set—that is the whole point of sampling. 

 

 
 

 

A problem arises with alpha variables. The demonstration software does achieve a 
satisfactory representative sampling of the categorical values. However, not all the 
distinct values are necessarily captured. The PIE only knows how to translate those 
values that it has encountered in the data. (How to determine what particular value a 
given categorical should be assigned is explained in Chapter 6.) There is no way to tell 
how to translate values for the alpha values that exist in the data but were not 
encountered in the sample. 

 

 
 

 

This is not a problem with alpha variables having a small and restricted number of values 
they can assume. With a restricted number of possible discrete values, sampling will find 
them all. The exact number sampled depends on the selected confidence level. Many 
real-world data sets contain categorical fields demonstrating the limitations of sampling 
high discrete-count categorical variables. (Try the data set SHOE on the CD-ROM.) 

 

 
 

 

In general, names and addresses are pretty hopeless. There are simply too many of 
them. If ZIP codes are used and turn out to be too numerous, it is often helpful to try 
limiting the numbers by using just the three-digit ZIP. SIC codes have similar problems. 

 

 
 

 

The demonstration code does not have the ability to be forced to comprehensively sample 
alpha variables. Such a modification would be easy to make, but there are drawbacks. 
The higher sampling rate can be forced by placing higher levels of confidence on selected 
variables. If it is known that there are high rates of categorical variable incidence, and that 
the sample data actually contains a complete and representative distribution of them, this 

 



will force the data preparation program to sample most or all of any number of distinct 
values. This feature should be used cautiously as very high confidence on high 
distinct-value count variables may require enormous amounts of data. 

 

 

 5.7.4  Monotonic Variable Detection  
 
 

 

Monotonic variables are those that increase continuously, usually with time. Indeed, time 
increment variables are often monotonic if both time and date are included. Julian dates, 
which is a system of measurement using the number of days and fractions of days 
elapsed from a specified starting point (rather like Star Trek’s star dates) are a perfect 
example of monotonic variables. 

 

 
 

 

There are many other examples, such as serial numbers, order numbers, invoice 
numbers, membership numbers, account numbers, ISBN numbers, and a host of others. 
What they all have in common is that they increase without bound. There are many ways 
of dealing with these and either encoding or recoding them. This is discussed in Chapter 
9. Suitably prepared, they are no longer monotonic. Here the focus is on how best to deal 
with the issue if monotonic variables accidentally slip into the data set. 

 

 
 

 

The problem for variability capture is that only those values present in the sample 
available to the miner can be accessed. In any limited number of instances there will be 
some maximum and some minimum for each variable, including the monotonic variables. 
The full range will be sampled with any required degree of accuracy. The problem is that 
as soon as actual data for modeling is used from some other source, the monotonic 
variable will very likely take on values outside the range sampled. Even if the range of 
new variables is inside the range sampled, the distribution will likely be totally different 
than that in the original sample. Any modeled inferences or relationships made that rely 
on this data will be invalid. 

 

 
 

 

This is a very tricky problem to detect. It is in the nature of monotonic variables to have a 
trend. That is, there is a natural ordering of one following another in sequence. However, 
one founding pillar of sampling is random sampling. Random sampling destroys any 
order. Even if random sampling were to be selectively abandoned, it does no good, for the 
values of any variable can be ordered if so desired. Such an ordering, however, is likely to 
be totally artificial and meaningless. There is simply no general way, from internal 
evidence inside any data set, to distinguish between a natural order and an artificially 
imposed one. 

 

 
 

 

Two methods are used to provide an indication of possible monotonicity in variables. It is 
the nature of random sampling that neither each alone, nor both together, are perfect. 
They do, however, in practice provide warning and guidance that there may be something 
odd about a particular variable. There is a colloquial expression, to be “saved by the 
bell”—and these are two bells that may save much trouble: interstitial linearity and rate of 
discovery. 

 

 



 

 5.7.5  Interstitial Linearity  
 
 

 

Interstitial linearity is the first method that helps signal the possibility of monotonicity. 
Interstices are internal spaces. Interstitial linearity measures the consistency of spaces 
between values of a variable. When the spaces are similar in size, interstitial linearity is 
high. 

 

 
 

 

Monotonic variables are frequently generated as series of numbers increasing by some 
constant amount. Time ticks, for instance, may increase by some set amount of seconds, 
minutes, hours, or days. Serial numbers frequently increment by one at each step. This 
uniform increment, or some residual trace of it, is often found in the sample presented for 
modeling. Random sampling of such a series produces a subseries of numbers that also 
tend, on average, to have uniform interstitial spacing. This creates a distribution of 
numbers that tend to have a uniform density in all parts of their range. This type of 
distribution is known as a linear distribution or a rectangular distribution. Measuring how 
closely the distribution of variables approximates a linear distribution, then, can lead to an 
indication of monotonicity. 

 

 
 

 

The demonstration software checks each variable for interstitial linearity. There are many 
perfectly valid variables that show high degrees of interstitial linearity. The measure varies 
between 0 and 1, with 1 being a perfectly linear distribution. If any variable has an 
interstitial linearity greater than 0.98, it is usually worth particular scrutiny. 

 

 

 

 5.7.6  Rate of Discovery  
 
 

 

It is in the nature of monotonic variables that all of the instance values are unique. During 
sampling of such variables, a new instance value is discovered with every instance. (In 
fact, errors in data entry, or other problems, may make this not quite true, but the 
discovery rate will be very close to 100%.) A discovery rate of close to 100% can be 
indicative of monotonicity. 

 

 
 

 

There are, of course, many variables that are not monotonic but have unique instance 
values, at least in the sample available. Men’s height measured to the nearest millimeter, for 
instance, would not be monotonic, but would likely have unique instance values for quite a 
large number of instances. However, such a variable would almost certainly not show 
interstitial linearity. Taken together, these measures can be useful in practice in discovering 
problems early. 

 

 
5.8  Confidence and Instance Count  
 
 

 

This chapter discussed using confidence as a means of estimating how many instance 
values are needed to capture variability. However, it is quite easy to turn this measure 
around, as it were, and give a confidence measure for some preselected number of instance 



values. It is quite possible to select a confidence level that the data simply cannot support. 
For instance, selecting a 99.5% confidence level may very well need more instances than 
the miner has available. In this case, the demonstration code estimates what level of 
confidence is justified for the instances available. In a small data set, selecting a 99.99% 
confidence level forces the sampling method to take all of the data, since such a high 
confidence of capture can almost never be justified. The actual confidence level justified is in 
the Variable Status report (mentioned in Chapter 4). 

 

 
5.9  Summary  
 
 

 

This chapter has looked at how to decide how much data the miner needs to make sure 
that variables have their variability represented. Variability must be captured as it 
represents the information content of a variable, which it is critically important to preserve. 
We are almost never completely assured that the variability has been captured, but it is 
possible to justify a degree of confidence. Data sets can be sampled because confidence 
levels of less than 100% work very well in real-world problems—which is fortunate since 
perfect confidence is almost always impossible to have! (Even if unlimited amounts of 
data are available, the world is still an uncertain place. See Chapter 2.) We can either 
select enough data to establish the needed level of confidence, or determine how much 
confidence is justified in a limited data set on hand. Selecting the appropriate level of 
confidence requires problem and domain knowledge, and cannot be automatically 
determined. Confidence decisions must be made by the problem owner, problem holder, 
domain expert, and miner. 

 

 
 

 
The next actions need to expose information to modeling tools and fix various problems in 
the variables, and in the data set as a whole. The next chapter begins this journey. 

 

 
Supplemental Material  
 

 

 Confidence Samples  
 
 

 In this section, we will use  
 
 

 c = Confidence  
 
 

 e = Error rate  
 
 

 n = Number of tests  
 
 

 s = Skepticism  
 
 

 

(Note that the program uses the confidence factor c also as the expected error rate e. 
That is to say, if a 0.95 confidence level is required in the result, an assumption is made 
that the test may be expected to be wrong at a rate of 0.95 also. Thus, in effect, c = e. This 

 



is an arbitrary assumption, but seems reasonable and simplifies the number of 
parameters required.) 

 
 

 The relationship  
 
 

 s = en  
 
 

 can be transposed to  
 
 

 n = log(s)/log(e)  
 
 

 The easy way to confirm this is to plug in some numbers:  
 
 

 9 = 32  
 
 

 So the transposition supposes that  
 
 

 2 = log(9)/log(3)  
 
 

 2 = 0.9542/0.4771  
 
 

 which you will find is so.  
 
 

 But  
 
 

 c = 1 – s  
 
 

 and  
 
 

 c = 1 – en  
 
 

 since  
 
 

 s = en  
 
 

 which allows the whole formula for finding the necessary number of tests to be written as  
 
 

 n = log(1 – c)/log(c)  
 
 

 
This is a very useful transformation, since it means that the number of confirmations 
required can be found directly by calculation. 

 

 
 

 
For the 0.95, or 95%, confidence level (c = 0.95), and using natural logarithms for 
example, this becomes 

 

 



 

 n = log(1 – c)/log(c)  
 
 

 n = log(0.05)/log(0.95)  
 
 

 n = –2.9957/–0.0513  
 
 

 n = 58.4  
 
 

 

This means that 59 tests of convergence agreeing that the variable is converged 
establishes the 95% confidence required. (Since “0.4” of a test is impossible, the 58.4 is 
increased to the next whole number, 59.) 

 

 
 

 

This relationship is used in the demonstration software to test for convergence of variability. 
Essentially, the method is to keep increasing the number of instances in the sample, 
checking variability at each step, and wait until the variability is within the error band the 
required number of times. 

 

 

Chapter 6: Handling Nonnumerical Variables  

 

 

 Overview  
 
 

 

Given the representative sample, as described in Chapter 5, it may well consist of a 
mixture of variable types. Nonnumerical, or alpha, variables present a set of problems 
different from those of numerical variables. Chapter 2 briefly examined the different types 
of nonnumerical variables, where they were referred to as nominal and categorical. 
Distinguishing between the different types of alpha variables is not easy, as they blend 
into a continuum. Whenever methods of handling alpha variables are used, they must be 
effective at handling all types across the continuum. 

 

 
 

 

The types of problems that have to be handled depend to some extent on the capabilities, 
and the needs, of the modeling tools involved. Some tools, such as decision trees, can 
handle alpha values in their alpha form. Other tools, such as neural networks, can handle 
only a numeric representation of the alpha value. The miner may need to use several 
different modeling tools on a data set, each tool having different capabilities and needs. 
Whatever techniques are used to prepare the data set, they should not distort its 
information content (i.e., add bias). Ideally, the data prepared for one tool should be 
useable by any other tool—and should give materially the same results with any tool that 
can handle the data. 

 

 
 

 
Since all tools can handle numerical data but some tools cannot handle alpha data, the 
miner needs a method of transforming alpha values into appropriate numerical values. 

 

 
 



 

Chapter 2 introduced the idea that the values in a data set reflect some state of the real 
world. It also introduced the idea that the ordering of, and spacing between, alpha 
variables could be recovered and expressed numerically by looking at the data set as a 
whole. This chapter explores how this can be done. The groundwork that is laid here is 
needed to cover issues other than just the numeration of alpha values, so rather than 
covering the same material more than once, several topics are visited, and ideas 
introduced, in slightly more detail than is needed just for dealing with alpha variables. 

 

 
 

 

Four broad topics are discussed in this chapter. The first is the remapping of variable 
values, which can apply to both numeric and alpha values, but most often applies to 
alphas. The miner has to make decisions about the most appropriate representation of 
alpha variables. There are several automated techniques discussed in this chapter for 
discovering an appropriate numeric representation of alpha values. Unfortunately, there is 
no guarantee that these techniques will find even a good representation, let alone the best 
one. They will find the best numerical representation, given the form in which the alpha is 
delivered for preparation, and the information in the data set. However, insights and 
understanding brought by the miner, or by a domain expert, will almost certainly give a 
much better representation. What must be avoided at all costs is an arbitrary assignment 
of numbers to alpha labels. The initial stage in numerating alphas is for the miner to 
replace them with a numeration that has some rationale, if possible. 

 

 
 

 

The second topic is a more detailed look at state space. Understanding state space is 
needed not only for numerating the alphas, but also for conducting the data survey and for 
addressing various problems and issues in data mining. Becoming comfortable with the 
concept of data existing in state space yields insight into, and a level of comfort in dealing 
with, modeling problems. 

 

 
 

 

The third is joint frequency distribution tables. Data sets may be purely numeric, mixed 
alpha-numeric, or purely alpha. If the data set is purely numeric, then the techniques of 
this chapter are not needed—at least not for numerating alpha values. Data sets 
containing exclusively alpha values cannot reflect or be calibrated against associated 
numeric values in the data set because there are none. Numerating all alpha values 
requires a different technique. The one described here is based on the frequencies of 
occurrence of alpha values as expressed in joint frequency distribution tables. 

 

 
 

 

The fourth broad topic is multidimensional scaling (MDS). Chapter 2 also introduced the idea 
that some alpha variables are most usefully translated into more than one single numeric 
value (ZIP codes into latitude and longitude, for example; see the explanation in Chapter 2). 
Taking that idea a step further, some technique is needed to project the values into the 
appropriate number of dimensions. The technique is multidimensional scaling. Although 
discussed in this chapter as a means to discover the appropriate dimensionality for a 
variable, MDS techniques can also be used for reducing the dimensionality of a data set. 

 

 
6.1  Representing Alphas and Remapping  
 



 

 

Exactly how alpha values are best represented depends very much on the needs of the 
modeling tool. Function-fitting modeling methods are sensitive to the form of the 
representation. These tools use techniques like regression and neural networks and, to 
some extent, symbolic regression, evolution programming, and equation evolvers. These 
tools yield final output that can be expressed as some form of mathematical equation (i.e., 
x = some combination and manipulation of input values). Other modeling methods, such 
as those sensitive mainly to the ordinality patterns in data, are usually less sensitive, 
although certainly not entirely insensitive, to representational issues, as they can handle 
alpha values directly. These include tools based on techniques like some forms of 
decision trees, decision lists, and some nearest-neighbor techniques. 

 

 
 

 

However, all modeling tools used by data miners are sensitive to the one-to-many 
problem (introduced in the next section and also revisited in Chapter 11), although there 
are different ways of dealing with it. The one-to-many problem afflicts numeric variables 
as well as alpha variables. It is introduced here because for some representations it is an 
important consideration when remapping the alpha labels. If this problem does exist in an 
alpha variable, remapping using domain knowledge may prove to be the easiest way to 
deal with the problem. 

 

 
 

 

There is an empirical way—a rule of thumb—for finding out if any particular remapping is 
both an improvement and robust. Try it! That is, build a few simple models with various 
methods. Ensure that at least the remapped values cause no significant degradation in 
performance over the default choice of leaving it alone. If in addition to doing no harm, it 
does some good, at least sometimes, it is probably worth considering. This empirical test 
is true too for the automated techniques described later. They have been chosen because 
in general, and with much practical testing, they at least do no harm, and often (usually) 
improve performance depending on the modeling tool used. 

 

 
 

 
In general, remapping can be very useful indeed when one or more of these 
circumstances is true: 

 

 
 

  •  The information density that can be remapped into a pseudo-variable is high.  
 
 

  •  The dimensionality of the model is only modestly increased by remapping.  
 
 

  •  A rational, or logical, reasoning can be given for the remapping.  
 
 

  
• 
 
The underlying rationale for the model requires that the alpha inputs are to be 
represented without implicit ordering. 

 

 

 

 6.1.1  One-of-n Remapping  
 
 

 Ask a U.S. citizen or longtime resident, “How many states are there?” and you will  



probably get the answer “Fifty!” It turns out that for many models that deal with states, 
there are a lot more. Canadian provinces get squeezed in, as well as Mexican states, plus 
all kinds of errors. (Where, for instance, is IW?) However, sticking with just the 50 U.S. 
states, how are these to be represented? In fact, states are usually dealt with quite well by 
the automated numeration techniques described later in this chapter. However, 
remapping them is a classic example for neural networks and serves as a good general 
example of one-of-n remapping. It also demonstrates the problems with this type of 
remapping. 

 
 

 

A one-of-n representation requires creating a binary-valued pseudo-variable for each 
alpha label value. For U.S. states, this involves creating 50 new binary pseudo-variables, 
one for each state. The numerical value is set to “1,” indicating the presence of the 
relevant particular label value, and “0” otherwise. There are 50 variables, only one of 
which is “on” at any one time. Only one “on” of the 50 possible, so “one-of-n” where in this 
case “n” is 50. 

 

 
 

 

Using such a representation has advantages and disadvantages. One advantage is that 
the mean of each pseudo-variable is proportional to the proportion of the label in the 
sample; that is, if 25% of the labels were “CA,” then the mean of the pseudo-variable for 
the label “CA” would be 0.25. A useful feature of this is that when “State” is to be 
predicted, a model trained on such a representation will produce an output that is the 
model’s estimate of the probability of that state being the appropriate choice. 

 

 
 

 Disadvantages are several:  
 
 

  

• 
 

Dimensionality is increased considerably. If there are many such remapped 
pseudo-variables, there can be an enormous increase in dimensionality that can easily 
prevent the miner from building a useful model. 

 

 
 

  

• 

 

The density (in the state example) of a particular state may well be very low. If only the 
50 U.S. states were used and each was equally represented, each would have a 2% 
presence. For many tools, such low levels are almost indistinguishable from 0% for 
each state; in other words, such low levels mean that no state can be usefully 
distinguished. 

 

 
 

  

• 

 

Again, even when the pseudo-variables have reasonable density for modeling, the 
various outputs will all be “on” to some degree if they are to be predicted, estimating the 
probability that their output is true. This allows ranking the outputs for degree of 
probability. While this can be useful, sometimes it is very unhelpful or confusing to know 
that there is essentially a 50% chance that the answer is “NY,” and a 50% chance that 
the answer is “CA.” 

 

 

 

 6.1.2  m-of-n Remapping  
 
 



 

While the na‹ve one-of-n remapping (one state to one variable) may cause difficulties, 
domain knowledge can indicate very useful remappings that significantly enhance the 
information content in alpha variables. Since these depend on domain knowledge, they 
are necessarily situation specific. However, useful remappings for state may include such 
features as creating a pseudo-variable for “North,” one for “South,” another for “East,” one 
for “West,” and perhaps others for other features of interest, such as population density or 
number of cities in the state. This m-of-n remapping is an advantage if either of two 
conditions is met. First, if the total number of additional variables is less than the number 
of labels, then m-of-n remapping increases dimensionality less than one-of-n—potentially 
a big advantage. Second, if the m-of-n remapping actually adds useful information, either 
in fact (by explicating domain knowledge), or by making existing information more 
accessible, once again this is an advantage over one-of-n. 

 

 
 

 

This useful remapping technique has more than one of the pseudo-variables “on” for a 
single input. In one-of-n, one state switched “on” one variable. In m-of-n, several variables 
may be “on.” For instance, a densely populated U.S. state in the northeast activates 
several of the pseudo-variables. The pseudo-variables for “North,” “East,” and “Dense 
Population” would be “on.” So, for this example, one input label maps to three “on” input 
pseudo-variables. There could, of course, be many more than three possible inputs. In 
general, m would be “on” of the possible n—so it’s called an m-of-n mapping. 

 

 
 

 

Another example of this remapping technique usefully groups common characteristics. 
Such character aggregation codings can be very useful. For instance, instead of listing 
the entire content of a grocery store’s produce section using individual alpha labels in a 
na‹ve one-of-n coding, it may be better to create m-of-n pseudo-variables for “Fruit,” 
“Vegetable,” “Root Crop,” “Leafy,” “Short Shelf Life,” and so on. Naturally, the useful 
characteristics will vary with the needs of the situation. It is usually necessary to ensure 
that the coding produces a unique pattern of pseudo-variable inputs for each alpha 
label—that is, for this example, a unique pattern for each item in the produce department. 
The domain expert must make sure, for example, either that the label “rutabaga” maps to 
a different set of inputs than the label “turnip,” or that mapping to the same input pattern is 
acceptable. 

 

 

 

 6.1.3  Remapping to Eliminate Ordering  
 
 

 

Another use for remapping is when it is important that there be no implication of ordering 
among the labels. The automated techniques described in this chapter attempt to find an 
appropriate ordering and dimensionality of representation for alpha variables. It is very 
often the case that an appropriate ordering does in fact exist. Where it does exist, it 
should be preserved and used. However, it is the nature of the algorithms that they will 
always find an ordering and some dimensional representation for any alpha variable. It 
may be that the domain expert, or the miner, finds it important to represent a particular 
variable without ordering. Using remapping achieves model inputs without implicit 
ordering. 

 

 



 

 
6.1.4  Remapping One-to-Many Patterns, or Ill-Formed 
Problems 

 

 
 

 

The one-to-many problem can defeat any function-fitting modeling tool, and many other 
tools too. The problem arises when one input pattern predicts many output patterns. 
Since mining tools are often used to predict single values, it is convenient to discuss the 
problem in terms of predicting a single output value. However, since it is quite possible for 
some tools to predict several output values simultaneously, throughout the following 
discussion the single value output used for illustration must be thought of as a surrogate 
for any more complex output pattern. This is not a problem limited to alpha variables by 
any means. However, since remapping may provide a remedy for the one-to-many 
problem, we will look at the problem here. 

 

 
 

 

Many modeling tools look for patterns in the input data that are indicative of particular 
output values. The essence of a predictive model is that it can identify particular input 
patterns and associate specific output values with them. The output values will always 
contain some level of noise, and so a prediction can only be to some degree 
approximately accurate. The noise is assumed to be “fuzz” surrounding some actual value 
or range of values and is an ineradicable part of the prediction. (See Chapter 2 for a 
further discussion of this topic.) 

 

 
 

 

A severe and intractable problem arises when a single input pattern should accurately be 
associated with two or more discrete output values. Figure 6.1 shows a graph of data 
points. Modeling these points discovers a function that fits the points very well. The 
function is shown in the title of the graph. The fit is very good. 

 

 

 

 

 

 

 
 

 

Figure 6.1  The circles show the location of the data points, and the continuous 
line traces the path of the fitted function. The discovered function fits the function 
well as there is only a single value of y for every value of x. 

 

   
 
 



 

Figure 6.2 shows a totally different situation. Here the original curve has been reflected 
across the bottom-left, top-right diagonal of the curve, and fitting a function to this curve is 
a disaster. Why? Because for much of this curve, there is no single value of y for every 
value of x. Take the point x = 0.7, for example. There are three values of y: y = 0.2, y = 
0.7, and y = 1.0. For a single value of x there are three values of y—and no way, from just 
knowing the value of x, to tell them apart. This makes it impossible to fit a function to this 
curve. The best that a function-fitting modeling tool can do is to find a function that 
somehow fits. The one used in this example found as its best approximation a function 
that can hardly be said to describe the curve very well. 

 

 

 

 

 

 

 
 

 

Figure 6.2  The solid line shows the best-fit function that one modeling tool could 
discover to fit the curve illustrated by the circles. When a curve has multiple 
predicted (y) values for the input value (x), no function can fit the curve. 

 

   
 
 

 

In Figure 6.2 the input “pattern” (here a single number) is the x value. The output pattern 
is the y value. This illustrates the situation in data sets where, for some part of the range, 
the input pattern genuinely maps to multiple output patterns. One input, many outputs, 
hence the name one-to-many. Note that the problem is not noise or uncertainty in 
knowing the value of the output. The output values of y for any input values of x are clearly 
specified and can be seen on the graph. It’s just that sometimes there is more than one 
output value associated with an input value. The problem is not that the “true” value lies 
somewhere between the multiple outputs, but that a function can only give a single output 
value (or pattern) for a unique input value (or pattern). 

 

 
 

 

Does this problem occur in practice? Do data miners really have to deal with it? The curve 
shown in Figure 6.1 is a normalized, and for demonstration purposes, somewhat cleaned 
up, profit curve. The x value corresponds to product price, the y value to level of profit. As 
price increases, so does profit for awhile. At some critical point, as price increases, profit 
falls. Presumably, more customers are put off by the higher price than are offset by the 
higher profit margin, so overall profit falls. At some point the overall profit rises again with 
increase in price. Again presumably, enough people still see value in the product at the 

 



higher price to keep buying it so that the increase in price generates more overall profit. 
Figure 6.1 illustrates the answer to the question What level of profit can I expect at each 
price level over a range? 

 
 

 

Figure 6.2 has price on the y-axis and profit on the x-axis, and illustrates the answer to the 
question What price should I set to generate a specific level of profit? The difficulty is that, 
in this example, there are multiple prices that correspond to some specific levels of profit. 
Many, if not most, current modeling tools cannot answer this question in the situation 
illustrated. 

 

 
 

 

There are a number of places in the process where this problem can be fixed, if it is 
detected. And that is a very big if! It is often very hard to determine areas of multivalued 
output. Miners, when modeling, can overcome the problem using a number of techniques. 
The data survey (Chapter 11) is the easiest place to detect the problem, if it is not already 
known to be a problem. However, if it is recognized, and possible, by far the easiest stage 
in which to correct the problem is during data preparation. It requires the acquisition of 
some additional information that can distinguish the separate situations. This additional 
information can be coded into a variable, say, z. Figure 6.3 shows the curve in three 
dimensions. Here it is easy to see that there are unique x and z values for every 
point—problem solved! 

 

 

 

 

 

 

 
 

 

Figure 6.3  Adding a third dimension to the curve allows it to be uniquely 
characterized by values x and z. If there is additional information allowing the 
states to be uniquely defined, this is an easy solution to the problem. 

 

   
 
 

 

Not quite. In the illustration, the variable z varies with y to make illustrating the point easy. 
But because y is unknown at prediction time, so is z. It’s a Catch-22! However, if 
additional information that can differentiate between the situations is available at 
preparation time, it is by far the easiest time to correct the problem. 

 

 
 



 

This book focuses on data preparation. Discussing other ways of fixing the one-to-many 
problem is outside the present book’s scope. However, since the topic is not addressed 
any further here, a brief word about other ways of attacking the problem may help prevent 
anguish! 

 

 
 

 

There is a clue in the way that the problem was introduced for this example. The example 
simply reflected a curve that was quite easily represented by a function. If the problem is 
recognized, it is sometimes possible to alleviate it by making a sort of reflection in the 
appropriate state space. Another possible answer is to introduce a local distortion in state 
space that “untwists” the curve so that it is more easily describable. Care must be taken 
when using these methods, since they often either require the answer to be known or can 
cause more damage than they cure! The data survey, in part, examines the manifold 
carefully and should report the location and extent of any such areas in the data. At least 
when modeling in such an area of the data, the miner can place a large sign 
“Warning—Quicksand!” on the results. 

 

 
 

 

Another possible solution is for the miner to use modeling techniques that can deal with 
such curves—that is, techniques that can model surfaces not describable by functions. 
There are several such techniques, but regrettably, few are available in commercial 
products at this writing. Another approach is to produce separate models, one for each 
part of the curve that is describable by a function. 

 

 

 

 6.1.5  Remapping Circular Discontinuity  
 
 

 

Historians and religions have debated whether time is linear or circular. Certainly scientific 
time is linear in the sense that it proceeds from some beginning point toward an end. For 
miners and modelers, time is often circular. The seasons roll endlessly round, and after 
every December comes a January. Even when time appears to be numerically labeled, 
usually ordinally, the miner should consider what nature of labeling is required inside the 
model. 

 

 
 

 

Because of the circularity of time, specifying timelike labels has particular problems. 
Numbering the weeks of the year from “1” to “52” demonstrates the problem. Week 52, on 
a seasonal calendar, is right next to week 1, but the numbers are not adjacent. There is 
discontinuity between the two numbers. Data that contains annual cycles, but is ordered 
as consecutively numbered week labels, will find that the distortion introduced very likely 
prevents a modeling tool from discovering any cyclic information. 

 

 
 

 

A preferable labeling might set midsummer as “1” and midwinter as “0.” For 26 weeks the 
“Date” flag, a lead variable, might travel from “0” toward “1,” and for the other 26 weeks 
from “1” toward “0.” A lag variable is used to unambiguously define the time by reporting 
what time it was at some fixed distance in the past. In the example illustrated in Figure 
6.4, the lag variable gives the time a quarter of a year ago. These two variables provide 
an unambiguous indication of the time. The times shown are for solstices and equinoxes, 

 



but every instant throughout the cycle is defined by a unique pair of values. By using this 
representation of lead and lag variables, the model will be able to discover interactions 
with annual variations. 

 

 

 

 

 

 
 

 

Figure 6.4  An annual “clock.” The time is represented by two variables—one 
showing the time now and one showing where the time was a quarter of a year 
ago. 

 

   
 
 

 

Annual variation is not always sufficient. When time is expected to be important in any 
model, the miner, or domain expert, should determine what cycles are appropriate and 
expected. Then appropriate and meaningful continuous indicators can be built. When 
modeling human or animal behavior, various-period circadian rhythms might be 
appropriate input variables. Marketing models often use seasonal cycles, but distance in 
days from or to a major holiday is also often appropriate. Frequently, a single cyclic time is 
not enough, and the model will strongly benefit from having information about multiple 
cycles of different duration. 

 

 
 

 

Sometimes the cycle may rise slowly and fall abruptly, like “weeks to Thanksgiving.” The 
day after Thanksgiving, the effective number of weeks steps to 52 and counts down from 
there. Although the immediately past Thanksgiving may be “0” weeks distant, the salient 
point is that once “this” Thanksgiving is past, it is immediately 52 weeks to next 
Thanksgiving. In this case the “1” through “52” numeration is appropriate—but it must be 
anchored at the appropriate time, Thanksgiving in this case. Anchoring “weeks to 
Thanksgiving” on January 1st, or Christmas, say, would considerably reduce the utility of 
the ordering. 

 

 
 

 

As with most other alpha labels, appropriate numeration adds to the information available for 
modeling. Inappropriate labeling at best makes useful information unavailable, and at worst, 
destroys it. 

 

 



6.2  State Space  
 
 

 

State space is a space exactly like any other. It is different from the space normally 
perceived in two ways. First, it is not limited to the three dimensions of accustomed space 
(or four if you count time). Second, it can be measured along any ordered dimensions that 
are convenient. 

 

 
 

 

For instance, choosing a two-dimensional state space, the dimensions could be “inches of 
rain” and “week of the year.” Such a state space is easy to visualize and can be easily 
drawn on a piece of paper in the form of a graph. Each dimension of space becomes one 
of the axes of the graph. One of the interesting things about this particular state space is 
that, unlike our three-dimensional world, the values demarking position on a dimension 
are bounded; that is to say, they can only take on values from a limited range. In the 
normal three-dimensional world, the range of values for the dimensions “length,” 
“breadth,” and “height” are unlimited. Length, breadth, or height of an object can be any 
value from the very minute—say, the Planck constant (a very minute length indeed)—to 
billions of light-years. The familiar space used to hold these objects is essentially 
unlimited in extent. 

 

 
 

 

When constructing state space to deal with data sets, the range of dimensional values is 
limited. Modeling tools do not deal with monotonic variables, and thus these have to be 
transformed into some reexpression of them that covers a limited range. It is not at all a 
mathematical requirement that there be a limit to the size of state space, but the spaces 
that data miners experience almost always are limited. 

 

 

 

 6.2.1  Unit State Space  
 
 

 

Since the range of values that a dimension can take on are limited, this also limits the 
“size” of the dimension. The range of the variable fixes the range of the dimension. Since 
the limiting values for the variables are known, all of the dimensions can be normalized. 
Normalizing here means that every dimension can be constructed so that its maximum 
and minimum values are the same. It is very convenient to construct the range so that the 
maximum value is 1 and the minimum 0. The way to do this is very simple. (Methods of 
normalizing ranges for numeric variables are discussed in Chapter 7.) 

 

 
 

 

When every dimension in state space is constructed so that the maximum and minimum 
values for each range are 1 and 0, respectively, the space is known as unit state 
space—“unit” because the length of each “side” is one unit long; “state space” because 
each uniquely defined position in the space represents one particular state of the system 
of variables. This transformation is no more than a convenience, but making such a 
transformation allows many properties of unit state space to be immediately known. For 
instance, in a two-dimensional unit state space, the longest straight line that can be 
constructed is the corner-to-corner diagonal. State space is constructed so that its 
dimensions are all at right angles to each other—thus two-dimensional state space is 

 



rectangular. Two-dimensional unit state space not only is rectangular, but has “sides” of 
the same unit length, and so is square. Figure 6.5 shows the corner-to-corner diagonal 
line, and it immediately is clear that that the Pythagorean theorem can be used to find the 
length of the line, which must be 1.41 units. 

 

 

 

 

 

 
 

 Figure 6.5  Farthest possible separation in state space.  

   
 

 

 6.2.2  Pythagoras in State Space  
 
 

 

Two-dimensional state space is not significantly different from the space represented on 
the surface of a piece of paper. The Pythagorean theorem can be extended to a 
three-dimensional space, and in a three-dimensional unit state space, the longest 
diagonal line that can be constructed is 1.73 units long. What of four dimensions? In fact, 
there is an analog of the Pythagorean theorem that holds for any dimensionality of state 
space that miners deal with, regardless of the number of dimensions. It might be stated 
as: In any right-angled multiangle, the square on the multidimensional hypotenuse is 
equal to the sum of the squares on all the other sides. The length of the longest straight 
line that can be constructed in a four-dimensional unit state space is 2, and of a 
five-dimensional unit state space, 2.24. It turns out that this is just the square root of the 
number of sides, since the square on a unit side, the square of 1, is just 1. 

 

 
 

 

This means that as more dimensions are added, the longest straight line that can be 
drawn increases in length. Adding more dimensions literally adds more space. In fact, the 
longest straight line that can be drawn in unit state space is always just the square root of 
the number of dimensions. 

 

 

 

 6.2.3  Position in State Space  
 
 

 
Instead of just finding the longest line in state space, the Pythagorean theorem can be 
used to find the distance between any two points. The position of a point is defined by its 

 



coordinates, which is exactly what the instance values of the variables represent. Each 
unique set of values represents a unique position in state space. Figure 6.6 shows how to 
discover the distance between two points in a two-dimensional state space. It is simply a 
matter of finding the distance between the points on one axis and then on the other axis, 
and then the diagonal length between the two points is the shortest distance between the 
two points. 

 

 

 

 

 

 
 

 Figure 6.6  Finding the distance between two points in a 2D state space.  

   
 
 

 

Just as with finding the length of the longest straight line that can be drawn in state space, 
so too this finding of the distance between two points can be generalized to work in 
higher-dimensional state spaces. But each point in state space represents a particular 
state of the system of variables, which in turn represent a particular state of the object or 
event existing in the real world that was being measured. State space provides a standard 
way of measuring and expressing the distance between any states of the system, whether 
events or objects. 

 

 
 

 

Using unit state space provides a frame of reference that allows the distance between any 
two points in that space to be easily determined. Adding more dimensions, because it 
adds more space in which to position points, actually moves them apart. Consider the 
points shown in Figure 6.6 that are 0.1 units apart in both dimensions. If another 
dimension is added, unless the value of the position on that dimension is identical for both 
points, the distance between the points increases. This is a phenomenon that is very 
important when modeling data. More dimensions means more sparsity or distance 
between the data points in state space. A modeling tool has to search and characterize 
state space, and too many dimensions means that the data points disappear into a thin 
mist! 

 

 

 

 6.2.4  Neighbors and Associates  
 
 



 

Points in state space that are close to each other are called neighbors. In fact, there is a 
data modeling technique called “nearest neighbor” or “k-nearest neighbor” that is based 
on this concept. This use of neighbors simply reflects the idea that states of the system 
that are close together are more likely to share features in common than system states 
further apart. This is only true if the dimensions actually reflect some association between 
the states of the system indicated by their positions in state space. 

 

 
 

 

Consider as an example Figure 6.7. This shows a hypothetical relationship in 
two-dimensional unit state space between human age and height. Since height changes 
as people grow older up to some limiting age, there is an association between the two 
dimensions. Neighbors close together in state space tend to share common 
characteristics up to the limiting age. After the limiting age—that is, the age at which 
humans stop growing taller—there is no particular association between age and height, 
except that this range has lower and upper limits. In the age dimension, the lower limit is 
the age at which growth stops, and the upper limit is the age at which death occurs. In the 
height dimension, after the age at which growth stops, the limits are the extremes of adult 
height in the human population. Before growth stops, knowing the value of one dimension 
gives an idea of what the value of the other dimension might be. In other words, the 
height/age neighborhood can be usefully characterized. After growth stops, the 
association is lost. 

 

 

 

 

 

 

 
 

 
Figure 6.7  Showing the relationship between neighbors and association when 
there is, and is not, an association between the variables. 

 

   
 
 

 

This simplified example is interesting because although it is simplified, it is similar to many 
practical data characterization problems. For sets of variables other than just human 
height and weight, the modeler might be interested in discovering that there are 
boundaries. The existence and position of such boundaries might be an unknown piece of 
information. The changing nature of a relationship might have to be discovered. It is clear 
that for some part of the range of the data in the example, one set of predictions or 

 



inferences can be made, and in another part of the same data set, wholly different 
inferences or predictions must be made. This change in the nature of the neighborhood 
from place to place can be very important. In two dimensions it is easy to see, but in 
high-dimensionality spaces this can be difficult to discover. 

 

 

 6.2.5  Density and Sparsity  
 
 

 
Before continuing, a difference in the use of the terms location or position, and points or 
data points, needs to be noted. 

 

 
 

 

In any space there are an infinite number of places or positions that can be specified. 
Even the plane represented by two-dimensional state space has an infinite number of 
positions on it that can be represented. In fact, even on a straight line, between any two 
positions there are an infinite number of other positions. This is because it is always 
possible to specify a location on a dimension that is between any two other locations. For 
instance, between the locations represented by 0.124 and 0.125 are other locations 
represented by 0.1241, 0.1242, 0.1243, and so on. This is a property of what is called the 
number line. It is always possible to use more precision to specify more locations. The 
terms location or position are used to represent a specific place in space. 

 

 
 

 

Data, of course, has values—instance values—that can be represented as specifying a 
particular position. The instance values in a data set, representing particular states of the 
system, translate into representing particular positions in state space. When a particular 
position is actually represented by an instance value, it is referred to as a data point or 
point to indicate that this position represents a measured state of the system. 

 

 
 

 

So the terms location and position are used to indicate a specific set of values that might 
or might not be represented by an instance value in the data. The terms point and data 
point indicate that the location represents recorded instance values and therefore 
corresponds to an actual measured state of the system. 

 

 
 

 

Turning now to consider density, in the physical world things that are dense have more 
“stuff” in them per unit volume than things that are less dense. So too, some areas of state 
space have more data points in them for a given volume than other areas. State space 
density can be measured as the number of data points in a specific volume. In a dense 
part of state space, any given location has its nearest neighboring points packed around it 
more closely than in more sparsely populated parts of state space. 

 

 
 

 

Naturally, in a state space of a fixed number of dimensions, the absolute mean density of 
the data points depends on the number of data points present and the size of the space. 
The number of dimensions fixes unit state space volume, but the number of data points in 
that volume depends only on how much data has been collected. However, given a 
representative sample, if there are associations among the dimensions, the relative 
density of one part of state space remains in the same relationship to the relative density 

 



of another part of the same space regardless of how many data points are added. 
 
 

 

If this is not intuitive, imagine two representative samples drawn from the same 
population. Each sample is projected into its own state space. Since the samples are 
representative of the same population, both state spaces will have the same dimensions, 
normalized to the same values. If this were not so, then the samples would not be truly 
representative of the same population. Since both data sets are indeed representative of 
the same population, the distributions of the variables are, for all practical purposes, 
identical in both samples, as are the joint distributions. Thus, any given specific area 
common to both state spaces will have the same proportion of the total number of points 
in each space—not necessarily the same actual number of points, as the representative 
samples may be of different sizes, but the same relative number of points. 

 

 
 

 

Because both representative data sets drawn from a common population have similar 
relative density throughout, adding them together—that is, putting all of the data points 
into a common state space—does not change the relative density in the common state 
space. As a specific example, if some defined area of both state spaces has a relative 
density twice the mean density, when added together, the defined area of the common 
state space will also have a density twice the mean—even though the mean will have 
changed. Table 6.1 shows an example of this. 

 

 

 

 TABLE 6.1  State space density.  
 
 

   
 
 

   
 

 

 Mean density  
 

 
 

 Specific area density  
 

 

 

   
 
 

 Sample 1  
 

 

 20  
 

 
 

 40  
 

 

 

 Sample 2  
 

 

 10  
 

 
 

 20  
 

 

 

 Combined  
 

 

 30  
 

 
 

 60  
 

 

 

   
 
 

 

This table shows the actual number of data points in two samples representative of the 
same population. The specific area density in each sample is twice the mean density even 
though the number of points in each sample is different. When the two samples are 
combined, the combined state space still has the same relative specific area density as 
each of the original state spaces. So it is that when looking at the density of a particular 
volume of space, it is relative density that is most usefully examined. 

 

 
 



 

There are difficulties in determining density just by looking at the number of points in a 
given area, particularly if in some places the given volume only has one data point, or 
even no data points, in it. If enough data points from a representative sample are added, 
eventually any area will have a measurable density. Even a sample of empty space has 
some density represented by the points around it. The density at any position also 
depends on the size and shape of the area that is chosen to sample the density. For many 
purposes this makes it inconvenient to just look at chunks of state space to estimate 
density. 

 

 
 

 

Another way of estimating density is to choose a point, or a position, and estimate the 
distance from there to each of the nearest data points in each dimension. The mean 
distance to neighboring data points serves as a surrogate measurement for density. For 
many purposes this is a more convenient measure since every point and position then 
has a measurable density. The series of illustrations in Figure 6.8 shows this. The 
difficulty, of course, is in determining exactly what constitutes a nearest neighbor, and 
how many to use. 

 

 

 

 

 

 

 
 

 

Figure 6.8  Estimating density: inside a square (a), rotating the same square (b), 
same square moved to an unoccupied area (c), circular area (d), distance to a 
number of neighbors (e), and distance to neighboring points from an empty 
position (f). 

 

   
 
 

 

Figure 6.8(a) shows the density inside a square to be 3. The same square in the same 
location but rotated slightly could change the apparent density, as shown in Figure 6.8(b). 
Figure 6.8(c) shows a square in an unoccupied space, which makes deciding what the 
density is, or what it could be if more points were added, problematic. Using a circular 
area can still have large jumps in density with a small shift in position, as shown in Figure 
6.8(d). Figure 6.8(e) shows that measuring the distance to a number of neighbors gives 
each point a unique density. Even an empty position has a measurable density by finding 
the distances to neighboring points, as shown in Figure 6.8(f). 

 

 



 

 

A better way of estimating density determines a weighted distance from every point in 
state space to every other point. This gives an accurate density measure and produces a 
continuous density gradient for all of space. Determining the nature of any location in 
space uses the characteristics of every point in space, weighted by their distance. This 
method allows every point to “vote” on the characteristics of some selected location in 
space according to how near they are, and thus uses the whole data set. Distant points 
have little influence on the outcome, while closer points have more influence. This works 
well for determining nature and density of a point or location in state space, but it does 
necessitate that any new point added requires recalculation of the entire density structure. 
For highly populated state spaces, this becomes computationally intensive (slow!). 

 

 

 

 6.2.6  Nearby and Distant Nearest Neighbors  
 
 

 

As with many things in life, making a particular set of choices has trade-offs. So it is with 
nearest-neighbor methods. The first compromise requires deciding on the number of 
nearby neighbors to actually look at. Figures 6.8(e) and 6.8(f) illustrate five neighbors 
near to a point or position. Using nearest neighbors to determine the likely behavior of the 
system for some specified location has different needs than using nearest neighbors to 
estimate density. When estimating system behavior, using some number of the closest 
neighbors in state space may provide the best estimate of system behavior. It usually 
does not provide the best estimate of density. 

 

 
 

 

Figure 6.9(a) illustrates why this might be the case. This example shows the use of four 
neighbors. The closest neighbors to the point circled are all on one side of the point. Using 
only these points to estimate density does not reflect the distance to other surrounding 
points. A more intuitive view of density requires finding the nearest neighbors in “all 
directions” (or omnidirectionally) around the chosen point. Having only the very closest 
selected number of points all biased in direction leads to an overestimate of the 
omnidirectional density. 

 

 

 

 

 

 

 
 



 

Figure 6.9  Results of estimating density with nearest neighbors: overestimate 
(a), better estimate by looking for nearest neighbors in specific areas (b), and 
change in estimate by rotating the axes of same specific areas (c). 

 

   
 
 

 

One way around this shortcoming is to divide up the area to be searched, and to find a 
nearest neighbor in each division, as shown in Figure 6.9(b). Still using four neighbors, 
dividing space into quadrants and finding a nearest neighbor in each quadrant leads to a 
better estimate of the omnidirectional density. However, no compromise is perfect. As 
Figure 6.9(c) shows, rotating the axes of the quadrants can significantly change the 
estimated density. 

 

 
 

 

Since “divide and conquer” provides useable estimates of density and serves to identify 
nearest neighbors, the demonstration code uses this both for neighbor estimation and as 
a quick density estimation method. 

 

 

 

 6.2.7  Normalizing Measured Point Separation  
 
 

 

Using normalized values of dimensions facilitates building a unit state space. This has 
some convenient properties. Can distance measured between points be normalized? 
State space size (volume) is proportional to the number of dimensions that constitute the 
space. In a unit state space, the maximum possible separation between points is 
known—the square root of the number of dimensions. Regardless of the number of 
dimensions, no two points can be further separated than this distance. Similarly, no two 
positions can be closer together than having no separation between them. This means 
that the separation between points can be normalized. Any particular separation can be 
expressed as a fraction of the maximum possible separation, which comes out as a 
number between 0 and 1. 

 

 
 

 

Density is not usually usefully expressed as a normalized quantity. Since it is relative 
density that is of interest, density at a point or location is usually expressed relative to the 
mean, or average, density. It is always possible for a particular position to be any number 
of times more or less dense than the average density, say, 10 or 20 times. It is quite 
possible to take the maximum and minimum density values found in a particular state 
space and normalize the range, but is it usually more useful to know the density deviation 
from the mean value. In any case, as more data points are added, the maximum, 
minimum, and mean values will change, requiring recalibration if density is to be 
normalized. However, as discussed above, given a representative sample data set, 
relative density overall will not change with additional data from the same population. 

 

 

 

 6.2.8  Contours, Peaks, and Valleys  
 
 

 
Instead of simply regarding the points in state space as having a particular density, 
imagine that the density value is graduated across the intervening separation. Between a 

 



point of high density and its lower-density neighbor, the density decreases across the 
distance from high value to low. State space can be imagined as being permeated by a 
continuous gradient of density, perhaps going “down” toward the densest areas, and “up” 
toward the least dense areas. This up-and-down orientation conjures up the idea of a 
surface of some sort that represents the expression of the gradient. The surface has high 
points representing areas of least density and low points representing areas of most 
density. The slope of the surface represents the rate of change in density at that position. 

 
 

 

Three-dimensional surfaces of this sort, surfaces such as that of the earth’s, can be 
mapped topographically. Such maps often show lines that are traced over the surface 
marking the positions of a particular constant elevation. Such lines are known as 
contours. Other sorts of contours can be traced, for example, along a ridge between two 
high points, or along the deepest part of a valley between two low points. A density 
surface can also be mapped with a variety of contours analogous to those used on a 
topographic map. 

 

 

 

 6.2.9  Mapping State Space  
 
 

 

Exploring features of the density surface can reveal an enormous amount of useful, even 
vital information. Exploring the density map forms a significant part of the data survey. For 
example, tracing all of the “ridges”—that is, tracing out the contours that wend their way 
through the least densely populated areas of state space—leads to identifying groups of 
natural clusters. Each cluster of points swarms about a point of maximum density. 
Keeping in mind that this map ultimately represents some state of an object in the real 
world, the mapped clusters show the systems’ “preferred” states—or do they? Maybe they 
show evidence of bias in the data collection. Perhaps data about those states was for 
some reason preferentially collected, and they predominate simply because they were the 
easiest to collect. (Chapter 11 covers the practical application of this more fully. Here we 
are just introducing the ideas that will be used later.) 

 

 

 

 6.2.10  Objects in State Space  
 
 

 

Sometimes a more useful metaphor for thinking of the points in state space is as a 
geometric object of some sort, even though when more than three dimensions are used it 
is hard to imagine such an object. Nonetheless, if the points in state space are thought of 
as “corners,” it is possible to join them with the analogs of lines and surfaces. 

 

 
 

 

Three points in a two-dimensional state space could form the corners of a triangle. To 
construct the triangle, the points are simply joined by lines. Similarly, in three-dimensional 
space, points are joined by planes to form three-dimensional figures. 

 

 
 

 

An interesting feature of the object analogy is that, just as with objects in familiar space, 
they can cast “shadows.” In the familiar world, a three-dimensional object illuminated by 
the sun casts a two-dimensional shadow. The shadow represents a more or less distorted 

 



image of the object. So it is in state space that higher-dimensional objects can cast 
lower-dimensional shadows. This ability of objects to cast shadows is one of the features 
used in multidimensional scaling. 

 

 

 6.2.11  Phase Space  
 
 

 

Phase space is identical to state space in almost all respects, with a single exception. 
Phase space is used to represent features of objects or systems other than their state. 
Since a system state is not represented in phase space, the name of the space changes 
to reflect that. The reason to introduce what is essentially an identical sort of space to 
state space is that when numerating alpha values, a space is needed in which to 
represent the distances between the labels. Alpha labels, you will recall, do not represent 
states of the system, but values of a particular variable. In order to numerate alpha labels, 
or in other words to assign them particular numeric values indicating their order and 
spacing, a space has to be created in which the labels can exist. The alpha labels are 
arrayed in this space, each with a particular distance and direction from its neighboring 
labels. Finding the appropriate place to put the labels in phase space is discussed in the 
next section. The point is that when the appropriate positions for the labels are known, 
then the appropriate label values can be found. 

 

 
 

 

The most important point to note here is that the name of the space does not change its 
properties. It simply identifies if the space is used to hold states of a system of variables 
(state space) or some other features (phase space). 

 

 
 

 

Why the name “phase space”? Well, “phase” indicates a relationship between things. 
Electrical engineers are familiar with three-phase alternating-current power. This only 
means that three power pulses occur in a complete cycle, and that they have a specific, 
fixed relationship to each other. As another example, the phases of the moon represent 
specific, and changing, relationships between the earth, moon, and sun. So too with 
phase space. This is an imaginary space, identical in almost all respects to state space, 
except that relationships, or phases, between things are represented. 

 

 

 

 6.2.12  Mapping Alpha Values  
 
 

 
So far, all of the discussion of state space has assumed dimensions that are numerically 
scaled and normalized into the range 0 to 1. Where do alpha values fit in here? 

 

 
 

 

Between any two variables, whether alpha or numeric, there is some sort of relationship. 
As in the height/age example, characterizing the precise nature of the relationship may be 
difficult. In some parts of the range, the variables may allow better or worse inferences 
about how the values relate. Nonetheless, it is the existence of a relationship that allows 
any inferences to be made. Statistically, the variables may be said to be more or less 
independent of each other. If fully independent, it could be said that there is no 
relationship. Actually, it is more accurate to say that when variables are independent, 

 



knowing something about the state of one variable tells nothing about the state of the 
other. There is still a relationship, but it carries no useful information. As an example of 
complete statistical independence, flipping a coin and knowing the result tells you nothing 
whatever about the time at which the flip was made. 

 
 

 

The system of variables that is used to populate state space is exactly that, a system. A 
system has interreacting and interlocking components. The system reflects, more or less, 
the real world, and the world is not a purely random phenomenon. The instance values 
represent snapshots of parts of the system in action. It may be that the system is not well 
understood; indeed, it may be that understanding the system is the whole purpose of the 
data exploration enterprise. Nonetheless, a system is not going to have all of its 
components independent of each other. If all of the components have no relation 
whatsoever to each other, it hardly qualifies as a system! 

 

 
 

 

It is the interrelationship between the alpha values and the system of variables as a whole 
that allows their appropriate numeration. Numeration does not recover the actual values 
appropriate for an alpha variable, even if there are any. It may very well be that there are 
no inherently appropriate actual values. Although cities, for instance, can be ranked (say, 
through an opinion poll) for “quality of life,” placed in order, and separated by an 
appropriate distance along the ranking, there is no absolute number associated with each 
position. The quality-of-life scale might be from 1 to 10, or 1 to 100, or 0 to 1. It could even 
be from 37.275 to 18.462, although that would not be intuitive to humans. What is 
recoverable is the appropriate order and separation. For convenience, the scale for 
recovery is normalized from 0 to 1, which allows them to be conveniently positioned in unit 
state space. 

 

 

 

 6.2.13  Location, Location, Location!  
 
 

 

In real estate, location is all. So too when mapping alphas. The points in state space can 
be mapped. Alpha variables that are in fact associated with the system of variables can 
also be appropriately placed on this map. The values of an alpha variable are labels. The 
numeration method associates each label with some appropriate particular “area” on the 
state space map. (It is an area in two dimensions, a volume in three dimensions, and 
some unnamed analog in more than three. For convenience it is referred to throughout 
this explanation as an “area.”) Discovering the appropriate location of the area is the heart 
of the method; having done this, the problem then is to turn the high-dimensionality 
position into an appropriate number. The techniques for doing that are discussed later in 
this chapter in the section on multidimensional scaling. 

 

 
 

 

The simplest state space that can contain two variables is a two-dimensional state space. 
If one of the variables is numeric and one alpha, the problem of finding an appropriate 
value from multiple numeric dimensions does not exist since there is only a single 
dimension of numeric value (which means only one number) at any location. While a 
single numeric may not provide a particularly robust estimation of appropriate numeration 

 



of alphas, it can provide an easily understood example. 
 

 

 6.2.14  Numerics, Alphas, and the Montreal Canadiens  
 
 

 

Table 6.2 shows a list of the team members on the 1997/1998 roster, together with their 
height and weight. There is an alpha variable present in this data set—“Position.” 
Unfortunately, if used as an example, when finished there is no way to tell if appropriate 
numerical values are assigned since the labels have no inherent ordering. With no 
inherent ordering to compare the recovered values against, the results cannot be 
checked. A convincing first example needs to be able to be checked for accuracy! So, for 
the purpose of explanation, a numerical variable will be labeled with alpha labels. Then, 
when values have been “recovered” for these labels, it is easy to compare the original 
values with those recovered to see if indeed an appropriate ordering and spacing have 
been found. With the underlying principles visible by using an example that numerates 
labels derived from what is actually a numeric variable, we can examine the problem of 
numerating “Position” as a second example. 

 

 

 

 TABLE 6.2 Montreal Canadiens roster in order of player weight.  
 
 

   
 
 

 Position  
 

 

 Num 
 

 
 

 Name  
 

 
 

 Height 
 

 
 

 Weight 
 

 
 

 Code 
 

 
 

 DoB  
 

 
 

 NmHt 
 

 

 

   
 
 

 Defense  
 

 

 34  
 

 

 

 
Peter 
Popovic 

 

 

 

 

 6.5   
 

 

 

 235  
 

 

 

 a  
 

 

 

 10-Feb-68 
 

 

 

 1  
 

 

 

 Defense  
 

 

 38  
 

 

 

 
Vladimir 
Malakhov 

 

 

 

 

 6.3   
 

 

 

 227  
 

 

 

 b  
 

 

 

 30-Aug-68  
 

 

 

 0.759  
 

 

 

 Forward  
 

 

 21  
 

 

 

 
Mick 
Vukota 

 

 

 

 

 6.08  
 

 

 

 225  
 

 

 

 c  
 

 

 

 14-Sep-66  
 

 

 

 0.494  
 

 

 

 Forward  
 

 

 23  
 

 

 

 
Turner 
Stevenson

 

 

 

 

 6.25  
 

 

 

 220  
 

 

 

 d  
 

 

 

 18-May-72 
 

 

 

 0.699  
 

 

 

 Defense  
 

 

 22  
 

 

 

 
Dave 
Manson 

 

 

 

 

 6.17  
 

 

 

 219  
 

 

 

 e  
 

 

 

 27-Jan-67  
 

 

 

 0.602  
 

 

 

 Forward  
 

 

 24  
 

 

 

 
Scott 
Thornton 

 

 

 

 

 6.25  
 

 

 

 219  
 

 

 

 e  
 

 

 

 9-Jan-71  
 

 

 

 0.699  
 

 

 

 Forward  
 

 

 44  
 

 
 

 Jonas  
 

 

 6.25  
 

 
 

 215  
 

 
 

 f  
 

 
 

 29-Aug-72  
 

 
 

 0.699  
 

 



Hoglund 
 

 

 Defense  
 

 

 5  
 

 

 

 
Stephane 
Quintal 

 

 

 

 

 6.25  
 

 

 

 215  
 

 

 

 f  
 

 

 

 22-Oct-68  
 

 

 

 0.699  
 

 

 

 Defense  
 

 

 33  
 

 

 

 
Zarley 
Zalapski 

 

 

 

 

 6.08  
 

 

 

 215  
 

 

 

 f  
 

 

 

 22-Apr-68  
 

 

 

 0.494  
 

 

 

 Forward  
 

 

 37  
 

 

 

 
Patrick 
Poulin 

 

 

 

 

 6.08  
 

 

 

 210  
 

 

 

 g  
 

 

 

 23-Apr-73  
 

 

 

 0.494  
 

 

 

 Reserve  
 

 

 55  
 

 

 

 
Igor 
Ulanov 

 

 

 

 

 6.08  
 

 

 

 205  
 

 

 

 h  
 

 

 

 1-Oct-69  
 

 

 

 0.494  
 

 

 

 Forward  
 

 

 26  
  

 

 Martin  

 

 Rucinsky 
 

 

 

 6.08  
  

 

 205  
  

 

 h  
  

 

 11-Mar-71 
  

 

 0.494  
  

 

 Defense  
 

 

 43  
 

 

 

 
Patrice 
Brisebois 

 

 

 

 

 6.17  
 

 

 

 204  
 

 

 

 j  
 

 

 

 27-Jan-71  
 

 

 

 0.602  
 

 

 

 Forward  
 

 

 28  
 

 

 

 
Marc 
Bureau 

 

 

 

 

 6.08  
 

 

 

 202  
 

 

 

 k  
 

 

 

 19-May-66 
 

 

 

 0.494  
 

 

 

 Forward  
 

 

 27  
 

 

 

 
Shayne 
Corson 

 

 

 

 

 6.08  
 

 

 

 199  
 

 

 

 m  
 

 

 

 13-Aug-66  
 

 

 

 0.494  
 

 

 

 Defense  
 

 

 52  
 

 

 

 
Craig 
Rivet 

 

 

 

 

 6.17  
 

 

 

 195  
 

 

 

 n  
 

 

 

 13-Sep-74  
 

 

 

 0.602  
 

 

 

 Forward  
 

 

 17  
 

 

 

 
Benoit 
Brunet 

 

 

 

 

 6     
 

 

 

 194  
 

 

 

 p  
 

 

 

 24-Aug-68  
 

 

 

 0.398  
 

 

 

 Forward  
 

 

 49  
 

 

 

 
Brian 
Savage 

 

 

 

 

 6.08  
 

 

 

 191  
 

 

 

 q  
 

 

 

 24-Feb-71 
 

 

 

 0.494  
 

 

 

 Forward  
 

 

 25  
 

 

 

 
Vincent 
Damphousse 

 

 

 

 

 6.08  
 

 

 

 191  
 

 

 

 q  
 

 

 

 17-Dec-67  
 

 

 

 0.494  
 

 

 

 Forward  
 

 

 71  
 

 

 

 
Sebastien 
Bordeleau

 

 

 

 

 5.92  
 

 

 

 188  
 

 

 

 r  
 

 

 

 15-Feb-75 
 

 

 

 0.301  
 

 

 

 Forward  
 

 

 15  
 

 

 

 
Eric 
Houde 

 

 

 

 

 5.83  
 

 

 

 186  
 

 

 

 s  
 

 

 

 19-Dec-76  
 

 

 

 0.193  
 

 



 

 Forward  
 

 

 8  
 

 

 

 
Mark 
Recchi 

 

 

 

 

 5.83  
 

 

 

 185  
 

 

 

 t  
 

 

 

 1-Feb-68  
 

 

 

 0.193  
 

 

 

 Defense  
 

 

 29  
 

 

 

 
Brett 
Clark 

 

 

 

 

 6     
 

 

 

 182  
 

 

 

 u  
 

 

 

 23-Dec-76  
 

 

 

 0.398  
 

 

 

 Reserve  
 

 

 11  
 

 

 

 
Saku 
Koivu 

 

 

 

 

 5.83  
 

 

 

 182  
 

 

 

 u  
 

 

 

 23-Nov-74 
 

 

 

 0.193  
 

 

 

 Goal  
 

 

 35  
 

 

 

 
Andy 
Moog 

 

 

 

 

 5.67  
 

 

 

 177  
 

 

 

 v  
 

 

 

 18-Feb-60 
 

 

 

 0  
 

 

 

 Goal  
 

 

 41  
 

 

 

 
Jocelyn 
Thibault 

 

 

 

 

 5.92  
 

 

 

 170  
 

 

 

 w  
 

 

 

 12-Jan-75  
 

 

 

 0.301  
 

 

 

   
 

 

 Example 1—A Weighty Problem  
 
 

 

For the convenience of the example, the weights of the athletes are labeled from “a” 
through “w,” missing out those letters that might be confused with numbers like “l” and “o.” 
To make it easier to see what is happening, “a” represents the heaviest weight and “w” the 
lightest. The labels could have been assigned arbitrarily; the ordering only helps to show 
what is happening. (Note: It causes a problem to assign numeric values to alpha labels 
arbitrarily, not vice versa. Alpha labels are, by nature, arbitrary.) The numeric variable 
used in this example will be “Height.” To see how well the normalized weights can be 
recovered from alpha labels, the weight will be converted to an alpha value. The actual 
weights can be compared with the recovered values to determine if the method was 
effective. 

 

 
 

 

Table 6.2 shows the names, heights, and weights of the athletes. The heights, the 
numeric variable in this example, are shown in feet and decimal fractions of a foot. In 
order to construct a unit state space, height has to be normalized, and this is also shown. 
Next are the weights in pounds and their associated labels. Since some of the athletes 
weigh the same amount, these weights are assigned identical labels. 

 

 
 

 

The athletes’ heights form a one-dimensional state space, which can be easily 
represented by an ordered list such as the one in Table 6.3. The column on the left shows 
the ordered, normalized heights for each athlete, and the right-hand column shows the 
alpha (weight) labels. Some of the labels appear more than once for those athletes having 
similar weights. When “projecting” the height values onto the weight labels, since there is 
only a single numeric dimension, the values of most of the labels are simply the 
normalized height values. Where there are multiple occurrences of labels, the average of 

 



the normalized values is taken. Table 6.4 shows this. 
 

 

 
TABLE 6.3  Normalized heights and weight code. Some codes, 
such as “f,” are duplicated. 

 

 
 

   
 
 

 NmHt  
 

 

 WC  
 

 

 

   
 
 

 1      
 

 

 a  
 

 

 

 0.759  
 

 

 b  
 

 

 

 0.699  
 

 

 d  
 

 

 

 0.699  
 

 

 e  
 

 

 

 0.699  
 

 

 f  
 

 

 

 0.699  
 

 

 f  
 

 

 

 0.602  
 

 

 e  
 

 

 

 0.602  
 

 

 j  
 

 

 

 0.602  
 

 

 n  
 

 

 

 0.494  
 

 

 c  
 

 

 

 0.494  
 

 

 f  
 

 

 

 0.494  
 

 

 g  
 

 

 

 0.494  
 

 

 h  
 

 

 

 0.494  
 

 

 h  
 

 

 

 0.494  
 

 

 k  
 

 

 

 0.494  
 

 

 m  
 

 

 

 0.494  
 

 

 q  
 

 



 

 0.494  
 

 

 q  
 

 

 

 0.398  
 

 

 p  
 

 

 

 0.398  
 

 

 u  
 

 

 

 0.301  
 

 

 r  
 

 

 

 0.301  
 

 

 w  
 

 

 

 0.193  
 

 

 s  
 

 

 

 0.193  
 

 

 t  
 

 

 

 0.193  
 

 

 u  
 

 

 

 0      
 

 

 v  
 

 

 

   
 

 

 TABLE 6.4  Values of the weight codes.  
 
 

   
 
 

 Weight code  
 

 

 Code numeration  
 

 

 

   
 
 

 a  
 

 

 1     
 

 

 

 b  
 

 

 0.76  
 

 

 

 c  
 

 

 0.49  
 

 

 

 d  
 

 

 0.7   
 

 

 

 e  
 

 

 0.65  
 

 

 

 f  
 

 

 0.7   
 

 

 

 g  
 

 

 0.49  
 

 

 

 h  
 

 

 0.49  
 

 



 

 j  
 

 

 0.6   
 

 

 

 k  
 

 

 0.49  
 

 

 

 m  
 

 

 0.49  
 

 

 

 n  
 

 

 0.6   
 

 

 

 p  
 

 

 0.4   
 

 

 

 q  
 

 

 0.49  
 

 

 

 r  
 

 

 0.3   
 

 

 

 s  
 

 

 0.19  
 

 

 

 t  
 

 

 0.4   
 

 

 

 u  
 

 

 0.19  
 

 

 

 v  
 

 

 0     
 

 

 

 w  
 

 

 0.3   
 

 

 

   
 
 

 

Since this simple example has only a single numeric dimension, the appropriate values 
are simply the single-dimensional representation in the table. Multidimensional examples 
are reduced using the multidimensional scaling techniques discussed later. Note that this 
example does not say that the weight labels are assigned the height values. It says 
instead that the appropriate normalized numeric value for a weight label is the matching 
normalized height value. (True in this case because there is only a single numeric variable 
in the system.) 

 

 
 

 

Does this work? Figure 6.10 shows a graph of the actual normalized weights and the 
“recovered” normalized values for the labels. The fit is quite good. The correlation 
coefficient is about 0.85, where 0 indicates no predictive relationship at all, and 1 indicates 
a perfectly predictive relationship. Since this is a very small sample on only one numeric 
variable, this is a reasonable fit. It certainly isn’t perfect, but it provides a reasonable and 
useful recovery of the appropriate weight label values and intervals. Naturally, with a 
larger sample, and with a true system of variables to draw upon, better mappings of 
numerating alpha values can be achieved. 

 

 

 



 

 

 

 
 

 

Figure 6.10  Plot of actual weights for Montreal Canadiens versus “recovered” 
weights. The fit is moderately good, correlation 0.85, certainly better than arbitrary 
assignment of numbers to the labels. 

 

   
 

 

 Example 2—Player Position  
 
 

 

The variable “Position” is inherently an alpha variable. That is to say, it has no apparent 
inherent numeric valuation. It is exactly this sort of variable that requires appropriate 
numeration, and it is for these types of variables that numeration techniques are needed. 

 

 
 

 
For ease of explanation, the variable “Position” will be numerated on a two-dimensional 
state space built from the normalized values of “Height” and “Weight.” 

 

 
 

 

Plotting all of the height/weight positions shown in Table 6.5 in the state space shows the 
pattern, or “shape,” that each of the “Positions” makes. These positions are shown in 
Figure 6.11. Each of these shapes is summarized by finding its “center.” There are 
several ways of finding a pattern’s central location. One easy method is to find the 
average (mean) of the values of each label for each dimension. 

 

 

 

 
TABLE 6.5  Position, normalized heights, and normalized weights for Montreal 
Canadiens. 

 

 
 

   
 
 

 Position  
 

 

 Height 
 

 
 

 Weight 
 

 
 

   
 

 
 

 Position  
 

 
 

 Height  
 

 
 

 Weight  
 

 

 

   
 
 

 Defense  
 

 

 1.0000  
 

 
 

 1.0000  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.4940  
 

 
 

 0.5385  
 

 

 

 Defense  
 

 

 0.7590  
 

 
 

 0.8769  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.4940  
 

 
 

 0.4923  
 

 



 

 Forward  
 

 

 0.6988  
 

 
 

 0.7692  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.4940  
 

 
 

 0.4462  
 

 

 

 Forward  
 

 

 0.6988  
 

 
 

 0.7538  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.4940  
 

 
 

 0.3231  
 

 

 

 Forward  
 

 

 0.6988  
 

 
 

 0.6923  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.4940  
 

 
 

 0.3231  
 

 

 

 Defense  
 

 

 0.6988  
 

 
 

 0.6923  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.3976  
 

 
 

 0.3692  
 

 

 

 Defense  
 

 

 0.6024  
 

 
 

 0.7538  
 

 
 

   
 

 
 

 Defense 
 

 
 

 0.3976  
 

 
 

 0.1846  
 

 

 

 Defense  
 

 

 0.6024  
 

 
 

 0.5231  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.3012  
 

 
 

 0.2769  
 

 

 

 Defense  
 

 

 0.6024  
 

 
 

 0.3846  
 

 
 

   
 

 
 

 Goal  
 

 
 

 0.3012  
 

 
 

 0.0000  
 

 

 

 Forward  
 

 

 0.4940  
 

 
 

 0.8462  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.1928  
 

 
 

 0.2462  
 

 

 

 Defense  
 

 

 0.4940  
 

 
 

 0.6923  
 

 
 

   
 

 
 

 Forward  
 

 
 

 0.1928  
 

 
 

 0.2308  
 

 

 

 Forward  
 

 

 0.4940  
 

 
 

 0.6154  
 

 
 

   
 

 
 

 Reserve 
 

 
 

 0.1928  
 

 
 

 0.1846  
 

 

 

 Reserve  
 

 

 0.4940  
 

 
 

 0.5385  
 

 
 

   
 

 
 

 Goal  
 

 
 

 0.0000  
 

 
 

 0.1077  
 

 

 

   
 

 

 

 

 

 
 

 

Figure 6.11  The normalized values of height and weight for each player are 
plotted in 2D state space. Each position type is identified. Taking the values for 
each alpha label type together, their outline covers an area of state space. 

 

   
 
 

 Using the Shape centers from Table 6.6, which are the central positions for each value  



(label) of the variable “Position,” the variable Shape can be laid over the state space. The 
centers and Shape are shown in Figure 6.12. The Shape in this figure seems to be close 
to a straight line. Still, the points do not fall exactly on a straight line, and converting this 
Shape into normalized values is discussed in the section about multidimensional scaling, 
later in this chapter. The Shape discovered in state space is taken, placed into, and 
manipulated in a separate phase space. 

 

 

 TABLE 6.6  “Center” (mean) of each Position label.  
 
 

   
 
 

 Position  
 

 

 Height  
 

 
 

 Weight  
 

 

 

   
 
 

 Defense  
 

 

 0.6446  
 

 
 

 0.6385  
 

 

 

 Forward  
 

 

 0.4742  
 

 
 

 0.4945  
 

 

 

 Reserve  
 

 

 0.3434  
 

 
 

 0.3615  
 

 

 

 Goal  
 

 

 0.1506  
 

 
 

 0.0538  
 

 

 

   
 

 

 

 

 

 
 

 

Figure 6.12  The “centers” (mean values on both dimensions) of each set of label 
values are located in state space. Joining the points makes a “shape.” Here the 
shape is nearly straight line. 

 

   
 
 

 In this case the labels do nearly fall on a straight line. As this is the case, numerating the 



alpha labels can be imagined as starting with one end of the line as “0,” say with “Goal” near 
the zero point, and setting the other end of the line, at “Defense,” to “1.” The intervening 
values are set in proportion. From looking at the state space map, it seems about right to set 
the value of “Reserve” to about 0.4 and “Forward” to about 0.6. Usually, however, Shapes 
are not much like a straight line. Also, in higher dimensionalities, finding the appropriate 
ordering is more difficult. 

 

 
6.3  Joint Distribution Tables  
 
 

 

A different sort of problem arises if there is no numeric variable present. When there is at 
least one numeric variable present, it is used to set an order and spacing for the alpha 
variables. Without a numeric variable present, there is nothing to “calibrate” the alpha 
variables against. The problem is how to find any sort of logical ordering revealed by the 
relationships between the alpha values. The solution comes in steps. The first is to 
discover how the alpha values of one variable relate to the alpha values of another 
variable, or variables. A useful way to begin this discovery is by using a joint frequency, or 
joint distribution, table. 

 

 

 

 6.3.1  Two-Way Tables  
 
 

 

A two-way table shows the joint frequency listing of alpha values between two variables. 
As an illustration we will return to the Montreal Canadiens. This time both height and 
weight will be turned into categorical values, and from these values a two-way joint 
frequency table is constructed. For ease of explanation, the heights are categorized as 
“tall,” “average,” and “short.” The weights are categorized as “heavy,” “medium,” and 
“light.” The categories are abbreviated “T,” “A,” “S,” and “H,” “M,” “L,” respectively. 

 

 
 

 
The category boundaries are set to divide weight and height into three approximately 
equally sized categories as shown in Tables 6.7 and 6.8. 

 

 

 

 TABLE 6.7  Height category division criteria.  
 
 

   
 
 

 Height  
 

 

 Category  
 

 

 

   
 
 

 x6.22  
 

 

 T  
 

 

 

 x5.94 and x6.22  
 

 

 A  
 

 

 

 x5.94  
 

 

 S  
 

 

 



   
 

 

 TABLE 6.8  Weight category division criteria.  
 
 

   
 
 

 Weight  
 

 

 Category  
 

 

 

   
 
 

 x213.33  
 

 

 H  
 

 

 

 x191.66 and x213.33  
 

 

 M  
 

 

 

 x191.66  
 

 

 L  
 

 

 

   
 
 

 

These three categories, or alpha labels, generate a two-way table with nine entries, one 
for each combination of labels. The categories for each player are shown in Table 6.9, 
and the cross-tabulation table is shown in Table 6.10. Figure 6.13 illustrates the 
distribution graphically. 

 

 

 

 
TABLE 6.9  Players’ names, actual height, normalized height, weights, and 
categories. 

 

 
 

   
 
 

 Name  
 

 

 Height  
 

 
 

 NmHt  
 

 
 

 Wt  
 

 
 

 CatHt  
 

 
 

 CatWt  
 

 

 

   
 
 

 Peter Popovic  
 

 

 6.5   
 

 
 

 1         
 

 
 

 235  
 

 
 

 T  
 

 
 

 H  
 

 

 

 Vladimir Malakhov  
 

 

 6.3   
 

 
 

 0.759036  
 

 
 

 227  
 

 
 

 T  
 

 
 

 H  
 

 

 

 Turner Stevenson  
 

 

 6.25  
 

 
 

 0.698795  
 

 
 

 220  
 

 
 

 T  
 

 
 

 H  
 

 

 

 Scott Thornton  
 

 

 6.25  
 

 
 

 0.698795  
 

 
 

 219  
 

 
 

 T  
 

 
 

 H  
 

 

 

 Jonas Hoglund  
 

 

 6.25  
 

 
 

 0.698795  
 

 
 

 215  
 

 
 

 T  
 

 
 

 H  
 

 

 

 Stephane Quintal  
 

 

 6.25  
 

 
 

 0.698795  
 

 
 

 215  
 

 
 

 T  
 

 
 

 H  
 

 

           



 Dave Manson  
 

 6.17  
 

 0.60241   
 

 219  
 

 A  
 

 H  
 

 

 Patrice Brisebois  
 

 

 6.17  
 

 
 

 0.60241   
 

 
 

 204  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Craig Rivet  
 

 

 6.17  
 

 
 

 0.60241   
 

 
 

 195  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Mick Vukota  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 225  
 

 
 

 A  
 

 
 

 H  
 

 

 

 Zarley Zalapski  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 215  
 

 
 

 A  
 

 
 

 H  
 

 

 

 Patrick Poulin  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 210  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Martin Rucinsky  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 205  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Igor Ulanov  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 205  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Marc Bureau  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 202  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Shayne Corson  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 199  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Vincent Damphousse  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 191  
 

 
 

 A  
 

 
 

 L  
 

 

 

 Brian Savage  
 

 

 6.08  
 

 
 

 0.493976  
 

 
 

 191  
 

 
 

 A  
 

 
 

 L  
 

 

 

 Benoit Brunet  
 

 

 6     
 

 
 

 0.39759   
 

 
 

 194  
 

 
 

 A  
 

 
 

 M  
 

 

 

 Brett Clark  
 

 

 6     
 

 
 

 0.39759   
 

 
 

 182  
 

 
 

 A  
 

 
 

 L  
 

 

 

 Sebastien Bordeleau  
 

 

 5.92  
 

 
 

 0.301205  
 

 
 

 188  
 

 
 

 S  
 

 
 

 L  
 

 

 

 Jocelyn Thibault  
 

 

 5.92  
 

 
 

 0.301205  
 

 
 

 170  
 

 
 

 S  
 

 
 

 L  
 

 

 

 Eric Houde  
 

 

 5.83  
 

 
 

 0.192771  
 

 
 

 186  
 

 
 

 S  
 

 
 

 L  
 

 

 

 Mark Recchi  
 

 

 5.83  
 

 
 

 0.192771  
 

 
 

 185  
 

 
 

 S  
 

 
 

 L  
 

 

 

 Saku Koivu  
 

 

 5.83  
 

 
 

 0.192771  
 

 
 

 182  
 

 
 

 S  
 

 
 

 L  
 

 

 

 Andy Moog  
 

 

 5.67  
 

 
 

 0         
 

 
 

 177  
 

 
 

 S  
 

 
 

 L  
 

 

 

   
 

 

 TABLE 6.10  Cross-tabulation.  
 
 



   
 
 

   
 

 

 H  
 

 
 

 M  
 

 
 

 L  
 

 
 

 Total  
 

 

 

   
 
 

 T  
 

 

 6  
 

 
 

 0  
 

 
 

 0  
 

 
 

 6  
 

 

 

 A  
 

 

 3  
 

 
 

 8  
 

 
 

 3  
 

 
 

 14  
 

 

 

 S  
 

 

 0  
 

 
 

 0  
 

 
 

 6  
 

 
 

 6  
 

 

 

 Total  
 

 

 9  
 

 
 

 8  
 

 
 

 9  
 

 
 

 26  
 

 

 

   
 

 

 

 

 

 
 

 
Figure 6.13  Bivariate histogram showing the joint distributions of the categories 
for weight and height of the Canadiens. 

 

   
 
 

 
Notice that some of the categories overlap each other. It is these overlaps that allow an 
appropriate ordering for the categories to be discovered. 

 

 
 

 

In this example, since the meaning of the labels is known, the ordering may appear 
intuitive. However, since the labels are arbitrary, and applied meaningfully only for ease in 
the example, they can be validly restated. Table 6.11 shows the same information as in 
Table 6.10, but with different labels, and reordered. Is it now intuitively easy to see what 
the ordering should be? 

 

 

 

 TABLE 6.11  Restated cross-tabulation.  
 
 



   
 
 

   
 

 

 A  
 

 
 

 B  
 

 
 

 C  
 

 
 

 Total  
 

 

 

   
 
 

 X  
 

 

 3  
 

 
 

 3  
 

 
 

 8  
 

 
 

 14  
 

 

 

 Y  
 

 

 0  
 

 
 

 6  
 

 
 

 0  
 

 
 

 6  
 

 

 

 Z  
 

 

 6  
 

 
 

 0  
 

 
 

 0  
 

 
 

 6  
 

 

 

 Total  
 

 

 9  
 

 
 

 9  
 

 
 

 8  
 

 
 

 26  
 

 

 

   
 
 

 

Table 6.11 contains exactly the same information as Table 6.10, but has made intuitive 
ordering difficult or impossible. It is possible to use this information to reconstruct an 
appropriate ordering, albeit not intuitively. For ease of understanding the previous labeling 
system is used, although the actual labels used, so long as consistently applied, are not 
important to recovering an ordering. 

 

 
 

 
Restating the cross-tabulation of Table 6.10 in a different form shows how this recovery 
begins. Table 6.12 lists the number of players in each of the possible categories. 

 

 

 

 TABLE 6.12  Category/count tabulation.  
 
 

   
 
 

 Weight  
 

 

 Height  
 

 
 

 Count  
 

 

 

   
 
 

 H  
 

 

 T  
 

 
 

 6  
 

 

 

 H  
 

 

 A  
 

 
 

 3  
 

 

 

 H  
 

 

 S  
 

 
 

 0  
 

 

 

 M  
 

 

 T  
 

 
 

 0  
 

 

 

 M  
 

 

 A  
 

 
 

 8  
 

 

 

 M  
 

 

 S  
 

 
 

 0  
 

 



 

 L  
 

 

 T  
 

 
 

 0  
 

 

 

 L  
 

 

 A  
 

 
 

 3  
 

 

 

 L  
 

 

 S  
 

 
 

 6  
 

 

 

   
 
 

 

The information in Table 6.12 represents a sort of jigsaw puzzle. Although in this example 
the categories in all of the tables are shown appropriately ordered to clarify explanation, 
the real situation is that the ordering is unknown and that needs to be discovered. What is 
known are the various frequencies for each of the category couplings, which are pairings 
here as there are only two variables. From these, the shape of the jigsaw pieces can be 
discovered. 

 

 
 

 

Figure 6.14(a) shows the pieces that correspond to Weight = “H.” Altogether there are 
nine players with weight “H.” Six of them have height “T,” three of them have height “A,” 
and none of them have height “S.” Of the three possible pieces corresponding to H/T, 
H/A, and H/S, only the first two have any players in them. The figure shows the two 
pieces. Inside each box is a symbol indicating the label and how many players are 
accounted for. If the symbols are in brackets, it indicates that only part of the total number 
of players in the class are accounted for. Thus in the left-hand box, the top (6H) refers to 
six of the players with label “H,” and there remain other players with label “H” not 
accounted for. The lower 6T refers to all six players with height label “T.” The dotted lines 
at each end of the incomplete classes indicate that they need to be joined to other pieces 
containing members of the same class, that is, possessing the same label. The dotted 
lines are at each end because they could be joined together at either end. Similar pieces 
can be constructed for all of the label classes. These two example pieces can be joined 
together to form the piece shown in Figure 6.14(b). 

 

 

 

 

 

 

 



 

 

Figure 6.14  Shapes for all players with weight = “H” (a), two possible assembled 
shapes for the 9H/6T/3A categories (b), shapes created for each of the category 
combinations (c), fitting the pieces together recovers an appropriate ordering (d), 
and showing a straight-forward way of finding a numeration of each variable’s 
three segments (e). 

 

   
 
 

 

Figure 6.14(b) shows the shape of the piece for all players with Weight = “H.” This is built 
from the two pieces in Figure 6.14(a). There are nine players with weight “H.” Of these, six 
have height “T” and three have height “A.” The appropriate jigsaw piece can be 
assembled in two ways; the overlapping “T” and “A” can be moved. Since the nine “H” 
(heavy) players cover all of the “T” (tall) players, the “H” and “T” parts are shown drawn 
solidly. The three “A” are left as part of some other pairing, and shown dotted. Similar 
shapes can be generated for the other category pairings. Figure 6.14(c) shows those. 

 

 
 

 

For convenience, Figure 6.14(c) shows the pieces in position to fit together. In fact, the 
top and bottom sections can slide over each other to appropriate positions. Fitting them 
together so that the matching pieces adjoin can only be completed in two ways. Both are 
identical except that in one “H” and “T” are on the left, with “S” and “L” on the right. The 
other configuration is a mirror image. 

 

 
 

 

Fitting the pieces together reveals the appropriate order for the values to be placed in 
relation to each other. This is shown in Figure 6.14(d). Which end corresponds to “0” and 
which to “1” on a normalized scale is not possible to determine. Since in the example 
there are only three values in each variable, numerating them is straightforward. The 
values are assigned in the normalized range of 0–1, and values are assigned as shown in 
Figure 6.14(e). 

 

 
 

 

Having made an arbitrary decision to assign the value 0 to “H” and “T,” the actual 
numerical relationship in this example is now inverted. This means that larger values of 
weight and height are estimated as lower normalized values. The relationship remains 
intact but the numbers go in the “wrong” direction. Does this matter? Not really. For 
modeling purposes it is finding and keeping appropriate relationships that is paramount. If 
it ever becomes possible to anchor the estimated values to the real world, the accuracy of 
the predictions of real-world values is unaffected by the direction of increase in the 
estimates. If the real-world values remain unknown, then, when numeric predictions are 
made by the final model, they will be converted back into their appropriate alpha value, 
which is internally consistent within the model. The alpha value predictions will be 
unaffected by the internal numerical representation used by the model. 

 

 
 

 

Although very simplified, how well does this numeration of the alpha values work? For 
convenience Table 6.13 shows the normalized weights and normalized heights with the 
estimated valves uninverted. This makes comparison easier. 

 

 



 

 TABLE 6.13  Comparison of recovered values with normalized values.  
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6.3.2  More Values, More Variables, and Meaning of the 
Numeration 

 

 
 

 

The Montreal Canadiens example is very highly simplified. It has a very small number of 
instance values and only three alpha values in each variable. In any practically modelable 
data set, there are always far more instances of data available and usually far more 
variables and alpha labels to be considered. The numeration process continues using 
exactly the same principles as just described. With more data and more variables, the 
increased interaction between the variables allows finer discrimination of values to be 
made. 

 

 
 

 

What has using this method achieved? Only discovering an appropriate order in which to 
place the alpha values. While the ordering is very important, the appropriate distance 
between the values has not yet been discovered. In other words, we can, from the 
example, determine the appropriate order for the labels of height and weight. We cannot 
yet determine if the difference between, say, “H” and “M” is greater or less than the 
difference between “M” and “L.” This is true in spite of the fact that “H” is assigned a value 
of 1, “M” of 0.5, and “L” of 0. At this juncture, no more can be inferred from the assignment 
H = 1, M = 0.5, L = 0 than could be inferred from H = 1, M = 0.99, L = 0, or H = 1, M = 0.01, 
L = 0. 

 

 
 

 

Something can be inferred about the values between variables. Namely, when normalized 
values are being used, both “H” and “T” should have about the same value, and “M” and 
“A” should have about the same value, as should “L” and “S.” This does not suggest that 

 



they share similar values in the real world, only that a consistent internal representation 
requires maintenance of the pattern of the relationship between them. 

 
 

 

Even though the alpha labels are numerically ordered, it is only the ordering that has 
significance, not the value itself. It is sometimes possible to recover information about the 
appropriate separation of values in entirely alpha data sets. However, this is not always 
the case, as it is entirely possible that there is no meaningful separation between values. 
That is the inherent nature of alpha values. Steps toward recovering appropriate 
separation of values in entirely alpha data sets, if indeed such meaningful separation 
exists, are discussed in the next chapter dealing with normalizing and redistributing 
variables. 

 

 

 

 
6.3.3  Dealing with Low-Frequency Alpha Labels and Other 
Problems 

 

 
 

 

The joint frequency method of finding appropriate numerical labels for alpha values can 
only succeed when there is a sufficient and rich overlap of joint distributions. This is not 
always the case for all variables in all data sets. In any real-world data set, there is always
enough richness of interaction among some of the variables that it is possible to numerate 
them using the joint frequency table approach. However, it is by no means always the 
case that the joint frequency distribution table is well enough populated to allow this 
method to work for all variables. In a very large data set, some of the cells, similar to those 
illustrated in Figure 6.13, are simply empty. How then to find a suitable numerical 
representation for those variables? 

 

 
 

 

The answer lies in the fact that it is always possible to numerate some of the variables using 
this method. When such variables have been numerated, then they can be put into a 
numerical form of representation. With such a representation available in the data set, it 
becomes possible to numerate the remaining variables using the method discussed in the 
previous section dealing with state space. The alpha variables amenable to numeration 
using the joint frequency table approach are numerated. Then, constructing the manifold in 
state space using the numerated variables, values for the remaining variable instance values 
can be found. 

 

 
6.4  Dimensionality  
 
 

 

The preceding two parts of this chapter discussed finding an appropriate numerical 
representation for an alpha label value. In most cases, the discovered numeric 
representation, as so far discussed, is as a location on a manifold in state or phase space. 
This representation of the value has to be described as a position in phase space, which 
takes as many numbers as there are dimensions. In a 200-dimensional space, it would 
take a string of 200 numbers to indicate the value “gender = F,” and another similar string, 
with different values, to indicate “gender = M.” While this is a valid representation of the 
alpha values, it is hopelessly impractical and totally intractable to model. Adding 200 

 



additional dimensions to the model simply to represent gender is impossible to deal with 
practically. The number of dimensions for alpha representation has to be reduced, and 
the method used is based on the principles of multidimensional scaling. 

 
 

 

This explanation will use a metaphor different from that of a manifold for the points in 
phase space. Instead of using density to conjure up the image of a surface, each point will 
be regarded as being at the “corner” of a shape. Each line that can be drawn from point to 
point is regarded as an “edge” of a figure existing in space. An example is a triangle. The 
position of three points in space can be joined with lines, and the three points define the 
shape, size, and properties of the triangle. 

 

 

 

 6.4.1  Multidimensional Scaling  
 
 

 

MDS is used specifically to “project” high-dimensionality objects into a lower-dimensional 
space, losing as little information as possible in the process. The key idea is that there is 
some inherent dimensionality of a representation. While the representation is made in 
more dimensions than is needed, not much information is lost. Forcing the representation 
into less dimensions than are “natural” for the representation does cause significant loss, 
producing “stress.” MDS aims at minimizing this stress, while also minimizing the number 
of dimensions the representation needs. As an example of how this is done, we will 
attempt to represent a triangle in one dimension—and see what happens. 

 

 

 

 6.4.2  Squashing a Triangle  
 
 

 

A triangle is inherently a 2D object. It can be defined by three points in a state or phase 
space. All of the triangular points lie in a plane, which is a 2D surface. When represented 
in three dimensions, such as when printed on the page of this book, the triangle has some 
minute thickness. However, for practical purposes we ignore the thickness that is actually 
present and pretend that the triangle is really 2D. That is to say, mentally we can project 
the 3D representation of a triangle into two dimensions with very little loss of information. 
We do lose information about the actual triangle, say the thickness of the ink, since there 
is no thickness in two dimensions. Also lost is information about the actual flatness, or 
roughness, of the surface of the paper. 

 

 
 

 

Since paper cannot be exactly flat in the real world, the printed lines of the triangle are 
minutely longer than they would be if the paper were exactly flat. To span the miniature 
hills and valleys on the paper’s surface, the line deviates ever so minutely from the 
shortest path between the two points. This may add, say, one-thousandth of one percent 
to the entire length of the line. This one-thousandth of one percent change in length of the 
line when the triangle is projected into 2D space is a measure of the stress, or loss of 
information, that occurs in projecting a triangle from three to two dimensions. But what 
happens if we try to project a triangle into one dimension? Can it even be done? 

 

 
 

 Figure 6.15 shows, in part, two right-angled triangles that are identical except for their  



orientation. The key feature of the triangles is the spacing between the points defining the 
vertices, or “corners.” This information, or as much of it as possible, needs to be 
preserved if anything meaningful is to be retained about the triangle. 

 

 

 

 

 

 
 

 

Figure 6.15  The triangle on the left undergoes more change than the triangle on 
the right when projected into one dimension. Stress, as measured by the change 
in perimeter, is 33.3% for the triangle on the left, but only 16.7% for the triangle on 
the right. 

 

   
 
 

 

To project a triangle from three to two dimensions, imagine that the 3D triangle is held up 
to an infinitely distant light that casts a 2D shadow of the triangle. This approach is taken 
with the triangles in Figure 6.15 when projecting them into one dimension. 

 

 
 

 

Looking at the orientation 1 triangle on the left, the three points a, b, and c cast their 
shadows on the 1D line below. Each point is projected directly to the point beneath. When 
this is done, point a is alone on the left, and points b and c are directly on top of each 
other. What of the original relationship is preserved here? 

 

 
 

 

The original distance between points a and c was 5. The projected distance between the 
same points, when on the line, becomes 4. This 5 to 4 change in length means that it is 
reduced to 4/5 of its original length, or by 1/5, which equals 20%. This 20% distortion in 
the distance between points a and c represents the stress on this distance that has 
occurred as a result of the projection. 

 

 
 

 

Each of the distances undergoes some distortion. The largest change is c to b in going 
from length 3 to length 0. This amount of change, 3 out of 3 units, represents a 100% 
distortion. On the other hand, length a to b experiences a 0% distortion—no difference in 
length before and after projection. 

 

 
 

 The original “perimeter,” the total distance around the “outside” of the figure was  
 



 

 a to b = 4  
 
 

 b to c = 3  
 
 

 c to a = 5  
 
 

 for a total of 12. The perimeter when projected into the 1D line is  
 
 

 a to b = 4  
 
 

 b to c = 0  
 
 

 c to a = 4  
 
 

 for a total of 8.  
 
 

 
So the change in perimeter length for this projection is 4, which is the difference of the 
before-projection total of 12 and the after-projection total of 8. 

 

 
 

 
The overall stress here, then, is determined by the total amount of change in perimeter 
length that happened due to the projection: 

 

 
 

 change in length = 4  
 
 

 original length = 12  
 
 

 change = 4/12  
 
 

 
or 33%. Altogether, then, projecting the triangle with orientation 1 onto a 1D line induced a 
33% stress. Is this amount of stress unavoidable? 

 

 
 

 

The triangle in orientation 2 is identical in size and properties to the triangle in orientation 
1, except that it was rotated before making the projection. Due to the change in 
orientation, points b and c are no longer on top of each other when projected onto the line. 
In fact, the triangle in this orientation retains much more of the relationship of the 
distances between the points a, b, and c. The a to b distance retains the correct 
relationship to the b to c distance, although both distances lose their relationship to the a 
to c distance. Nonetheless, the total amount of distortion, or stress, introduced in the 
orientation 2 projection is much less than that produced in the orientation 1 projection. 
The measurements in Figure 6.15 for orientation 2 show, by reasoning similar to that 
above, that this projection produces a stress of 16.7%. In some sense, making the 
projection in orientation 2 preserves more of the information about the triangle than using 
orientation 1. 

 

 



 

 

The important point about this example is that changing the orientation, that is, rotating 
the object in space, changes the amount of stress that a particular projection introduces. 
For most such objects this remains true. Finding an optimal orientation to reduce the 
stress of projection is important. 

 

 

 

 6.4.3  Projecting Alpha Values  
 
 

 
How does this example relate to dimensionality reduction and appropriate representation 
for alpha labels? 

 

 
 

 

When using state space to determine values for alpha labels, the method essentially finds 
appropriate locations to place the labels on a high-dimensionality manifold. Each label 
value has a more or less unique position on the manifold. Between each of these label 
locations is some measurable distance in state space. Using the label positions as points 
on the manifold, distances between each of the points can easily be discovered using the 
high-dimensional Pythagorean theorem extension. These points, with their distances from 
each other, can be plucked off the state space manifold, and the shape represented in a 
phase space of the same dimensionality. From here, the principle is to rotate the shape in 
its high-dimensional form, projecting it into a lower-dimensionality space until the 
minimum stress level for the projection is discovered. When the minimum stress for some 
particular lower dimensionality is discovered, if the stress level is still acceptable, a yet 
lower dimensionality is tried, until finally, for some particular lower dimensionality, the 
stress becomes unacceptably high. The lowest-dimensionality representation that has an 
acceptable level of stress is the one deemed appropriate to represent the alpha variable. 
(What might constitute an acceptable level of stress is discussed shortly.) 

 

 

 

 6.4.4  Scree Plots  
 
 

 

The idea that stress changes with projection into lower numbers of dimensions can 
actually be graphed. If a particular shape is projected into several spaces of different 
dimensionality, then the amount of stress present in each space, plotted against the 
number of dimensions used for the projection, forms what is known as a scree plot. Figure 
6.16 shows just such a plot. 

 

 

 

 

 

 

 



 

 Figure 6.16  Ideal scree plot.  

   
 
 

 

Starting with 30 dimensions in Figure 6.16, a high-dimensional figure is projected into 
progressively fewer dimensions. Not much change occurs in the level of stress 
occasioned by the change in dimensionality until the step from five to four dimensions. At 
this step there is a marked change in the level of stress, which increases dramatically with 
every reduction from there. 

 

 
 

 

The step from five to four dimensions is called a knee. In dimensionalities higher than this 
knee, the object can be accommodated with little distortion (stress). Clearly, four 
dimensions are not sufficient to adequately represent the shape. It appears, from this 
scree plot, that five is the optimum dimensionality to use. In some sense, a 
five-dimensional representation is the best combination of low dimensionality with low 
stress. 

 

 
 

 

When it works satisfactorily, finding a knee in a scree plot does provide a good way of 
optimizing the dimensionality of a representation. In practice, few scree plots look like 
Figure 6.16. Most look more like the ones shown in Figure 6.17. In practice, finding 
satisfactory knees in either of these plots is problematic. When satisfactory knees cannot 
be found, a workable way to select dimensionality is to select some acceptable level of 
stress and use that as a cutoff criterion. 

 

 

 

 

 

 

 
 

 Figure 6.17  Two more realistic scree plots. 
 

 
6.6  Summary  
 
 

 

This chapter has covered a lot of ground in discussing the need for, and method of, 
finding justifiable numeric representations of alpha-valued variables. The concepts of 
methods for performing this numeration in mixed alpha-numeric and in entirely alpha data 

 



sets was discussed in detail. In all cases the information carried in the data set was used 
to reflect appropriate values and ordering for the individual alpha values. 

 
 

 

We started by looking at ways that the miner can apply domain knowledge to remap alpha 
values to avoid problems that automated methods cannot solve alone. The conceptual 
groundwork of state space was discussed and this metaphor explored for its utility in 
representing the measured states of a system of variables, in addition to its value in 
numerating alpha variables. We examined the nature and features of the data 
representation in state space. Translating the information discovered there into insights 
about the data, and the objects the data represents, forms an important part of the data 
survey in addition to its use in data preparation. Several practical issues in providing a 
working data preparation computer program were also addressed. 

 

 
 

 
In spite of the distance covered here, there remains much to do to the data before it is fully 
prepared for surveying and mining. 

 

 



 

Chapter 7: Normalizing and Redistributing 

Variables 

 

 

 

 Overview  
 
 

 

From this point on in preparing the data, all of the variables in a data set have a numerical 
representation. Chapter 6 explained why and how to find a suitable and appropriate 
numerical representation for alpha values—that is, the one that either reveals the most 
information, or at least does the least damage to existing information. The only time that 
an alpha variable’s label values come again to the fore is in the Prepared Information 
Environment Output module, when the numerical representations of alpha values have to 
be remapped into the appropriate alpha representation. The discussion in most of the rest 
of the book assumes that the variables not only have numerical values, but are also 
normalized across the range of 0–1. Why and how to normalize the range of a variable is 
covered in the first part of this chapter. 

 

 
 

 

In addition to looking at the range of a variable, its distribution may also make problems. 
The way a variable’s values are spread, or distributed, across its range is known as its 
distribution. Some patterns in a variable’s distribution can cause problems for modeling 
tools. These patterns may make it hard or impossible for the modeling tool to fully access 
and use the information a variable contains. The second topic in this chapter looks at 
normalizing the distribution, which is a way to manipulate a variable’s values to alleviate 
some of these problems. 

 

 
 

 

The chapter, then, covers two key topics: normalizing the range of a variable and 
normalizing the distribution of a variable. (Neither of these normalization methods have 
anything in common with putting data into the multitable structures called “normal form” in a 
database, data warehouse, or other data repository.) During the process of manipulation, as 
well as exposing information, there is useful insight to be gained about the nature of the 
variables and the data. Some of the potential insights are briefly discussed in this chapter, 
although the full exploration of these relationships properly forms part of the data survey. 

 

 
7.1  Normalizing a Variable’s Range  
 
 

 

Chapter 6, discussing state space, pointed out that it was convenient to normalize 
variable ranges across the span of 0–1. Convenience is not an attribute to be taken 
lightly. Using anything less than the most convenient methods hardly contributes to easy 
and efficient completion of a task. However, some modeling tools require the range of the 
input to be normalized. For example, the neurons in most neural-network-based tools 
require data to be close to the range of 0 to 1, or –1 to +1, depending on the type of 
neuron. (More on neural networks in Chapter 10.) Most tools that do not actually require 

 



range normalization may benefit from it, sometimes enormously. (Chapter 2 mentioned, 
for instance, that exposing information and easing the learning task can reduce an effect 
known as feature swamping.) 

 
 

 

Normalization methods represent compromises designed to achieve particular ends. 
Normalization requires taking values that span one range and representing them in 
another range. This requires remapping values from an input range to an output range. 
Each method of remapping may introduce various distortions or biases into the data. 
Some biases and distortions are deliberately introduced to better expose information 
content. Others are unknowingly or accidentally introduced, and damage information 
exposure. Some types of bias and distortion introduced in some normalization processes 
are beneficial only for particular types of data, or for particular modeling methods. 
Automated data preparation must use a method that is generally applicable to any 
variable range and type—one that at least does no harm to the information content of the 
variable. Ideally, of course, the normalization method should be beneficial. 

 

 
 

 

Any method of addressing the problems has its own trade-offs and introduces biases and 
distortions that must be understood. Some commercial tools normalize variables. When 
they do, it can cause a problem if the tool uses a default method that the modeler cannot 
control. Exactly what might be lost in the normalization, or what distortion might be 
introduced, is hard to know if the normalization method is not in the modeler’s control, or 
worse, not even known to the modeler. (The neural network model comparison between 
prepared data and “unprepared” data in Chapter 12 in part demonstrates this issue.) 

 

 
 

 

Methods of normalization are plentiful. Some do more than one thing at a time. They not 
only normalize ranges, but also address various problems in the distribution of a variable. 
The data preparation process, as described in this book, deals with distribution problems 
as a separate issue (discussed later in this chapter), so normalization methods that adjust 
and correct simultaneously for range and distribution problems are not used. As far as 
range normalization goes, what the modeler needs is a method that normalizes the range 
of a variable, introducing as little distortion as possible, and is tolerant of out-of-range 
values. 

 

 
 

 

Range normalization addresses a problem with a variable’s range that arises because the 
data used in data preparation is necessarily only a sample of the population. (Chapter 5 
discussed sampling.) Because a sample is used, there is a less than 100% confidence 
that the sample is fully representative of the population. This implies, among other things, 
that there is a less than 100% confidence that the maximum and minimum values of the 
range of a variable have been discovered. This in turn implies, with some degree of 
confidence, that values larger than the sample maximum, or smaller than the sample 
minimum, will turn up in the population—and more importantly, in other samples of the 
population. Since values that are outside the limits discovered in a sample are out of the 
range of the sample, they are called here out-of-range values. This only indicates that 
such values are out of the range discovered in the sample used for data preparation. They 

 



certainly aren’t out of the range of the population, only out of the range established in a 
particular sample—the training sample. Dealing with these out-of-range values presents a 
problem that has to be addressed. We need to look at what these problems are before 
considering how to fix them. 

 
 

 

What problems turn up with out-of-range values? The answer to this question depends on 
the stage in the data exploration process in which the out-of-range value is encountered. 
The stages in which a problem might occur are during modeling: the training stage, the 
testing stage, and the execution stage. Preparation and survey won’t come across 
out-of-range values as they work with the same sample. The modeling phase might have 
problems with out-of-range values, and a brief review of modeling stages will provide a 
framework to understand what problems the out-of-range values cause in each stage. 

 

 

 

 
7.1.1  Review of Data Preparation and Modeling (Training, 
Testing, and Execution) 

 

 
 

 

Chapter 3 described the creation, use, and purpose of the PIE, which is created during 
data preparation. It has two components: the PIE-Input component (PIE-I) that 
dynamically takes a training-input or live-input data set and transforms it for use by the 
modeling tool, and the PIE-Output component (PIE-O) that takes the output (predictions) 
from a model and transforms it back into “real-world” values. A representative sample of 
data is required to build the PIE. However, while this representative sample might be the 
one also used to build the (predictive, inferential, etc.) model, that is not necessarily so. 
The modeler may choose to use a different data set for modeling, from the one used to 
build the PIE. Creating the model requires at least training and testing phases, followed by 
execution when the model is applied to “live” data. 

 

 
 

 

This means that there are potentially any number of sample data sets. During training, 
there is one data set for building the PIE, one (probably the same one) for building a 
model, and one (definitely a separate one) for testing the model. At execution time, any 
number of data sets may be run through the PIE-I, the model, and the PIE-O in order, say, 
to make predictions. For example, in a transaction system scoring individual transactions 
for some feature, say, fraud, each transaction counts as an input execution data set. Each 
transaction is separately presented to the PIE-I, to the scoring model, the results to the 
PIE-O, with the individual output score being finally evaluated, either manually or 
automatically. The transactions are not prepared as a batch in advance for modeling all 
together, but are individually presented for evaluation as they come in. 

 

 
 

 

When building the PIE, it is easy to discover the maximum and minimum values in the 
sample data set. So no out-of-range values can occur when building the PIE. With any 
other sample data set, it is always possible to encounter an out-of-range value. Since the 
PIE provides the modeling environment, it is the PIE that must deal with the problems. 

 

 

 

 7.1.2  The Nature and Scope of the Out-of-Range Values  



Problem  
 

 

Since the PIE knows the maximum and minimum values of the data sample, no 
out-of-range value can occur at this stage during its construction. However, what the 
modeler should ask is, What can I learn about the out-of-range values that are expected 
to occur in the population? The PIE is going to have to deal with out-of-range numbers 
when they turn up, so it needs to know the expected largest and smallest numbers it will 
encounter during execution. It is also useful to know how often an out-of-range number is 
likely to be found in the population. 

 

 
 

 

There are two problems with out-of-range numbers. First, the PIE is not going to have any 
examples of these values, so it needs to estimate their range and frequency to determine 
suitable adjustments that allow for them. They are certain to turn up in the population, and 
the PIE will have to deal with them in some way that best preserves the information 
environment surrounding the model. The second problem is that the out-of-range values 
represent part of the information pattern in the population that the modeling tool is not 
going to be exposed to during training. The model can’t see them during training because 
they aren’t in the training sample. The modeler needs an estimate of the range and the 
proportion of values in the population that are not represented in the sample. This 
estimate is needed to help determine the model’s range of applicability and robustness 
when it is exposed to real-world data. Clearly, the model cannot be expected to perform 
well on patterns that exist in the population when they are not modeled since they aren’t in 
the training sample. The extent and prevalence of such patterns need to be as clearly 
delimited as possible. 

 

 
 

 

Of course, the modeler, together with the domain expert and problem owner, will try to 
choose a level of confidence for selecting the sample that limits the problem to an 
acceptable degree. However, until a sample is taken, and the actual distribution of each 
variable sampled and profiled, the exact extent of the problem cannot be assessed. In any 
case, limiting the problem by setting confidence limits assumes that sufficient data is 
available to meet the confidence criteria chosen. When the training data set is limited in 
size, it may well be the amount of data available that is the limiting factor. In which case, 
the modeler needs to know the limits set by the data available. Unless the population is 
available for modeling, this is a problem that simply cannot be avoided. 

 

 
 

 

The information about the model limits due to out-of-range values, although generated 
when creating the PIE modules, is generally reported as part of the data survey. It is 
important to note that although the information enfolded in the data in the out-of-range 
values is properly part of the population, the model will experience the previously unseen 
values as noise. Chapter 11 looks briefly at noise maps. A full survey assesses, where 
possible, how much noise comes from each measurable source, including out-of-range 
values. Unfortunately, space limitations preclude further discussion of methods for 
assessing noise contribution due to out-of-range values, and for separating it from noise 
from other sources. 

 

 



 

 
7.1.3  Discovering the Range of Values When Building the 
PIE 

 

 
 

 

How, then, does the miner determine the range and the frequency of values present in the 
population, but not in the sample? Recall that the data sample was determined to 
represent the population with a specific level of confidence. That confidence level is 
almost always less than 100%. A 95% confidence means that there remains a 5% 
confidence—that is, 1 in 20—that the sample is not representative. It doesn’t need 
detailed analysis to see that if the range has been captured to a 95% confidence limit, 
out-of-range values must be quite commonly expected. Two separate features vary with 
the actual confidence level established. The first is the frequency of occurrence of 
out-of-range values. The second is the expected maximum and minimum values that exist 
in the population. To see that this is so, consider a population of 100 numbers ranging 
uniformly from 0 to 99 without duplication. Take a random sample of 10. Consider two 
questions: What is the chance of discovering the largest number in the population? and 
What is the largest value likely to be? 

 

 

 

 Probability of Discovery of Largest Value  
 
 

 

Since there are 100 numbers, and only one can be the greatest, on any one random pick 
there is 1 chance in 100 that the largest number is found. Choosing 10 numbers, each 
selected at random, from 100 gives 10 chances in 100 for picking the largest number. 

 

 
 

 
By similar reasoning, the chance of finding the largest value in a random sample of, say, 
20, is 20%, as shown in Table 7.1. 

 

 

 

 TABLE 7.1  Probability of finding largest value for several numbers of picks.  
 
 

   
 
 

 Number of picks  
 

 

 Probability in %  
 

 

 

   
 
 

 1  
 

 

 1  
 

 

 

 2  
 

 

 2  
 

 

 

 5  
 

 

 5  
 

 

 

 10  
 

 

 10  
 

 

 

 15  
 

 

 15  
 

 



 

 20  
 

 

 20  
 

 

 

   
 

 

 Most Likely High and Low Values  
 
 

 

But what is the largest value likely to be found? When making the random pick, any 
values at all could be chosen, each being equally likely. In this example, 10 numbers from 
100 are selected (10% of the population), so every number in the population has a 10% 
chance of being chosen. But what is the most likely value to pick? 

 

 
 

 

Imagine if numbers are selected one at a time at random and a running average of the 
values picked is kept. Since any number is as likely to be picked as any other, the running 
average is simply going to approach the average value of all the numbers in the 
population. If picking continues long enough, all of the numbers are chosen with equal 
frequency. Added together and divided by the number of picks, the result is the population 
average value. 

 

 
 

 

In this example, the mean value of the population is 50. Does this mean that 50 is the 
most likely number to pick? Not exactly. There is only a 1% chance of actually choosing 
the value 50 in any single pick. If 10% of the population is chosen, the number 50 has a 
10% chance of being in the sample. However, what it can be interpreted to mean is that if 
the choice of one number at random were repeated many times, the numbers chosen 
would seem to cluster around 50. (There would be as many values of 50 and above as 
there are below 50, and, on average, they would be as far above as below.) In this sense, 
50 indicates the center of the cluster, and so measures the center of the place where the 
numbers tend to group together. That, indeed, is why the mean is called a “measure of 
central tendency” in statistics. 

 

 
 

 

What happens when two numbers are picked, paying attention to which is larger and 
which is smaller? With two numbers selected, it is certain that one is larger than the other 
(since the population comprises the numbers 1 through 100 without duplicates). By 
reasoning similar to the single-number pick, the upper value will tend to be halfway 
between the lower value picked (whatever that is) and the largest number available (100). 
Similarly, the lower value will tend to be halfway between the higher value picked 
(whatever that is) and the lowest number available (1). So the two numbers picked will 
split the range into three parts. Because each value has a tendency to be as far as it can 
both from its neighbor, and from the extreme values in the range (1 and 100), the 
separations will be equal in size. In other words, the tendency for two numbers will be to 
split the range into three equal parts. In this example, for two choices, the expected 
values are about 33 and 67. 

 

 
 

 This reasoning can be extended for any number of picks where the order of the picked  



values is noted. The expected values are exactly the points that divide the range into n + 1 
equally sized subranges (where n is the number of picks). 

 
 

 

Table 7.2 shows the expected high and low values for a selection of numbers of picks. As 
the sample size increases, the expected value of the highest value found gets closer and 
closer to the maximum value of the population. Similarly, with increased sample size, the 
expected value of the lowest value found in the sample approaches the low value in the 
population. 

 

 

 

 TABLE 7.2  Expected values for various choices.  
 
 

   
 
 

 Number of picks  
 

 

 Expected low value  
 

 
 

 Expected high value  
 

 

 

   
 
 

 1  
 

 

 50  
 

 
 

 50  
 

 

 

 2  
 

 

 33  
 

 
 

 67  
 

 

 

 5  
 

 

 17  
 

 
 

 83  
 

 

 

 10  
 

 

 9  
 

 
 

 91  
 

 

 

 15  
 

 

 6  
 

 
 

 94  
 

 

 

 20  
 

 

 5  
 

 
 

 95  
 

 

 

   
 
 

 

In the example, the population’s extreme values are 1 and 100. Table 7.2 shows how the 
expected high and low values change as the number of picks changes. As the sample 
size increases, indicated by the number of picks, so the difference between the expected 
values and the extreme values in the population gets smaller. For instance, the 
upper-range difference at 10 picks is 100 – 91 = 9, and at 20 picks is 100 – 95 = 5. The 
lower range difference at 10 picks is 9 – 1 = 8, and at 20 picks is 5 – 1 = 4. (The apparent 
difference in the upper and lower range is due to rounding off the values. The upper and 
lower expected values are actually symmetrically located in the range.) 

 

 

 

 Out-of-Range Values and the PIE  
 
 

 
The examples just given are considerably simplified. For real-world variables with 
real-world distributions, things are far more complex. Actual probabilities and expected 

 



values depend very much on the true distribution of a variable, among other things. This 
is, in any case, complicated by the fact that distributions may change over time. This 
example is true for a rectangular distribution (one in which every value that can occur 
does so with equal probability) and where no values are duplicated. In the example, the 
size of the population was also known, which makes determining probabilities easy. 

 
 

 
While the probabilities vary considerably with distribution, population size, and other 
factors, the principles do not: 

 

 
 

 Some maximum and minimum values will be detected in a sample.  
 
 

  •  The discovered maximum and minimum define the range of the sample.  
 
 

  •  In the population there is always some chance of encountering an out-of-range value.  
 
 

  
• 
 
Some specific confidence that the sample is representative of the population can be 
determined. 

 

 
 

  

• 
 

The smaller the chance that the sample is representative, the larger the chance of 
encountering an out-of-range value, and the larger the gap is likely to be between 
sample range limit and the population limit. 

 

 
 

 

That is, the less representative the sample, the more chance there is of encountering an 
out-of-range value in the population. And when an out-of-range value is found, the less 
representative the sample, the greater the expected difference will be between the 
sample maximum or minimum and the out-of-range value. 

 

 
 

 

Knowing the confidence level that the data sample is representative does give some 
indication of how likely an out-of-range value is to be found in the population, and how 
large the gap between the detected limits and the out-of-range value might be. Having 
these estimates enables the normalization process to be adjusted to take account of the 
expected frequency of out-of-range values and the expected true range of the population 
values. For instance, if the sample confidence is relatively low, then many out-of-range 
values covering a large range can be expected. If sample confidence is high, few 
out-of-range values will be expected, and those that are will cover a narrower range. 

 

 
 

 

To summarize: The representative sample selected to create the PIE has, for every 
variable, high and low values. When building the PIE, no values exceeding this range will 
be found, since it is the sample that produced the maximum and minimum values. The 
confidence level that the sample is representative gives an indication of the probability of 
meeting out-of-range values. The confidence level also indicates the probable size of the 
gap between discovered maximum or minimum, and any out-of-range value. With the 
frequency of occurrence and the gap size estimated, the normalization process in the PIE 
can be constructed accordingly. 

 

 



 

 7.1.4  Out-of-Range Values When Training  
 
 

 

During training, the PIE is already built and in place. The PIE-I takes raw data values from 
the training sample and translates them into a prepared state for use by the modeling tool. 
What happens when the PIE-I finds an out-of-range value? As yet there has been no 
discussion of a method of dealing with out-of-range values. What would happen if out-of 
range values are not normalized into a 0–1 range, but passed through outside the 
normalized range? That is, an input value larger than the sample maximum would 
translate into a value larger than 1, perhaps 1.2. Similarly, input values smaller than the 
sample minimum will translate into values less than 0, maybe –0.2. (The purpose of the 
discussion, of course, is to examine the problems that could occur to discover how best to 
avoid them.) 

 

 

 

 Consequences of Ignorance I  
 
 

 

One “solution” to an out-of-range value (adopted by some commercial modeling tools) is 
to simply ignore the whole instance (record) if any one of the values is out-of-range. This 
also takes care of the missing-value problem. (Missing values are treated as out-of-range 
too.) This effectively reduces the size of the sample by ignoring any data points that do 
not fit within the specified parameters. There are two notable problems with this approach.

 

 
 

 

The first, and less significant, problem is that reducing the number of instances in the 
sample reduces the level of confidence that the sample represents the population. 
Discarding instances is literally discarding information! Discarding, or ignoring, instances 
effectively reduces the size of the training set. A model created using the reduced training 
set cannot be as effective as one built with a more representative data set. If this were the 
only problem, it is easily remedied by adding more data to the training set if it is available. 
Adding more data again increases confidence that the sample is representative. On the 
other hand, if more data is not available, it may be that the information in the discarded 
instances is much needed, and discarding them is damaging to training. 

 

 
 

 

A second, and potentially more serious problem, is introducing bias. Unless the 
out-of-range values occur in a truly random pattern, then obviously they do not occur at 
random. If they do not occur at random, then they must occur with some sort of pattern. 
Deleting or ignoring out-of-range instances then necessarily removes them according to 
some pattern. Removing instances in a pattern prevents the modeling tool from seeing 
the pattern. This removal of a pattern from the sample introduces distortion, or bias, to the 
sample. The bias can be anything from slightly damaging to disastrous—with no way to 
determine which! This problem is so potentially severe and undetectable that attempts 
must be made to avoid it at all costs. 

 

 
 

 
Imagine (as really happened) using such a tool for building a model of mortgage 
applicants. The training sample had applicants with salaries up to, say, $100,000. When 

 



the model was run, this method ignored all applicants with salaries greater than $100,000. 
But the null score was interpreted as no score, and the mortgage company interpreted no 
score as a bad score! Until discovered (which didn’t take long), this method of dealing with 
out-of-range variables was (to say the least) problematic. In practice, of course, it 
rendered the model virtually useless. 

 

 

 Consequences of Ignorance II  
 
 

 

Another approach ignores the fact that the normalized range has been exceeded. It says, 
“Let normalized values fall outside the range if necessary.” The assumptions about state 
space being unit state space will no longer hold, but this is not always a major concern 
since state space may only be a conceptual device for many modeling methods. Most 
modeling tools have at least some capacity to handle numbers outside the normalized 
range. But how do they handle them? And does it make a difference to the quality of the 
model? 

 

 
 

 

Some methods do use a unit state space model. Where this is the case, these will have to 
deal with the out-of-limit values in a way that keeps them inside unit state space. One 
method is to “clip” the values that fall outside the range. If greater than 1, assign 1. If less 
than 0, assign 0. The problem with this method is the underlying assumption that numbers 
that fall outside the range are in some way equivalent to numbers that fall at the limit of 
the range. This ignores the fact that the numbers falling outside the range are in some 
way different and carry information to that effect. This vital information is thrown away. 

 

 
 

 

Worse than throwing information away is what happens to the limit values if there is a 
difference that the model should reflect between limit values and out-of-range values. The 
limit value’s information content is distorted because the model will not be able to 
distinguish between range limit and out-of-range values. The range limit value meaning 
will have to be distorted to reflect whatever aggregate meaning the out-of-range values 
carry, too. Projecting the information content from several values onto a single value 
distorts the information content of the limit value. 

 

 
 

 

For example, if the out-of-range values extend up to 1.2, the range top value of 1 has to 
carry an “average” meaning of all the values from 1 to 1.2. Any difference that the model 
should reflect when the value is, say, 1.1 is lost, merged, as it were, with the meaning 
carried by the range top value of 1. But worse, if the model is predictive, for instance, 
when the input value is actually 1, the model will have to predict the “average” response of 
values 1 through 1.2. 

 

 
 

 

Once again, the problem of bias shows up. If the occurrence of out-of-range values is not 
in fact random, using exactly the same argument as in the previous section, undetectable 
bias is introduced into the model. Just as before, the problems this introduces can range 
from innocuous to disastrous. Bias can invalidate the best model. 

 

 
 



 

In some models, for instance, fraudulent activity falls into this out-of-range category. It is 
the fraudulent activity that may fall out of the modeled range, since new patterns of fraud 
constantly evolve. If the fraudulent activity moves some variable instance values out of 
their limits, and the model is constrained to ignore it, or to “merge” it with other activity, 
this new activity is indicated as equivalent to whatever the model found to be the activity 
at the range limit. This may easily be an unjustified assumption. 

 

 
 

 

In one case, this “merging” behavior persuaded one model of insurance claims to assume 
that all building fires occurring after 9:30 at night, and started in rear rooms, scored pretty 
well as likely arson! In fact, this model made a number of other erratic inferences, all due 
to the nature of the insurance claim data set modeled and the tool used. 

 

 

 

 7.1.5  Out-of-Range Values When Testing  
 
 

 

When testing models, many of the same problems occur as when training. Testing 
attempts to discover the applicability of, and limits to, the model. Whether or not the 
training phase experienced out-of-limit values, if no correction or allowance is made for 
them, their presence during testing will be dealt with in a similar, cavalier way. In one way 
or another they will be either ignored or clipped. For all of the reasons discussed above, 
this will produce a less accurate model output. (The actual output will be numeric, 
although the final result might be inferences, predictions, or come in some other form, 
depending on the type of model.) 

 

 
 

 

Testing the model in ways that underestimate its limits and utility is not necessarily 
damaging, but will lead at least to having less confidence in the model than is perhaps 
justified. It will certainly help in making, to some extent, erroneous conclusions about the 
range, utility, and applicability of the model. 

 

 
 

 

However, the model might also appear to be better and more robust than is actually the 
case. Ignoring instances of data in the test data set because they have out-of-range 
values, for instance, clearly means that the model is not tested on them. But these are the 
precise areas in which the model might perform most poorly, and its performance in these 
areas has to be included in any valid overall performance summary. 

 

 

 

 7.1.6  Out-of-Range Values When Executing  
 
 

 

Execution is the time when a predictive model is predicting, an inferential model is 
inferring, a self-adaptive model is adapting, and so on. Whatever else went before, this is 
the time when out-of-range values are most likely to appear if they ever will! This is the 
phase of the data exploration project when the model is likely to be exposed to copious 
quantities of data, and so has the highest expectation that the fullest range of the data will 
appear. (It is also the time when real, applicable, and useful results are expected.) For 
simplicity of discussion, a predictive model will be assumed. The same principles hold for 
any type of model—predictive, inferential, adaptive, and so on. 

 

 



 

 

A model created by training on data biased by removing problematic instances from the 
training data will almost certainly still be required to produce predictions for similar 
problematic instances in the execution data. If predicting fraud, for instance, all instances 
must be examined. If predicting customer segments, all customers must be predicted. 
The model is not considered adequate if no predictions are made for instances with 
problematic data. (Even people earning more than $100,000 may be good mortgage 
risks!) But if out-of-range values were excluded during training, the model was not 
exposed to such data during training. There is no reference for making a valid prediction 
from such data during the execution phase. In any case, the model will be more or less 
biased, having been trained on biased data. The execution data that the model is required 
to perform on will not be biased. Whatever bias is included in the model will result in 
biased predictions. 

 

 
 

 

If, on the other hand, the out-of-range values were “trimmed” off to the limiting values 
during training, when the model does experience such values, they will have to be 
trimmed again, leading to poor predictions for any limiting conditions. 

 

 
 

 

Possibly the worst scenario is that untrimmed variable values are allowed into the model. 
When this happens, the model is driven outside of the range of data on which it trained. In 
this case the model will, of course, produce predictions, but predictions that are based on 
no evidence. When the model is driven into areas that are outside the boundaries of the 
state space on which it trained, almost no valid predictions can be made. We can 
speculate, for instance, about the weight of 20-foot-tall human beings. Whatever 
extrapolation we might make, the truth is that there is no evidence to base a prediction on, 
for such a creature probably could not exist. Whether or not such a being could exist, and 
what its weight might be, is pure speculation. So it is too when a model is driven beyond 
the limits on which it trained. 

 

 
 

 

Clipping values leaves the model no way to detect if the instance values are changing—at 
least at the limits of behavior. It is often the case that the distribution of the data is not 
stationary. Nonstationarity of a distribution simply means that the distribution does not 
remain constant, usually over time. The user of the model needs to monitor this, among 
many other things, during run time anyway. This is not a part of data preparation, but the 
preparation technique should at least provide support to make the monitoring easier. 

 

 

 

 7.1.7  Scaling Transformations  
 
 

 

The discussion so far has looked at the issues surrounding finding the maximum and 
minimum values for each variable in a sample. Clearly, knowing the maximum and 
minimum values somehow allows the actual value to be scaled, or normalized, into the 
range 0–1. A way of doing this is to use a transforming expression that takes the input 
value, and, knowing the maximum and minimum values, squashes the input value into the 
required output range. An easy way to actually do this is with the linear scaling transform. 

 



The actual expression is very straightforward: 
 
 

 
 

 

 
 

 where  
 
 

 vn  
 

 

 is normalized value  
 

 

 

 vi  
 

 

 is instance value  
 

 

 

 

This expression takes any value and transforms it into another number. If the input value 
is inside the limits, the output will be between 0 and 1. Any value outside the limits will fall 
outside the 0–1 range, presenting a modeler with all of the problems just discussed. 

 

 

 

 Using Linear Scaling for Normalization  
 
 

 

Although many of the problems of dealing inadequately with out-of-range values have 
been discussed, and the simplest method of normalizing values has been found wanting, 
it is still the place to start. Linear scaling is a simple, straightforward technique to use for 
normalizing the range of numeric values. Its big advantage is that it introduces no 
distortion to the variable distribution. It involves only discovering the maximum and 
minimum values for the range of the variable, and then finding where within the range a 
particular instance value falls. The formula for achieving this is given above. Given this 
formula, any instance value can be plugged in, and a normalized value computed. There 
is a one-to-one relationship between the original instance value and the normalized value. 
Given two instance values, with the first being twice the second, when they are 
normalized, the first normalized value will still be twice the second. This is true wherever 
in the range of the variable the two instance values occur. 

 

 
 

 

The relationship between the instance values and the normalized values is called linear 
because if the two sets of values are plotted on a graph, the result is a straight line—as 
shown in Figure 7.1. 

 

 

 



 

 

 

 
 

 
Figure 7.1  Linear scaling produces a linear relationship between instance values 
and normalized values. 

 

   
 
 

 

Linear scaling works well when the maximum and minimum values are known. During 
data preparation, this presents a problem. The maximum and minimum values of the 
sample are known, but the true population maximum and minimum may be unknowable. 
As just discussed, when using the model with real-world data, it is very likely that instance 
values outside the sample range will be encountered. Linear scaling normalization will 
translate these values into numbers that fall outside the 0–1 range. 

 

 
 

 

In spite of its shortcomings, which only occur at the limit of the range, linear scaling has a 
great strength in that it introduces no distortion in the translated values. Whatever 
information is in the original values is preserved unmodified in the normalized values. This 
is an important feature that needs to be preserved, if at all possible. If the problems that 
occur at the limits can be dealt with, linear scaling works well. 

 

 

 

 Making Room for Out-of-Range Values  
 
 

 

In order to deal with the out-of-range problems, the PIE needs a method of dealing with 
the limit problems of linear scaling. The linear scaling transformation gives linear 
normalization over all of its range, but must be modified to somehow include out-of-range 
values. One way to do this is to reduce the part of the transformed range that holds 
in-range values. There is then room to squeeze the out-of-range values into space left at 
the upper and lower ends, still leaving some differentiation between them. But how can 
this be done? Theoretically, there is some chance, however small, that an arbitrarily far 
out-of-range number will be encountered at either end of the range. How can what is 
potentially an infinite range of numbers be squashed into a finite part of a 0–1 range, 
especially with most of the 0–1 range given over to linear scaling? Fortunately, exactly 
such a transform does exist, and it forms the basis of softmax scaling. This key transform 
is called the logistic function. Both softmax scaling and the logistic function are examined 
shortly. But first, what exactly is it that needs to be done? 

 

 



 

 

The optimal form of normalizing transformation, if it could be guaranteed never to go out 
of range, is linear. Of course, that’s just the problem—it can be guaranteed to go out of 
range with some degree of confidence. However, if we can measure, or make 
assumptions about, the distribution of the variable, we can then make inferences about 
the distance between the sample limit and the population limit. Doing this allows choosing 
some appropriate part of the range to be linear—and some appropriate part to 
accommodate the out-of-range values. 

 

 
 

 

Since the idea is that the translation is linear over some part of the range, the question is, 
how much of the range should be linear? The sample being used for building the PIE is 
selected with some degree of confidence. It is this confidence that can be used to 
determine what part of the 0–1 range is to be held linear. The size of the expected 
out-of-range gap is directly proportional to the degree of confidence that there will be 
out-of-range values. If, for example, the selected confidence level was 98%, then 98% of 
the range 0–1 will be linear. The selected linear part of the range is centered, so that the 
linear translation range becomes, for a 98% confidence level, 0.01–0.99. The linear part 
of the range is squashed by 2%. The balance from the 98%, or 2%, is evenly spaced at 
the top and bottom of the range. This leaves 1% at each end of the range for squeezing in 
the out-of-limit numbers. Figure 7.2 illustrates squashing the linear part of the range. 

 

 

 

 

 

 

 
 

 

Figure 7.2  The linear part of the range is “compressed” so that it covers a 
smaller part of the output range. The “gaps” left at the top and bottom allow space 
in which to compress the out-of-range values. 

 

   
 

 

 Squashing the Out-of-Range Numbers  
 
 

 
The problem that now remains is to fit the out-of-range numbers, potentially extending to 
infinity, into the minute space left for them. Consider the upper limit. First, it is important to 

 



realize that for numbers larger than the limit, the greater a number, the less likely it is that 
any such value will be found. When the sample was originally taken, some degree of 
confidence was established that the largest value had been found. Larger numbers are 
possible, even likely, but, as previously discussed, the greater the difference between the 
limit value and any larger value, the less likely it is that it will be encountered. 

 
 

 

The transformation is made such that as the difference between the limit and the 
out-of-limit value grows, the smaller the increase toward the end of the range. Larger 
numbers produce proportionally smaller differences, and an infinitely large number 
produces ultimately infinitesimally small differences. In Chapter 6 it was noted that by 
increasing precision, it is always possible to indicate more locations on the number line. 
This allows an infinite number of out-of-range numbers to be mapped into space left for 
them. If such a transform is developed, it can be used to squash the out-of-range values 
above and below the linear part into the space left for them. 

 

 
 

 

Looking at the upper range, a mathematical function is needed such that as the difference 
between the limit and overlimit values gets larger, the value increases toward, but never 
reaches, some boundary. Whatever its limits, the output of the squashing function can 
itself then be linearly squashed to fit into the gap left for it. In looking for such a function, a 
reciprocal makes a good starting point. A reciprocal of a number is simply one divided by 
the number. It starts with a value of one, and as the input number gets larger, the output 
value gets smaller and smaller, reaching toward, but never getting to, 0. To have this 
transform move in the opposite direction, subtract it from 1. It becomes 1 – 1/v. Table 7.3 
shows the output values for various inputs. 

 

 

 

 TABLE 7.3  Values of upper-range squashing function.  
 
 

   
 
 

 v  
 

 

 1/v  
 

 
 

 1 – 1/v  
 

 

 

   
 
 

 1  
 

 

 1.000  
 

 
 

 0.000  
 

 

 

 2  
 

 

 0.500  
 

 
 

 0.500  
 

 

 

 3  
 

 

 0.333  
 

 
 

 0.667  
 

 

 

 5  
 

 

 0.200  
 

 
 

 0.800  
 

 

 

 8   
 

 

 0.125  
 

 
 

 0.875  
 

 

 

 13  
 

 

 0.077  
 

 
 

 0.923  
 

 



 

 21  
 

 

 0.048  
 

 
 

 0.952  
 

 

 

 34  
 

 

 0.029  
 

 
 

 0.971  
 

 

 

 55  
 

 

 0.018  
 

 
 

 0.982  
 

 

 

 89  
 

 

 0.011  
 

 
 

 0.989  
 

 

 

   
 
 

 
So 1 – 1/v starts at 0 and moves toward 1, never quite reaching it, regardless of how large 
a number is input. This is shown graphically in Figure 7.3(a). 

 

 

 

 

 

 

 
 

 
Figure 7.3  Values of 1 – 1/v for the range of inputs 1 through 100 (a) and values 
of 1/ (1+(RangeMin – v)) for the range of inputs –100 through –1(b). 

 

   
 
 

 

Squashing out-of-range values into the lower space left can use the same transform. This 
time the out-of-range difference is discovered (RangeMin – v) and 1 is added to it to 
ensure that the difference can never be less than 1. This time v is the lower-range 
difference, but Table 7.3, in column 1/v, shows the values for this starting at 1 and 
decreasing toward, but never reaching, 0. Figure 7.3(b) shows this graphically. These two 
curves, one for the upper out-of-range values and one for the lower out-of-range values, 
need to be squashed and attached to the linear part of the transform. 

 

 
 

 

Taking the linear part of the range and adding the upper and lower transforms for the 
out-of-range values produces a curve. The result will be a sort of “S” curve that is linear 
over most of the range, but squashes the over- and undervalues into the remaining space. 
Figure 7.4 shows the same curves squashed into the range. (The amount of the scale 

 



allocated for squashing out-of-range values is highly exaggerated to illustrate the point.) 
 

 

 

 

 

 
 

 

Figure 7.4  The transforms for squashing overrange and underrange values are 
attached to the linear part of the transform. This composite “S”-shaped transform 
translates most of the values linearly, but also transforms any out-of-range values 
so that they stay within the 0–1 limits of the range. 

 

   
 
 

 

This sort of “S” curve can be constructed to serve the purpose. Writing computer code to 
achieve this is somewhat cumbersome. The description shows very well the sort of effect 
that is needed, but fortunately there is a much easier and more flexible way to get there. 

 

 

 

 7.1.8  Softmax Scaling  
 
 

 

Softmax scaling is so called because, among other things, it reaches “softly” toward its 
maximum value, never quite getting there. It also has a linear transform part of the range. 
The extent of the linear part of the range is variable by setting one parameter. It also 
reaches “softly” toward its minimum value. The whole output range covered is 0–1. These 
features make it ideal as a transforming function that puts all of the pieces together that 
have been discussed so far. 

 

 

 

 The Logistic Function  
 
 

 

It starts with the logistic function. The logistic function can be modified to perform all of the 
work just described, and when so modified, it does it all at once so that by plugging in a 
variable’s instance value, out comes the required, transformed value. 

 

 
 

 

An explanation of the workings of the logistic function is in the Supplemental Material 
section at the end of this chapter. Its inner workings are a little complex, and so long as 
what needs to be done is clear (getting to the squashing “S” curve), understanding the 
logistic function itself is not necessary. The Supplemental Material can safely be skipped. 

 



The explanation is included for interest since the same function is an integral part of 
neural networks, mentioned in Chapter 10. The Supplemental Material section then 
explains the modifications necessary to modify it to become the softmax function. 

 

 

 7.1.9  Normalizing Ranges  
 
 

 
What does softmax scaling accomplish in addressing the problems of range 
normalization? The features of softmax scaling are as follows: 

 

 
 

 

The normalized range is 0–1. It is the nature of softmax scaling that no values outside this 
range are possible. This keeps all normalized values inside unit state space boundaries. 
Since the range of input values is essentially unlimited and the output range is limited, unit 
state space, when softmax is normalized, is essentially infinite. 

 

 
 

  

• 

 

The extent of the linear part of the normalized range is directly proportional to the level 
of confidence that the data sample is representative. This means that the more 
confidence there is that the sample is representative, the more linear the normalization 
of values will be. 

 

 
 

  

• 
 

The extent of the area assigned for out-of-range values is directly proportional to the 
level of uncertainty that the full range has been captured. The less certainty, the more 
space to put the expected out-of-range values when encountered. 

 

 
 

  
• 
 
There is always some difference in normalized value between any two nonidentical 
instance values, even for very large extremes. 

 

 
 

 

As already discussed, these features meet many needs of a modeling tool. A static model 
may still be presented with out-of-range values where its accuracy and reliability are 
problematic. This needs to be monitored separately during execution time. (After all, 
softmax squashing them does not mean that the model knows what to do with them—they 
still represent areas of state space that the model never visited during training.) Dynamic 
models that continuously learn from the data stream—such as continuously learning, 
self-adaptive, or response-adaptive models—will have no trouble adapting themselves to 
the newly experienced values. (Dynamic models need to interact with a dynamic PIE if the 
range or distribution is not stationary—not a problem to construct if the underlying 
principles are understood, but not covered in detail here.) 

 

 
 

 
At the limits of the linear normalization range, no modeling tool is required to aggregate 
the effect of multiple values by collapsing them into a single value (“clipping”). 

 

 
 

 

Softmax scaling does the least harm to the information content of the data set. Yet it still 
leaves some information exposed for the mining tools to use when values outside those 
within the sample data set are encountered. 

 

 



7.2  Redistributing Variable Values  
 
 

 

Through normalization, the range of values of a variable can be made to always fall 
between the limits 0–1. Since this is a most convenient range to work with, it is assumed 
from here on that all of a variable’s values fall into this range. It is also assumed that the 
variables fall into the linear part of the normalized range, which will be true during data 
preparation. 

 

 
 

 

Although the range is normalized, the distribution of the values—that is, the pattern that 
exists in the way discrete instance values group together—has not been altered. 
(Distributions were discussed in Chapters 2 and 5.) Now attention needs to be turned to 
looking at the problems and difficulties that distributions can make for modeling tools, and 
ways to alleviate them. 

 

 

 

 7.2.1  The Nature of Distributions  
 
 

 

Distributions of a variable only consist of the values that actually occur in a sample of 
many instances of the variable. For any variable that is limited in range, the count of 
possible values that can exist is in practice limited. 

 

 
 

 

Consider, for example, the level of indebtedness on credit cards offered by a particular 
bank. For every bank there is some highest credit line that has ever been offered to any 
credit card customer. Large perhaps, but finite. Suppose that maximum credit line is 
$1,000,000. No credit card offered by this bank can possibly have a debit balance of more 
than $1,000,000, nor less than $0 (ignoring credit balances due, say, to overpayment). 
How many discrete balance amounts are possible? Since the balance is always stated to 
the nearest penny, and there are 100 pennies in a dollar, the range extends from 0 
pennies to 100,000,000 pennies. There are no more than 100,000,000 possible discrete 
values in the entire range. 

 

 
 

 

In general, for any possible variable, there is always a particular resolution limit. Usually it 
is bounded by the limits of accuracy of measurement, use, or convention. If not bounded 
by those, then eventually the limits of precision of representation impose a practical limit 
to the possible number of discrete values. The number may be large, but it is limited. This 
is true even for softmax normalization. If values sufficiently out of range are passed into 
the function, the truncation that any computer requires eventually assigns two different 
input values to the same normalized value. (This practical limitation should not often 
occur, as the way in which the scale was constructed should preclude many far 
out-of-range values.) 

 

 
 

 

However many value states there are, the way the discrete values group together forms 
patterns in the distribution. Discrete value states can be close together or far apart in the 
range. Many variables permit identical values to occur—for example, for credit card 
balances, it is perfectly permissible for multiple cards to have identical balances. 

 

 



 

 

A variable’s values can be thought of as being represented in a one-dimensional state 
space. All of the features of state space exist, particularly including clustering of values. In 
some parts of the space the density will be higher than in other parts. Overall there will be 
some mean density. 

 

 

 

 7.2.2  Distributive Difficulties  
 
 

 

One of the problems of distribution is outlying values or outlying clumps. (Figure 2.5 
illustrates this.) Some modeling techniques are sensitive only to the linear displacement of 
the value across the range. This only means that the sensitivity remains constant across 
the range so that any one value is as “important” as any other value. It seems reasonable 
that 0.45 should be as significant as 0.12. The inferences to be made may be 
different—that is, each discrete value probably implies a different predicted value—but 
the fact that 0.45 has occurred is given the same weight as the fact that 0.12 has 
occurred. 

 

 
 

 

Reasonable as this seems, it is not necessarily so. Since the values cluster together, 
some values are more common than others. Some values simply turn up more often than 
others. In the areas where the density is higher, values occurring in that area are more 
frequent than those values occurring in areas of lower density. In a sense, that is what 
density is measuring—frequency of occurrence. However, since some values are more 
common than others, the fact that an uncommon one has occurred carries a “message” 
that is different than a more common value. In other words, the weighting by frequency of 
specific values carries information. 

 

 
 

 

To a greater or lesser degree, density variation is present for almost all variables. In some 
cases it is extreme. A binary value, for instance, has two spikes of extremely high density 
(one for the “0” value and one for the “1” value). Between the spikes of density is empty 
space. Again, most alpha variables will translate into a “spiky” sort of density, each spike 
corresponding to a specific label. 

 

 
 

 

Figure 7.5 illustrates several possible distributions. In Figure 7.5(d) the outlier problem is 
illustrated. Here the bulk of the distribution has been displaced so that it occupies only half 
of the range. Almost half of the range (and half of the distribution) is empty. 

 

 

 



 

 

 

 
 

 

Figure 7.5  Different types of distributions and problems with the distribution of a 
variable’s values across a normalized range: normal (a), bimodal or binary 
variable (b), alpha label (c), normal with outlier (d), typical actual variable A (e), 
and typical actual variable B (f). All graphs plot value (x) and density (y). 

 

   
 
 

 

Many, if not most, modeling tools, including some standard statistical methods, either 
ignore or have difficulty with varying density in a distribution. Many such tools have been 
built with the assumption that the distribution is normal, or at least regular. When density 
is neither normal nor regular, as is almost invariably the case with real-world data 
sets—particularly behavioral data sets—these tools cannot perform as designed. In many 
cases they simply are not able to “see” the information carried by the varying density in 
the distribution. If possible, this information should be made accessible. 

 

 
 

 

When the density variation is dissimilar between variables, the problem is only intensified. 
Between-variable dissimilarity means that not only are the distributions of each variable 
irregular, but that the irregularities are not shared by the two variables. The distributions in 
Figure 7.5(e) and 7.5(f) show two variables with dissimilar, irregular distributions. 

 

 
 

 

There are tools that can cope well with irregular distributions, but even these are aided if 
the distributions are somehow regularized. For instance, one such tool for a particular 
data set could, when fine-tuned and adjusted, do just as well with unprepared data as with 
prepared data. The difference was that it took over three days of fine-tuning and adjusting 
by a highly experienced modeler to get that result—a result that was immediately 
available with prepared data. Instead of having to extract the gross nonlinearities, such 
tools can then focus on the fine structure immediately. The object of data preparation is to 
expose the maximum information for mining tools to build, or extract, models. What can 
be done to adjust distributions to help? 

 

 

 

 7.2.3  Adjusting Distributions  
 



 

 

The easiest way to adjust distribution density is simply to displace the high-density points 
into the low-density areas until all points are at the mean density for the variable. Such a 
process ends up with a rectangular distribution. This simple approach can only be 
completely successful in its redistribution if none of the instance values is duplicated. 
Alpha labels, for instance, all have identical numerical values for a single label. There is 
no way to spread out the values of a single label. Binary values also are not redistributed 
using this method. However, since no other method redistributes such values either, it is 
this straightforward process that is most effective. 

 

 
 

 

In effect, every point is displaced in a particular direction and distance. Any point in the 
variable’s range could be used as a reference. The zero point is as convenient as any 
other. Using this as a reference, every other point can be specified as being moved away 
from, or toward, the reference zero point. The required displacements for any variable can 
be graphed using, say, positive numbers to indicate moving a point toward the “1,” or 
increasing their value. Negative numbers indicate movement toward the “0” point, 
decreasing their value. 

 

 
 

 

Figure 7.6 shows a distribution histogram for the variable “Beacon” included on the 
CD-ROM in the CREDIT data set. The values of Beacon have been normalized but not 
redistributed. Each vertical bar represents a count of the number of values falling in a 
subrange of 10% of the whole range. Most of the distribution shown is fairly rectangular. 
That is to say, most of the bars are an even height. The right side of the histogram, above 
a value of about 0.8, is less populated than the remaining part of the distribution as shown 
by the lower height bars. Because the width of the bars aggregates all of the values over 
10% of the range, much of the fine structure is lost in a histogram, although for this 
example it is not needed. 

 

 

 

 

 

 

 
 

 

Figure 7.6  Distribution histogram for the variable Beacon. Each bar represents 
10% of the whole distribution showing the relative number of observations 
(instances) in each bar. 

 



   
 
 

 

Figure 7.7 shows a displacement graph for the variable Beacon. The figure shows the 
movement required for every point in the distribution to make the distribution more even. 
Almost every point is displaced toward the “1” end of the variable’s distribution. Almost all 
of the displaced distances being “+” indicates the movement of values in that direction. 
This is because the bulk of the distribution is concentrated toward the “0” end, and to 
create evenly distributed data points, it is the “1” end that needs to be filled. 

 

 

 

 

 

 

 
 

 

Figure 7.7  Displacement graph for redistributing the variable Beacon. The large 
positive “hump” shows that most of the values are displaced toward the “1” end of 
the normalized range. 

 

   
 
 

 
Figure 7.8 shows the redistributed variable’s distribution. This figure shows an almost 
perfect rectangular distribution. 

 

 

 

 

 

 

 
 

 

Figure 7.8  The distribution of Beacon after redistribution is almost perfectly 
rectangular. Redistribution of values has given almost all portions of the range an 
equal number of instances. 

 

   
 



 

 

Figure 7.9 shows a completely different picture. This is for the variable DAS from the 
same data set. In this case the distribution must have low central density. The points low 
in the range are moved higher, and the points high in the range are moved lower. The 
positive curve on the left of the graph and the negative curve to the right show this clearly.

 

 

 

 

 

 

 
 

 

Figure 7.9  For the variable DAS, the distribution appears empty around the 
middle values. The shape of the displacement curve suggests that some 
generating phenomenon might be at work. 

 

   
 
 

 

A glance at the graph for DAS seems to show an artificial pattern, perhaps a modified sine 
wave with a little noise. Is this significant? Is there some generating phenomenon in the 
real world to account for this? If there is, is it important? How? Is this a new discovery? 
Finding the answers to these, and other questions about the distribution, is properly a part 
of the data survey. However, it is during the data preparation process that they are first 
“discovered.” 

 

 

 

 7.2.4  Modified Distributions  
 
 

 

When the distributions are adjusted, what changes? The data set CARS (included on the 
accompanying CD-ROM) is small, containing few variables and only 392 instances. Of the 
variables, seven are numeric and three are alpha. This data set will be used to look at 
what the redistribution achieves using “before” and “after” snapshots. Only the numeric 
variables are shown in the snapshots as the alphas do not have a numeric form until after 
numeration. 

 

 
 

 

Figures 7.10(a) and 7.10(b) show box and whisker plots, the meaning of which is fairly 
self-explanatory. The figure shows maximum, minimum, median, and quartile information. 
(The median value is the value falling in the middle of the sequence after ordering the 
values.) 

 

 

 



 

 

 

 
 

 

Figure 7.10  These two box and whisker plots show the before and after 
redistribution positions—normalized only (a) and normalized and redistributed 
(b)—for maximum, minimum, and median values. 

 

   
 
 

 

Comparing the variables, before and after, it is immediately noticeable that all the median 
values are much more centrally located. The quartile ranges (the 25% and 75% points) 
have been far more appropriately located by the transformation and mainly fall near the 
25% and 75% points in the range. The quartile range of the variable “CYL” (number of 
cylinders) remains anchored at “1” despite the transformation—why? Because there are 
only three values in this field—“4,” “6,” and “8”—which makes moving the quartile range 
impossible, as there are only the three discrete values. The quartile range boundary has 
to be one of these values. Nonetheless, the transformation still moves the lower bound of 
the quartile range, and the median, to values that better balance the distribution. 

 

 
 

 

Figures 7.11(a) and 7.11(b) show similar figures for standard deviation, standard error, 
and mean. These measures are normally associated with the Gaussian or normal 
distributions. The redistributed variables are not translated to be closer to such a 
distribution. The translation is, rather, for a rectangular distribution. The measures shown 
in this figure are useful indications of the regularity of the adjusted distribution, and are 
here used entirely in that way. Once again the distributions of most of the variables show 
considerable improvement. The distribution of “CYL” is improved, as measured by 
standard deviation, although with only three discrete values, full correction cannot be 
achieved. 

 

 

 



 

 

 

 
 

 

Figure 7.11  These two box and whisker plots show the before and after 
redistribution positions—normalized only (a) and normalized and redistributed 
(b)—for standard deviation, standard error, and mean values. 

 

   
 
 

 

Table 7.4 shows a variety of measures about the variable distributions before and after 
transformation. “Skewness” measures how unbalanced the distribution is about its center 
point. In every case the measure of skewness is less (closer to 0) after adjustment than 
before. In a rectangular distribution, the quartile range should cover exactly half the range 
(0.5000) since it includes the quarter of the range immediately above and below the 
median point. In every case except “Year,” which was perfect in this respect to start with, 
the quartile range shows improvement. 

 

 

 

 TABLE 7.4  Statistical measures before and after adjustment.  
 
 

   
 
 

 BEFORE: 
 

 

 Mean 
 

 

 

 Median 
 

 

 

 
Lower 
quartile

 

 

 

 

 
Upper 
quartile

 

 

 

 

 
Quartile
range 

 

 

 

 

 
Std. 
dev. 

 

 

 

 

 
Skew- 
ness 

 

 

 

 

   
 
 

 CYL  
 

 

 0.4944  
 

 
 

 0.2000  
 

 
 

 0.2000  
 

 
 

 1.0000  
 

 
 

 0.8000  
 

 
 

 0.3412  
 

 
 

 0.5081  
 

 

 

 CU_IN  
 

 

 0.3266  
 

 
 

 0.2145  
 

 
 

 0.0956  
 

 
 

 0.5594  
 

 
 

 0.4638  
 

 
 

 0.2704  
 

 
 

 0.7017  
 

 

 

 HPWR  
 

 

 0.3178  
 

 
 

 0.2582  
 

 
 

 0.1576  
 

 
 

 0.4402  
 

 
 

 0.2826  
 

 
 

 0.2092  
 

 
 

 1.0873  
 

 

 

 WT_LBS 
 

 

 0.3869  
 

 
 

 0.3375  
 

 
 

 0.1734  
 

 
 

 0.5680  
 

 
 

 0.3947  
 

 
 

 0.2408  
 

 
 

 0.5196  
 

 

               



 ACC  
 

 0.4518  
 

 0.4706  
 

 0.3529  
 

 0.5294  
 

 0.1765  
 

 0.1624  
 

 0.3030  
 

 

 YEAR  
 

 

 0.4983  
 

 
 

 0.5000  
 

 
 

 0.2500  
 

 
 

 0.7500  
 

 
 

 0.5000  
 

 
 

 0.3070  
 

 
 

 0.0197  
 

 

 

   
 
 

 AFTER: 
 

 

 Mean 
 

 

 

 Median 
 

 

 

 
Lower 
quartile

 

 

 

 

 
Upper 
quartile

 

 

 

 

 
Quartile
range 

 

 

 

 

 
Std. 
dev. 

 

 

 

 

 
Skew- 
ness 

 

 

 

 

   
 
 

 CYL  
 

 

 0.6789  
 

 
 

 0.5998  
 

 
 

 0.4901  
 

 
 

 1.0000  
 

 
 

 0.5099  
 

 
 

 0.2290  
 

 
 

 0.2851  
 

 

 

 CU_IN  
 

 

 0.5125  
 

 
 

 0.5134  
 

 
 

 0.2518  
 

 
 

 0.7604  
 

 
 

 0.5086  
 

 
 

 0.2912  
 

 
 

 –0.0002  
 

 

 

 HPWR  
 

 

 0.5106  
 

 
 

 0.5123  
 

 
 

 0.2488  
 

 
 

 0.7549  
 

 
 

 0.5062  
 

 
 

 0.2907  
 

 
 

 –0.0359  
 

 

 

 WT_LBS 
 

 

 0.4740  
 

 
 

 0.4442  
 

 
 

 0.1939  
 

 
 

 0.7338  
 

 
 

 0.5400  
 

 
 

 0.2985  
 

 
 

 0.1693  
 

 

 

 ACC  
 

 

 0.5586  
 

 
 

 0.5188  
 

 
 

 0.3719  
 

 
 

 0.7875  
 

 
 

 0.4156  
 

 
 

 0.2799  
 

 
 

 –0.2109  
 

 

 

 YEAR  
 

 

 0.4825  
 

 
 

 0.5185  
 

 
 

 0.2704  
 

 
 

 0.7704  
 

 
 

 0.5000  
 

 
 

 0.3197  
 

 
 

 0.0139  
 

 

 

   
 
 

 

The variable “Year” was distorted some small amount from an already perfectly rectangular 
distribution. The distortion is minor, but why did it happen? In fact, the variable “Year” is 
monotonic. There are a similar number of instances in each of several years. This gives the 
appearance of a perfectly rectangular distribution. Redistribution notices a weighting due to 
the monotonicity and attempts to “correct” for it. Another clue that this variable may need 
further investigation is that the standard deviation increases and moves further from the 
optimum point. The standard deviation measure for a normalized rectangular distribution is 
approximately 0.2889. However, altogether the adjustment is very minor and almost 
certainly does no harm. Being monotonic, the variable may need to be dealt with in some 
other way before modeling anyway. 

 

 
7.3  Summary  
 
 

 
What has been accomplished by using the techniques in this chapter? The raw values of 
a variable have been translated in range and distribution. This has useful benefits. 

 

 
 

 

First, all values are normalized over a range of 0–1. Some modeling techniques require 
such a normalizing transformation; for others, it’s only a convenience. In all cases, it puts 
the full magnitude of the change in a variable on an equal footing for all variables in the 

 



data set. 
 
 

 

Second, one of the limitations of sampling was dealt with: the problem that values not 
sampled, and outside the range of those in the sample, are sure to turn up in the 
population. The specific problem that unsampled out-of-range values cause for a model 
depends on where in the process of building or applying a model the unsampled 
out-of-range value is discovered. Softmax scaling, developed out of linear scaling and 
based on the logistic function, provides a convenient method for ensuring that all values, 
sampled or not, are correctly normalized. This does not overcome the out-of-range 
problem, but it makes it more tractable. 

 

 
 

 

While looking at softmax scaling, we explored the workings of the logistic function. This is 
a very important function for understanding the inner workings of neural networks. 
Introduced here for the softmax squashing, it is also important for understanding the 
techniques introduced in Chapter 10. (Not absolutely necessary, as those techniques can 
still be applied without a full understanding of how they work.) 

 

 
 

 

Third, and very important for maximum information exposure, the individual variable 
distributions are transformed. This transformation makes the between-variable 
information far more accessible to many modeling tools. Many of the problems with value 
clusters are removed, and almost all of the problems that outliers present are very 
significantly reduced, if not completely ameliorated. A miner may glean useful insights into 
the nature of a variable by looking at similarities, differences, and structures in the 
variable distributions, although looking at these is really part of the data survey and not 
further considered here. 

 

 
 

 

By the time the techniques discussed in this chapter are applied to a data set, a suitably 
sized sample is selected (discussed in Chapter 5). The sample is fully represented as 
numeric (discussed in Chapter 6), and fully normalized in both range and distribution (this 
chapter). The last problem to look at in the data, before turning our attention to preparing the 
data set as a whole, is that some of the values may be missing or empty. Chapter 8 looks at 
plugging these holes. Although it is the individual variables that are considered, attention 
now must be turned to the data set as a whole since that is where the information needed is 
discovered. 

 

 
Supplemental Material  
 

 

 The Logistic Function  
 
 

 The logistic function is usually written as   
 
 

 
 

 

 
 



 where  
 
 

 
 

 

 
 

 vn  
 

 

 is the normalized value  
 

 

 

 vi  
 

 

 is the instance value  
 

 

 

 
How does this function help? It is easier to understand what is happening by looking at 
each of the pieces of the function one at a time. Start with 

 

 
 

 
 

 
 
 

 

In this piece of the function, vi is the instance value. The e represents a number, a 
constant, approximately 2.72. Any constant greater than 1 could be used here, but e is the 
usual choice. 

 

 
 

 

 

 

 
 

 
This is simply the reciprocal of the previous expression. Reciprocals get smaller as the 
number gets larger. 

 

 
 

 
 

 

 
 

 
Note that these two are equivalent ways of saying the same thing. It is a little more 
compact to use the notation of e to a negative exponent. 

 

 
 

   
 
 

 

This makes sure that the result is never less than 1, which is very important in the next 
step. Since this expression can never have a value of less than 1, the next expression can 
never have a value greater than 1. 

 

 
 

 
 

 

 
 

 which brings the expression full circle.  
 
 

 
So how do each of these components behave? Table 7.5 shows how each of these 
components of the logistic function change as different values are plugged into the 

 



formula. 
 

 

 TABLE 7.5  Values of components of logistic function.  
 
 

   
 
 

 vi  
 

 

 evi  
 

 
 

 1/evi  
 

 
 

 1+1/evi  
 

 
 

 Logistic  
 

 

 

   
 
 

 –10  
 

 

     0.0000  
 

 
 

 22026.3176  
 

 
 

 22027.3176  
 

 
 

 0.0000  
 

 

 

 –9  
 

 

     0.0001  
 

 
 

 8103.0349  
 

 
 

 8104.0349  
 

 
 

 0.0001  
 

 

 

 –8  
 

 

     0.0003  
 

 
 

 2980.9419  
 

 
 

 2981.9419  
 

 
 

 0.0003  
 

 

 

 –7  
 

 

     0.0009  
 

 
 

 1096.6280  
 

 
 

 1097.6280  
 

 
 

 0.0009  
 

 

 

 –6  
 

 

     0.0025  
 

 
 

   403.4272  
 

 
 

   404.4272  
 

 
 

 0.0025  
 

 

 

 –5  
 

 

     0.0067  
 

 
 

   148.4127  
 

 
 

   149.4127  
 

 
 

 0.0067  
 

 

 

 –4  
 

 

     0.0183  
 

 
 

    54.5980  
 

 
 

    55.5980  
 

 
 

 0.0180  
 

 

 

 –3  
 

 

     0.0498  
 

 
 

    20.0855  
 

 
 

    21.0855  
 

 
 

 0.0474  
 

 

 

 –2  
 

 

     0.1353  
 

 
 

     7.3890  
 

 
 

     8.3890  
 

 
 

 0.1192  
 

 

 

 –1  
 

 

     0.3679  
 

 
 

     2.7183  
 

 
 

     3.7183  
 

 
 

 0.2689  
 

 

 

   0  
 

 

     1.0000  
 

 
 

     1.0000  
 

 
 

     2.0000  
 

 
 

 0.5000  
 

 

 

   1  
 

 

     2.7183  
 

 
 

     0.3679  
 

 
 

     1.3679  
 

 
 

 0.7311  
 

 

 

   2  
 

 

     7.3890  
 

 
 

     0.1353  
 

 
 

     1.1353  
 

 
 

 0.8808  
 

 

 

   3  
 

 

    20.0855  
 

 
 

     0.0498  
 

 
 

     1.0498  
 

 
 

 0.9526  
 

 

 

   4  
 

 

    54.5980  
 

 
 

     0.0183  
 

 
 

     1.0183  
 

 
 

 0.9820  
 

 

 

   5  
 

 

   148.4127  
 

 
 

     0.0067  
 

 
 

     1.0067  
 

 
 

 0.9933  
 

 

 

   6  
 

 

   403.4272  
 

 
 

     0.0025  
 

 
 

     1.0025  
 

 
 

 0.9975  
 

 

         



   7  
 

 1096.6280  
 

     0.0009  
 

     1.0009  
 

 0.9991  
 

 

   8  
 

 

 2980.9419  
 

 
 

     0.0003  
 

 
 

     1.0003  
 

 
 

 0.9997  
 

 

 

   9  
 

 

 8103.0349  
 

 
 

     0.0001  
 

 
 

     1.0001  
 

 
 

 0.9999  
 

 

 

 10  
 

 

 22026.3176  
 

 
 

     0.0000  
 

 
 

     1.0000  
 

 
 

 1.0000  
 

 

 

   
 
 

 

Examining what is going on inside this function is easier to see graphically. Figure 7.12 
illustrates the components. So that the various components can be seen on a common 
scale, the vi values (the instance values) range only between –2 and +2 on this graph. 
Even with this limited range, the various components vary considerably more than the 
normalized output. Figure 7.13 shows how the logistic function transforms inputs across 
the range of –10 to +10. This shows the squashing effect very clearly. 

 

 

 

 

 

 

 
 

 Figure 7.12  Components of the logistic function.  

   
 

 

 

 

 

 
 

 Figure 7.13  Logistic function for the range –10 through 10. The logistic function  



squashes the input values into the range 0–1. 
   
 
 

 

Due to rounding errors, and because only four decimal places are shown, Table 7.5 
seems to show that the logistic function reaches both 0 and 1 at the extremes. This is not 
in fact the case. Although very close to those values at the extremes, the function actually 
gets there only with infinitely large positive or negative numbers. 

 

 

 

 Modifying the Linear Part of the Logistic Function Range  
 
 

 

As it stands, the logistic function produces the needed “S” curve, but not over the needed 
range of values. There is also no way to select the range of linear response of the 
standard logistic function. 

 

 
 

 

Manipulating the value of vi before plugging it into the logistic function allows the 
necessary modification to its response so that it acts as needed. To show the modification 
more easily, the modification made to the value of vi is shown here as producing vt. When 
vt is plugged into the logistic function in place of vi, the whole thing becomes known as the 
softmax function:  

 

 

 

 

 

 

 
 

 where  
 
 

 vt  
 

 

 is transformed value of vi  
 

 

 

 xv  
 

 

 is standard deviation of variable v  
 

 

 

 x  
 

 

 is linear response in standard deviations  
 

 

 

 x  
 

 

 is 3.14 approximately  
 

 

 

 

The linear response part of the curve is described in terms of how many normally distributed 
standard deviations of the variable are to have a linear response. This can be discovered by 
either looking in tables or (as used in the demonstration software) using a procedure that 
returns the appropriate standard deviation for any selected confidence level. Such standard 
deviations are known as z values. Looking in a table of standard deviations for the normal 
curve, ±1z cover about 68%, ±2z about 95.5%, and ±3z about 99.7%. (The ±n is because 
the value is n on either side of the central point of the distribution; i.e., ±1z means 1z greater 
than the mean and 1z less than the mean.) 

 

 



 

Chapter 8: Replacing Missing and Empty 

Values 

 

 

 

 Overview  
 
 

 

The presence of missing or empty values can make problems for the modeler. There are 
several ways of replacing these values, but the best are those that not only are well 
understood by the modeler as to their capabilities, limits, and dangers, but are also in the 
modeler’s control. Even replacing the values at all has its dangers unless it is carefully 
done so as to cause the least damage to the data. It is every bit as important to avoid 
adding bias and distortion to the data as it is to make the information that is present 
available to the mining tool. 

 

 
 

 

The data itself, considered as individual variables, is fairly well prepared for mining at this 
stage. This chapter discusses a way to fill the missing values, causing the least harm to the 
structure of the data set by placing the missing value in the context of the other values that 
are present. To find the necessary context for replacement, therefore, it is necessary to look 
at the data set as a whole. 

 

 
8.1  Retaining Information about Missing Values  
 
 

 

Missing and empty values were first mentioned in Chapter 2, and the difference between 
missing and empty was discussed there. Whether missing or empty, many, if not most, 
modeling tools have difficulty digesting such values. Some tools deal with missing and 
empty values by ignoring them; others, by using some metric to determine “suitable” 
replacements. As with normalization (discussed in the last chapter), if default automated 
replacement techniques are used, it is difficult for the modeler to know what the limitations 
or problems are, and what biases may be introduced. Does the modeler know the 
replacement method being used? If so, is it really suitable? Can it introduce distortion 
(bias) into the data? What are its limitations? Finding answers to these questions, and 
many similar ones, can be avoided if the modeler is able to substitute the missing values 
with replacements that are at least neutral, that is, introduce no bias—and using a method 
understood, and controlled by, the modeler. 

 

 
 

 

Missing values should be replaced for several reasons. First, some modeling techniques 
cannot deal with missing values and cast out a whole instance value if one of the variable 
values is missing. Second, modeling tools that use default replacement methods may 
introduce distortion if the method is inappropriate. Third, the modeler should know, and be 
in control of, the characteristics of any replacement method. Fourth, most default 
replacement methods discard the information contained in the missing-value patterns. 

 

 

 



 8.1.1  Missing-Value Patterns  
 
 

 

A point to note is that replacing missing values, without elsewhere capturing the 
information that they were missing, actually removes information from the data set. How is 
this? Replacing a missing value obscures the fact that it was missing. This information 
can be very significant. It has happened that the pattern of missing values turned out to be 
the most important piece of information during modeling. Capturing this information has 
already been mentioned in Chapter 4. In Figure 4.7, the single-variable CHAID analysis 
clearly shows a significant relationship between the missing-value pattern variable, 
_Q_MVP, and the variable SOURCE in the SHOE data (included on the CD-ROM). 
Retaining the information about the pattern in which missing values occur can be crucial 
to building a useful model. 

 

 
 

 

In one particular instance, data had been assembled into a data warehouse. The 
architects had carefully prepared the data for warehousing, including replacing the 
missing values. The data so prepared produced a model of remarkably poor quality. The 
quality was only improved when the original source data was used and suitably prepared 
for modeling rather than warehousing. In this data set, the most predictive variable was in 
fact the missing-value pattern—information that had been completely removed from the 
data set during warehousing. The application required a predictive model. With 
warehoused data, the correlation between the prediction and the outcome was about 0.3. 
With prepared data, the correlation improved to better than 0.8. 

 

 
 

 

Obviously a change in correlation from 0.3 to 0.8 is an improvement, but what does this 
mean for the accuracy of the model? The predictive model was required to produce a 
score. If the prediction was within 10% of the true value, it was counted as “correct.” The 
prediction with a correlation of 0.3 was “correct” about 4% of the time. It was better than 
random guessing, but not by much. Predicting with a correlation of about 0.8 produced 
“correct” estimates about 22% of the time. This amounts to an improvement of about 
550% in the predictive accuracy of the model. Or, again, with a 0.3 correlation, the mean 
error of the prediction was about 0.7038 with a standard deviation of 0.3377. With a 0.8 
correlation, the mean error of the prediction was about 0.1855 with a standard deviation of 
0.0890. (All variables were normalized over a range of 0–1.) 

 

 
 

 
Whatever metric is used to determine the quality of the model, using the information 
embedded in the missing-value patterns made a large and significant difference. 

 

 

 

 8.1.2  Capturing Patterns  
 
 

 

The missing-value pattern (MVP) is exactly that—the pattern in which the variables are 
missing their values. For any instance of a variable, the variable can either have a value 
(from 0–1) or not have any value. If it has no numerical value, the value is “missing.” 
“Missing” is a value, although not a numerical value, that needs to be replaced with a 
numerical value. (It could be empty, but since both missing and empty values have to be 

 



treated similarly and replaced, here they will be discussed as if they are the same.) For 
each variable in the data set, a flag, say, “P” for present and “E” for empty, can be used to 
indicate the presence or absence of a variable’s value in the instance value. Using such 
flags creates a series of patterns, each of which has as many flags as there are 
dimensions in the data. Thus a three-dimensional data set could have a maximum of eight 
possible MVPs as shown in Table 8.1 

 

 

 TABLE 8.1  Possible MVPs for a three-dimensional data set.  
 
 

   
 
 

 Pattern number  
 

 

 Pattern  
 

 

 

   
 
 

 1  
 

 

 PPP  
 

 

 

 2  
 

 

 PPE  
 

 

 

 3  
 

 

 PEP  
 

 

 

 4  
 

 

 PEE  
 

 

 

 5  
 

 

 EPP  
 

 

 

 6  
 

 

 EPE  
 

 

 

 7  
 

 

 EEP  
 

 

 

 8  
 

 

 EEE  
 

 

 

   
 
 

 

The number of possible MVPs increases very rapidly with the number of dimensions. With 
only 100 dimensions, the maximum possible number of missing-value patterns is far more 
than any possible number of instance values in a data set. (There are over one nonillion, 
that is, 1 x 1030, possible different patterns.) The limiting number quickly becomes the 
maximum number of instances of data. In practice, there are invariably far fewer MVPs 
than there are instances of data, so only a minute fraction of the possible number of MVPs 
actually occur. While it is quite possible for all of the MVPs to be unique in most data sets, 
every practical case produces at least some repetitive patterns of missing values. This is 
particularly so for behavioral data sets. (Chapter 4 discussed the difference between 
physical and behavioral data sets.) 

 

 
 



 

MVPs aren’t invariably useful in a model. However, surprisingly often the MVPs do 
contribute useful and predictive information. The MVPs are alpha labels, so when they are 
extracted, the MVPs are numerated exactly as any other alpha value. Very frequently the 
MVPs are best expressed in more than one dimension. (Chapter 6 discusses numeration of 
alpha values.) Where this is the case, it is also not unusual to find that one of the multiple 
dimensions for MVPs is especially predictive for some particular output. 

 

 
8.2  Replacing Missing Values  
 
 

 

Once the information about the patterns of missing values is captured, the missing values 
themselves can be replaced with appropriate numeric values. But what are these values 
to be? There are several methods that can be used to estimate an appropriate value to 
plug in for one that is missing. Some methods promise to yield more information than 
others, but are computationally complex. Others are powerful under defined sets of 
circumstances, but may introduce bias under other circumstances. 

 

 
 

 

Computational complexity is an issue. In practice, one of the most time-consuming parts 
of automated data preparation is replacing missing values. Missing-value estimating 
methods that produce mathematically optimal values can be highly complex, and vary 
with the type of data they are to be applied to. Highly complex methods are too 
time-consuming for large data sets. Even with the speed of modern computer systems, 
the amount of processing required simply takes too long to be reasonable, especially for 
time-sensitive business applications. Also, preparation techniques need to be as broadly 
applicable as possible. Replacement methods with advantages in specific situations, but 
that are unworkable or introduce bias in others, are simply not suitable for general 
application. 

 

 
 

 

In addition to first doing as little harm as possible under all circumstances, and being 
computationally tractable, whatever method is used has to be applicable not only to the 
identified MVPs, but to any new missing values that arise in execution data sets. 
Chapter 7 discussed estimating the probability that the population maximum was found in 
any particular sample. That discussion made it clear that out-of-range values were to be 
expected during execution. The same is true for MVPs—and for the missing values that 
they represent. There is always some probability that individual variable values that were 
not ever missing in the sample will be found missing in the execution data set, or that 
MVPs occurring in the population are not actually present in a sample. The PIE-I needs to 
be able to deal with these values too—even though they were never encountered as 
missing during the building of the PIE. 

 

 

 

 8.2.1  Unbiased Estimators  
 
 

 

An estimator is a device used to make a justifiable guess about the value of some 
particular value, that is, to produce an estimate. An unbiased estimator is a method of 
guessing that doesn’t change important characteristics of the values present when the 

 



estimates are included with the existing values. (Statistically, an unbiased estimator 
produces an estimate whose “expected” value is the value that would be estimated from 
the population.) 

 
 

 

For instance, consider the numbers 1, 2, 3, x, 5, where “x” represents a missing value. 
What number should be plugged in as an unbiased estimate of the missing value? Ideally, 
a value is needed that will at least do no harm to the existing data. And here is a critical 
point—what does “least harm” mean exactly? If the mean is to be unbiased, the missing 
value needs to be 2.75. If the standard deviation is to be unbiased, the missing value 
needs to be about 4.659. The missing-value estimate depends as much on which 
characteristic is to be unbiased as it does on the actual values. Before deciding what 
“least harm” means in practice, it is important to discover which relationships need to be 
preserved, both within and between variables. Finding which are the important 
relationships to preserve will indicate how to find the estimate that best preserves these 
relationships—that is, that is least biased for these particular relationships. 

 

 

 

 8.2.2  Variability Relationships  
 
 

 

Chapter 7 discussed variability and redistributing a variable’s distribution. The transform 
produced a rectangular distribution insofar as the actual values allowed for it. Each 
variable was considered individually, and was redistributed individually without reference 
to the distributions of other variables. In addition to this within-variable relationship, there 
is also a critical between-variable relationship that exists for all of the variables. The 
between-variable relationship expresses the way that one variable changes its value 
when another variable changes in value. It is this multiple-way, between-variable 
relationship that will be explored by any modeling tool. Since the chosen modeling tool is 
going to explore these relationships between variables, it is critical to preserve them, so 
far as possible, when replacing missing values. 

 

 
 

 

Variability forms a key concept in deciding what values to use for the replacement. 
Standard deviation is one measure of that variability (introduced in Chapter 5). To 
exemplify the underlying principles of preserving variability, consider a single variable 
whose values are transformed into a rectangular distribution. Figure 8.1 shows the values 
of such a variable. The 11 values of the original series are shown in the column headed 
“Original sample.” Suppose that the value in series position 11 is missing and is to be 
replaced. Since in this example the actual series value is present, it is easy to see how 
well any chosen estimator preserves the relationships. 

 

 

 



 

 

 

 
 

 
Figure 8.1  Estimating the value of position 11, given only the values in positions 
1 through 10. 

 

   
 
 

 

Position 11 has an actual value of 0.6939. The mean for the original 11-member series is 
0.4023. If the value for position 11 is to be estimated, only positions 1 through 10 are used 
since the actual value of position 11 is assumed unknown. The third column (headed 
“Position 11 missing”) shows the 10 values used to make the estimate, with the mean and 
standard deviation for these first 10 positions shown beneath. The mean for these first 10 
positions is 0.3731. Using this as the estimator and plugging it into position as an estimate 
of the missing value (position 11) changes the standard deviation from about 0.2753 to 
0.2612. The column mean is unchanged (0.3731). Using the mean of instances 1 through 
10 has least disturbed the mean of the series. The actual value of the “missing” value in 
position 11 is 0.6939, and the mean has estimated it as 0.3731—a discrepancy of 0.3208.

 

 
 

 

Suppose, however, that instead of using the mean value, a value is found that least 
disturbs the standard deviation. Is this a more accurate estimate, or less accurate? 
Position 11 in column five uses an estimate that least disturbs the standard deviation. 
Comparing the values in position 11, column four (value not disturbing mean as 
replacement) and column five (value not disturbing standard deviation as replacement), 
which works best at estimating the original value in column two? 

 

 
 

 The column four estimator (preserving mean) misses the mark by  
 
 

 0.6939 – 0.3731 = 0.3208.  
 
 

 The column five estimator (preserving standard deviation) only misses the mark by  
 
 

 0.6622 – 0.6939 = 0.0317.  
 
 

 
Also, preserving the standard deviation (column five) moved the new mean closer to the 
original mean value for all 11 original values in column one. This can be seen by 

 



comparing the mean and standard deviation for each of the columns. The conclusion is 
that preserving standard deviation does a much better job of estimating the “true” mean 
and provides a less biased estimate of the “missing” value. 

 
 

 

Was this a convenient and coincidental fluke? Figure 8.2 shows the situation if position 1 
is assumed empty. The previous example is duplicated with values for preserving mean 
and standard deviation shown in separate columns. As before, generating the 
replacement value by preserving standard deviation produces a less biased estimate. 

 

 

 

 

 

 

 
 

 
Figure 8.2  Estimating the value of position 1, given only the values in positions 2 
through 11. 

 

   
 
 

 

Why is it that preserving variability as measured by standard deviation produces a better 
estimate, not only of the missing value, but of the original sample mean too? The reason 
is that the standard deviation reflects far more information about a variable than the mean 
alone does. The mean is simply a measure of central tendency (mentioned in Chapter 7). 
The standard deviation reflects not just central tendency, but also information about the 
variability within the variable’s distribution. If the distribution is known (here made as 
rectangular as possible by the methods described in Chapter 7), that knowledge 
contributes to determining a suitable replacement value. It is this use of additional 
information that produces the better estimate. 

 

 
 

 

Preserving variability works well for single missing values in a variable. If multiple values 
are missing, however, the estimator still produces a single estimate for all missing values, 
just as using the mean does. If both positions 1 and 11 were missing in the above 
example, any estimator preserving standard deviation would produce a single estimate to 
replace both missing values. So, there is only one single replacement value to plug into all 
the missing values. Does this cause any problem? 

 

 

 

 8.2.3  Relationships between Variables  
 
 



 

Since it is important to retain the relationship between the variables as well as possible, 
the question becomes, Does assigning a single value to a variables’ missing values 
maintain the between-variable relationship? 

 

 
 

 

As a system of variables, there exists some relationship linking the variables’ values to 
each other. It may be stronger or weaker depending on which variables are compared and 
which portions of the range are compared. Nonetheless, since there is a relationship, 
whatever it may be, if the value of one variable is found to be at a specific value, the 
values of all the other variables will be expected to be at particular values in their ranges. 
The linkage expresses the amount and direction of change in value of each variable. This 
amounts to no more, for instance, than saying, “Size of home owned increases with 
income level.” True or not, this statement expresses a relationship between house size 
and income level. As one changes, so do expected values of the other. 

 

 
 

 

If missing values of, say, income, are replaced with any fixed values, it does not allow for, 
or reflect, the value of house size associated with that missing value. No notice is taken of 
what might be an “appropriate” value to use for the missing value of income, given the 
matching value of house size. Assigning a constant value to one variable for all of its 
missing values will certainly distort the relationship between the variables. What is more, 
as already observed, if the missing values are not missing at random, then using 
replacements that all have the same value will not only be inappropriate, but will actually 
add bias, or distortion. This will show up as the nonrandom pattern of fixed values 
plugged into the missing values. 

 

 
 

 

Replacing missing values in one variable, then, needs to take account of whatever values 
are actually present for the other variables in a specific instance value. Given multiple 
MVPs, several variables may be simultaneously missing values, but never all of the 
variables at once. Whatever variable values are present can be used to estimate what the 
appropriate level of the missing variable values should be. 

 

 
 

 

There are several ways of estimating the appropriate missing values, and it is here that 
the demonstration software takes a shortcut to make the computations tractable. At this 
point in the data preparation, the modeler does not know the precise nature of the 
relationship between the variables. Discovering and explicating the nature of that 
relationship is, in fact, one of the main tasks of data mining in the first place—specifically 
the part called modeling that comes after preparation. It is likely that the exact relationship 
is not actually linear. In a linear relationship, if the value of one variable changes by a 
particular amount, then the value of another variable changes by another particular 
amount, and in a specific direction. To return to house size and income for a moment, it 
means that however much the house size increases for a $1,000 rise in income at 
$25,000 a year, it increases a similar amount for any similar $1,000 rise at any other 
income level, say, $50,000. This may or may not be the case. For the demonstration 
software, however, the relationship is assumed to be linear. In practice, this assumption 
introduces very little if any bias for most data sets. Nonetheless, the modeler needs to be 

 



aware of this. 
 
 

 

A key point is that, although the replacement values are indeed predictions, it is not the 
accuracy of these predictions that is of most importance when replacing missing values. 
The key concern is that the predictions produce a workable estimate that least distorts the 
values that are actually present. It is this “least distortion” that is the important point. The 
purpose of replacing missing values is not to use the values themselves, but to make 
available to the modeling tools the information contained in the other variables’ values 
that are present. If the missing values are not replaced, the whole instance value may be 
ignored. If not ignored, the missing value may be replaced with some default unknown to 
the modeler that introduces bias and distortion. Avoiding bias is important. Although not 
perfect, multiple linear estimation is enormously preferable to, and produces much less 
bias than, any replacement with a constant value (like the mean value), or a procedure 
that ignores problematic instances. 

 

 
 

 

However, it must be noted that a more accurate replacement can be achieved by using 
one of the more computationally intensive methods of determining multiple nonlinear 
relationships between variables. Although the demonstration software uses a modified 
multiple linear regression technique, which is examined next, a brief review of some 
possible alternatives in discussed in the Supplemental Material section at the end of this 
chapter. (The full data preparation and survey suite, on which the demonstration code is 
based, uses a nonlinear estimator optimized for least information change. This method is 
based on the principles discussed here. Where intervariable relationships are nonlinear or 
even discontinuous, such methods minimize the potential distortion to information content 
in a data set.) 

 

 

 

 8.2.4  Preserving Between-Variable Relationships  
 
 

 

Regression methods are inherently mathematical and normally are themselves very 
sensitive to missing values. The Supplemental Material section at the end of this chapter 
discusses exactly how regression methods can be modified to determine appropriate 
missing values. 

 

 
 

 

As a conceptual overview, recall that what is needed is some way of determining how the 
value of one variable changes as the value of another (or several others) changes. This 
simply means measuring what values of one variable are when another variable has 
particular values. 

 

 
 

 

Table 8.2 shows, for instance, that if the value of y was missing in a particular instance, 
but the value of x was 3, then an appropriate value to plug in for y would be about 14. But 
what is needed for automated replacement is not a table to look at to find a replacement 
value, but a formula that relates one set of values to the other. What would this formula 
look like? 

 

 

 



 TABLE 8.2  Values of two variables.  
 
 

   
 
 

 Variable x value  
 

 

 Variable y value  
 

 

 

   
 
 

 1  
 

 

 10  
 

 

 

 2  
 

 

 12  
 

 

 

 3  
 

 

 14  
 

 

 

 4  
 

 

 16  
 

 

 

 5  
 

 

 18  
 

 

 

 6  
 

 

 20  
 

 

 

   
 
 

 

Start by trying to find a way to predict y from x. Notice that the value of y increases by 2 for 
every increase in x of 1, and decreases by 2 for every decrease in x of 1. So notice that if 
x = 0, y must = 8. So the relationship must be that y equals 8 plus 2 times the amount of x. 
Or 

 

 
 

 y = 8 + 2x  
 
 

 
A little mathematical manipulation of this formula gives an expression for determining 
values of x from values of y: 

 

 
 

 x = (y – 8)/2  
 
 

 

These formulas represent the essence of what needs to be done to find missing values. 
Of course, something other than an intuitive mechanism is needed for discovering the 
expressions needed, and more of those details are explored in the Supplemental Material
section at the end of this chapter. However, the whole method is based on preserving 
between-variable variability, which is no more than saying preserving the 
between-variable relationships, which is what the example just did. 

 

 
 

 

This is a very simple example of what regression analysis achieves. How it is done in 
practice, why preserving variability is critical, and how the methods work are all covered in 
more conceptual detail also in the Supplemental Material section at the end of this 

 



chapter. 
 

 
8.3  Summary  
 
 

 

Replacing missing values in a data set is very important. However, it is at least as 
important to capture the patterns of values that are missing, and the information that they 
contain, as it is to replace the values themselves. The values that are missing must be 
replaced with extreme sensitivity for not disturbing the patterns in the data that already 
exist. Using inappropriate values easily disturbs those patterns and introduces spurious 
patterns, called bias or noise. Such artificially introduced patterns damage the information 
carried in the between-variable variability in a data set. This hides or distorts the existing 
patterns, thus hiding or distorting the information embedded in the data set. 

 

 
 

 

Capturing the variability that is present in a data set in the form of the ratios between 
various values can be used to infer, or impute, appropriate missing values that do least 
damage to the information content of the data set. All methods of replacing missing values 
are a compromise. Please see the Supplemental Material section at the end of this 
chapter for a more detailed explanation. 

 

 
 

 
From here forward, the data (variables) are prepared for modeling. What remains is to look 
at the issues that are still outstanding in preparing the data set as a whole. 

 

 
Supplemental Material  
 

 

 
Using Regression to Find Least Information-Damaging 
Missing Values 

 

 
 

 

In any data set, with or without missing values, there is enfolded information. The 
information is carried in the relationships between the values both within a single variable 
(its distribution), and in the relationships with the patterns in other variables. If some of 
these values are missing, for reasons already discussed, they need to be replaced. But 
replacing values is a tricky business. It is critically important that the replacement values 
do not introduce a pattern into the data that is not actually present in the measured 
values. Such a pattern may later be “discovered” by the miner, and may actually appear to 
be meaningful, but it carries no real information since it is simply an artifact of the 
replacement process. 

 

 
 

 

However, just as important as not introducing an artificial pattern into a data set by 
replacement values is the maintenance of the existing pattern. Some patterns, maybe 
critically important ones, are fragile and delicate, and great care must be taken to maintain 
them undistorted in the data set. How is this delicate balancing act to be accomplished? 
There are a number of techniques available. The one explained here is used primarily for 
ease of understanding. There are more complex approaches available that perform 
slightly better under some circumstances, and those are discussed in the second section 

 



of this supplemental material. 
 

 

 Regressions  
 
 

 

Multiple linear regression is a generalized extension of ordinary linear regression, which is 
more accessible for explanatory purposes than multiple linear regression since it uses 
only two variables. The idea is simply to determine the value of one variable given the 
value of the other. It assumes that the variables’ values change, the one with the other, in 
some linear way. The technique involved simply fits a manifold, in the form of a straight 
line, through the two-dimensional state space formed by the two variables. Figure 8.3 
shows this for three of the variables in the CARS data set. 

 

 

 

 

 

 

 
 

 

Figure 8.3  Linear regression manifolds (lines) for 2D spaces. The bar charts 
show the distributions of the variables CU_IN (cubic inches), HPWR 
(horsepower), and WT_LBS (weight). 

 

   
 
 

 

Figure 8.3 shows the state space for each pair of variables. The bar graphs show the 
distribution for each of the three variables. Since they have been normalized and 
redistributed, the distributions are approximately rectangular. The lines drawn through 
each graph show the linear regression line that best fits each. For two-dimensional state 
spaces, the linear regression manifold is a line. In three dimensions it is a plane, and just 
such a plane is shown for all three variables simultaneously in Figure 8.4. In more than 
three dimensions, the manifold is impossible to show but still forms a rigid 
hyperdimensional surface that fits the points in state space. 

 

 

 



 

 

 

 
 

 

Figure 8.4  Multiple linear regression manifold in a 3D state space. The manifold 
is a flat plane. The flatness is characteristic of linear regressions in any number of 
dimensions. The variables used are the same as shown in Figure 8.3. 

 

   
 
 

 

The linear regression technique involves discovering the joint variability of the two 
variables and using this to determine which values of the predicted variable match values 
of the predictor variable. Joint variability, the measure of the way one variable varies as 
another varies, allows between-variable inferences to be made of the same sort that were 
made within-variable in the example above. The shortcoming in the example shown in 
Figures 8.1 and 8.2 is that when multiple values are missing in a single variable, only a 
single replacement for all the missing values can be estimated. Preserving 
between-variable variability allows a suitable value to be found for a missing value in one 
variable if the value of its partner in the other variable is known. In a sense, linear 
regression involves finding the joint variability between two variables and preserving it for 
any needed replacement values. Multiple linear regression does the same thing, but 
weighs the contributions of several variables’ joint distributions to estimate any missing 
value. With more variables contributing to the joint variability (more evidence if you will), it 
is usual to find a better estimate of any missing value than can be found by using only one 
other variable. 

 

 

 

 Linear Regression  
 
 

 

Linear regression is relatively straightforward. It involves no more than discovering a 
specific expression for the straight line that best fits the data points in state space. The 
expression describing a straight line is 

 

 
 

 y = a + bx  
 
 

 
This expression gives the appropriate y value for any value of x. The expression a is a 
constant that indicates where the straight line crosses the y-axis in state space, and b is 

 



an expression that indicates how much the line increases (or decreases if it is a negative 
number) its position for an increase in x. In other words, to find a value for y, start at a and 
go up (or down) by amount b for every unit of x. Figure 8.5 illustrates the expression for a 
straight line. Linear regression involves finding the appropriate a and b values to use in 
the expression for a straight line that make it best fit through the points in state space. The 
linear regression comes in two parts, one to find b and the other to find a when b is 
known. These two expressions look like this: 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 8.5  Showing the straight-line equation found that best fits the point 
distribution for the two variables WT_LBS and HPWR from the CARS data set. 

 

   
 
 

 Looking at these two expressions shows that the pieces of information required are  
 
 

 n  
 

 

 the number of instance values  
 

 

 

 Σx  
 

 

 the sum of all the x values  
 

 

 

 Σy  
 

 

 the sum of all the y values  
 

 

 

 Σx2  
 

 

 the sum of all the values of x squared  
 

 

 

 Σxy  
 

 

 the sum of all x values multiplied by all y values  
 

 

 

 
Calculating these quantities is simple only if all of the values are actually present. Table 
8.3 illustrates the problem. 

 

 



 

 TABLE 8.3  The effect of missing values (?.??) on the summary values of x and y.  
 
 

   
 
 

 n  
 

 

 x  
 

 
 

 y  
 

 
 

 x2  
 

 
 

 y2  
 

 
 

 xy  
 

 

 

   
 
 

 1  
 

 

 0.55  
 

 
 

 0.53  
 

 
 

 0.30  
 

 
 

 0.28  
 

 
 

 0.29  
 

 

 

 2  
 

 

 0.75  
 

 
 

 0.37  
 

 
 

 0.56  
 

 
 

 0.14  
 

 
 

 0.28  
 

 

 

 3  
 

 

 0.32  
 

 
 

 0.83  
 

 
 

 0.10  
 

 
 

 0.69  
 

 
 

 0.27  
 

 

 

 4  
 

 

 0.21  
 

 
 

 0.86  
 

 
 

 0.04  
 

 
 

 0.74  
 

 
 

 0.18  
 

 

 

 5  
 

 

 0.43  
 

 
 

 0.54  
 

 
 

 0.18  
 

 
 

 0.29  
 

 
 

 0.23  
 

 

 

 Sum  
 

 

 2.26  
 

 
 

 3.13  
 

 
 

 1.20  
 

 
 

 2.14  
 

 
 

 1.25  
 

 

 

 1  
 

 

 0.55  
 

 
 

 0.53  
 

 
 

 0.30  
 

 
 

 0.28  
 

 
 

 0.29  
 

 

 

 2  
 

 

 ?.??  
 

 
 

 0.37  
 

 
 

 ?.??  
 

 
 

 0.14  
 

 
 

 ?.??  
 

 

 

 3  
 

 

 0.32  
 

 
 

 0.83  
 

 
 

 0.10  
 

 
 

 0.69  
 

 
 

 0.27  
 

 

 

 4  
 

 

 0.21  
 

 
 

 ?.??  
 

 
 

 0.04  
 

 
 

 ?.??  
 

 
 

 ?.??  
 

 

 

 5  
 

 

 0.43  
 

 
 

 0.54  
 

 
 

 0.18  
 

 
 

 0.29  
 

 
 

 0.23  
 

 

 

 Sum  
 

 

 ?.??  
 

 
 

 ?.??  
 

 
 

 ?.??  
 

 
 

 ?.??  
 

 
 

 ?.??  
 

 

 

   
 
 

 

The problem is what to do if values are missing when the complete totals for all the values 
are needed. Regressions simply do not work with any of the totals missing. Yet if any 
single number is missing, it is impossible to determine the necessary totals. Even a single 
missing x value destroys the ability to know the sums for x, x2, and xy! What to do? 

 

 
 

 

Since getting the aggregated values correct is critical, the modeler requires some method 
to determine the appropriate values, even with missing values. This sounds a bit like 
pulling one’s self up by one’s bootstraps! Estimate the missing values to estimate the 
missing values! However, things are not quite so difficult. 

 

 



 

 

In a representative sample, for any particular joint distribution, the ratios between the 
various values xx and xx2, and xy and xy2 remain constant. So too do the ratios between 
xx and xxy and xy and xxy. When these ratios are found, they are the equivalent of setting 
the value of n to 1. One way to see why this is so is because in any representative sample 
the ratios are constant, regardless of the number of instance values—and that includes 
n = 1. More mathematically, the effect of the number of instances cancels out. The end 
result is that when using ratios, n can be set to unity. In the linear regression formulae, 
values are multiplied by n, and multiplying a value by 1 leaves the original value 
unchanged. When multiplying by n = 1, the n can be left out of the expression. In the 
calculations that follow, that piece is dropped since it has no effect on the result. 

 

 
 

 

The key to building the regression equations lies in discovering the needed ratios for 
those values that are jointly present. Given the present and missing values that are shown 
in the lower part of Table 8.3, what are the ratios? 

 

 
 

 

Table 8.4 shows the ratios determined from the three instance values where x and y are 
both present. Using the expressions for linear regression and these ratios, what is the 
estimated value for the missing y value from Table 8.3? 

 

 

 

 TABLE 8.4  Ratios of the values that are present in the lower part of Table 8.3.  
 
 

   
 
 

   
 

 

 xx2  
 

 
 

 xy2  
 

 
 

 xxy  
 

 

 

   
 
 

 Ratio xx to:  
 

 

 0.45  
 

 
 

   
 

 
 

 0.61  
 

 

 

 Ratio xy to:  
 

 

   
 

 
 

 0.66  
 

 
 

 0.42  
 

 

 

   
 
 

 

In addition to the ratios, the sums of the x and y values that are present need to be found. 
But since the ratios scale to using an n of 1, so too must the sums of x and y—which is 
identical to using their mean values. The mean values of variable x and of variable y are 
taken for the values of each that are jointly present as shown in Table 8.5. 

 

 

 

 TABLE 8.5  Mean values of x and y for estimating missing values.  
 
 

   
 
 

 n  
 

 

 x  
 

 
 

 y  
 

 



 

   
 
 

 1  
 

 

 0.55  
 

 
 

 0.53  
 

 

 

 2  
 

 

   
 

 
 

 0.37  
 

 

 

 3  
 

 

 0.32  
 

 
 

 0.83  
 

 

 

 4  
 

 

 0.21  
 

 
 

   
 

 

 

 5  
 

 

 0.43  
 

 
 

 0.54  
 

 

 

 Sum  
 

 

 1.30  
 

 
 

 1.90  
 

 

 

 Mean  
 

 

 0.43  
 

 
 

 0.63  
 

 

 

   
 
 

 

For the linear regression, first a value for b must be found. Because ratios are being used, 
the ratio must be used to yield an appropriate value of xx2and xxy to use for any value of 
xx. For example, since the ratio of xx to xx2 is 0.45, then given an xx of 0.43, the 
appropriate value of xx2 is 0.43 x 0.45 = 0.1935—that is, the actual value multiplied by the 
ratio. Table 8.6 shows the appropriate values to be used with this example of a missing x 
value. 

 

 

 

 TABLE 8.6  Showing ratio-derived estimated values for xx2 and xxy.  
 
 

   
 
 

 Est xx  
 

 

 Est xx2  
 

 
 

 Est xxy  
 

 

 

   
 
 

 0.43  
 

 

 0.43 x 0.45 = 0.1935  
 

 
 

 0.43 x 0.61 = 0.2623  
 

 

 

   
 
 

 Plugging these values into the expression to find b gives  
 
 



 

 

 

 
 

 
So b = –1. The negative sign indicates that values of y will decrease as values of x 
increase. Given this value for b, a can be found: 

 

 
 

 

 

 

 
 

 

The a value is 1.06. With suitable values discovered for a and b, and using the formula for 
a straight line, an expression can be built that will provide an appropriate estimate for any 
missing value of y, given a value of x. That expression is 

 

 
 

 y = a + bx  
 
 

 y = 1.06 + (–1)x  
 
 

 y = 1.06 – x  
 
 

 
Table 8.7 uses this expression to estimate the values of y, given x, for all of the original 
values of x. 

 

 

 

 
TABLE 8.7  Derived estimates of y given an x value using linear regression based 
on ratios. 

 

 
 

   
 
 

 Original x  
 

 

 Original y  
 

 
 

 Estimated y  
 

 
 

 Error  
 

 

 

   
 
 

 0.55  
 

 

 0.53  
 

 
 

 0.51  
 

 
 

 0.02  
 

 

 

 0.75  
 

 

 0.37  
 

 
 

 0.31  
 

 
 

 0.06  
 

 



 

 0.32  
 

 

 0.83  
 

 
 

 0.74  
 

 
 

 0.09  
 

 

 

 0.21  
 

 

 0.86  
 

 
 

 0.85  
 

 
 

 0.01  
 

 

 

 0.43  
 

 

 0.54  
 

 
 

 0.63  
 

 
 

 0.09  
 

 

 

   
 
 

 

These estimates of y are quite close to the original values in this example. The error, the 
difference between the original value and the estimate, is small compared to the actual 
value. 

 

 

 

 Multiple Linear Regression  
 
 

 

The equations used for performing multiple regression are extensions of those already 
used for linear regression. They are built from the same components as linear 
regression—xx, xx2, xxy—for every pair of variables included in the multiple regression. 
(Each variable becomes x in turn, and for that x, each of the other variables becomes y in 
turn.) All of these values can be estimated by finding the ratio relationships for those 
variables’ values that are jointly present in the initial sample data set. With this information 
available, good linear estimates of the missing values of any variable can be made using 
whatever variable instance values are actually present. 

 

 
 

 

With the ratio information known for all of the variables, a suitable multiple regression can 
be constructed for any pattern of missing values, whether it was ever experienced before 
or not. Appropriate equations for the instance values that are present in any instance can 
be easily constructed from the ratio information. These equations are then used to predict 
the missing values. 

 

 
 

 

For a statistician trying to build predictions, or glean inferences from a data set, this 
technique presents certain problems. However, the problems facing the modeler when 
replacing data are very different, for the modeler requires a computationally tractable 
method that introduces as little bias as is feasible when replacing missing values. The 
missing-value replacements themselves should contribute no information to the model. 
What they do is allow the information that is present (the nonempty instance values) to be 
used by the modeling tool, adding as little extraneous distortion to a data set as possible. 

 

 
 

 

It may seem strange that the replacement values should contribute no information to a 
data set. However, any replacement value can only be generated from information that is 
already present in the form of other instance values. The regression equations fit the 
replacement value in such a way that it least distorts the linear relationships already 
discovered. Since the replacement value is derived exclusively from information that is 
already present in the data set, it can only reexpress the information that is already 

 



present. New information, being new, changes what is already known to a greater or 
lesser degree, actually defining the relationship. Replacement values should contribute as 
little as possible to changing the shape of the relationships that already exist. The existing 
relationship is what the modeler needs to explore, not some pattern artificially constructed 
by replacing missing values! 

 

 

 Alternative Methods of Missing-Value Replacement  
 
 

 

Preserving joint variability between variables is far more effective at providing unbiased 
replacement values than methods that do not preserve variability. In practice, many 
variables do have essentially linear between-variable relationships. Even where the 
relationship is nonlinear, a linear estimate, for the purpose of finding a replacement for a 
missing value, is often perfectly adequate. The minute amount of bias introduced is often 
below the noise level in the data set anyway and is effectively unnoticeable. 

 

 
 

 

Compared to finding nonlinear relationships, discovering linear relationships is both fast 
and easy. This means that linear techniques can be implemented to run fast on modern 
computers, even when the dimensionality of a data set is high. Considering the small 
amount of distortion usually associated with linear techniques, the trade-offs in terms of 
speed and flexibility are heavily weighted in favor of their use. The replacement values 
can be generated dynamically (on the fly) at run time and substituted as needed. 

 

 
 

 

However, there are occasions when the relationship is clearly nonlinear, and when a 
linear estimate for a replacement value may introduce significant bias. If the modeler 
knows that the relationship exists, some special replacement procedure for missing 
values can be used. The real problem arises when a significantly nonlinear relationship 
exists that is unknown to the modeler and domain expert. Mining will discover this 
relationship, but if there are missing values, linear estimates for replacements will produce 
bias and distortion. Addressing these problems is outside the scope of the demonstration 
software, which is intended only to illustrate the principles involved in data preparation. 

 

 
 

 

There are several possible ways to address the problem. Speed in finding replacement 
values is important for deployed production systems. In a typical small direct marketing 
application, for instance, a solicitation mailing model may require replacing anything from 
1 million to 20 million values. As another example, large-scale, real-time fraud detection 
systems may need from tens to hundreds of millions of replacement values daily. 

 

 

 

 Tests of Nonlinearity: Extending the Ratio Method of Estimation  
 
 

 

There are tests to determine nonlinearity in a relationship. One of the easiest is to simply 
try nonlinear regressions and see if the fit is improved as the nonlinearity of the 
expression increases. This is certainly not foolproof. Highly nonlinear relationships may 
well not gradually improve their fit as the nonlinearity of the expression is increased. 

 

 
 



 

An advantage of this method is that the ratio method already described can be extended 
to capture nonlinear relationships. The level of computational complexity increases 
considerably, but not as much as with some other methods. The difficulty is that choosing 
the degree of nonlinearity to use is fairly arbitrary. There are robust methods to determine 
the amount of nonlinearity that can be captured at any chosen degree of nonlinearity 
without requiring that the full nonlinear multiple regressions be built at every level. This 
allows a form of optimization to be included in the nonlinearity estimation and capture. 
However, there is still no guarantee that nonlinearities that are actually present will be 
captured. The amount of data that has to be captured is quite considerable but relatively 
modest compared with other methods, and remains quite tractable. 

 

 
 

 

At run time, missing-value estimates can be produced very quickly using various 
optimization techniques. The missing-value replacement rate is highly dependent on 
many factors, including the dimensionality of the data set and the speed of the computer, 
to name only two. However, in practical deployed production systems, replacement rates 
exceeding 1000 replacements per second, even in large or high-throughput data sets, 
can be easily achieved on modern PCs. 

 

 

 

 Nonlinear Submodels  
 
 

 

Another method of capturing the nonlinearities is to use a modeling tool that supports 
such a model. Neural networks work well (described briefly in Chapter 10). In this case, 
for each variable in the data set, a subsample is created that has no missing values. This 
is required as unmodified neural networks do not handle missing values—they assume 
that all inputs have some value. A predictive model for every variable is constructed from 
all of the other variables, and for the MVPs. When a missing value is encountered, the 
appropriate model is used to predict its value from the available variable values. 

 

 
 

 

There are significant drawbacks to such a method. The main flaw is that it is impossible to 
train a network for every possible pattern of missing values. Training networks for all of 
the detected missing patterns in the sample may itself be an enormous task. Even when 
done, there is no prediction possible when the population produces a previously 
unencountered MVP, since there is no network trained for that configuration. Similarly, the 
storage requirements for the number of networks may be unrealizable. 

 

 
 

 

A modification of this method builds fewer models by using subsets of variables as inputs. 
If the subset inputs are carefully selected, models can be constructed that among them 
have a very high probability that at least one of them will be applicable. This approach 
requires constructing multiple, relatively small networks for each variable. However, such 
an approach can become intractable very quickly as dimensionality of the data set 
increases. 

 

 
 

 
An additional problem is that it is hard to determine the appropriate level of complexity. 
Missing-value estimates are produced slowly at run time since, for every value, the 

 



appropriate network has to be looked up, loaded, run, and output produced. 
 

 

 Autoassociative Neural Networks  
 
 

 

Autoassociative neural networks are briefly described in Chapter 10. In this architecture, 
all of the inputs are also used as predicted outputs. Using such an architecture, only a 
single neural network need be built. When a missing value(s) is detected, the network can 
be used in a back-propagation mode—but not a training mode, as no internal weights are 
adjusted. Instead, the errors are propagated all the way back to the inputs. At the input, an 
appropriate weight can be derived for the missing value(s) so that it least disturbs the 
internal structure of the network. The value(s) so derived for any set of inputs reflects, and 
least disturbs, the nonlinear relationship captured by the autoassociative neural network. 

 

 
 

 

As with any neural network, its internal complexity determines the network’s ability to 
capture nonlinear relationships. Determining that any particular network has, in fact, 
captured the extant nonlinear relationship is difficult. The autoassociative neural network 
approach has been used with success in replacing missing values for data sets of modest 
dimensionality (tens and very low hundreds of inputs), but building such networks for 
moderate- to high-dimensionality data sets is problematic and slow. The amount of data 
required to build a robust network becomes prohibitive, and for replacement value 
generation a robust network that actually reflects nonlinearities is needed. 

 

 
 

 At run time, replacement values can be produced fairly quickly.  
 

 

 Nearest-Neighbor Estimators  
 
 

 

Nearest-neighbor methods rely on having the training set available at run time. The 
method requires finding the point in state space best represented by the partially 
complete instance value, finding the neighbors nearest to that point, and using some 
metric to derive the missing values. It depends on the assumption that representative 
near neighbors can be found despite the fact that one or more dimensional values is 
missing. This can make it difficult to determine a point in state space that is 
representative, given that its position in the dimensions whose value is missing is 
unknown. Nonetheless, such methods can produce good estimates for missing values. 
Such methods are inherently nonlinear so long as representative near neighbors can be 
found. 

 

 
 

 

The main drawbacks are that having the training data set available, even in some collapsed 
form, may require very significant storage. Lookup times for neighbors can be very slow, so 
finding replacement values too is slow. 

 

 



 

Chapter 9: Series Variables  

 

 

 Overview  
 
 

 

Series variables have a number of characteristics that are sufficiently different from other 
types of variables that they need examining in more detail. Series variables are always at 
least two-dimensional, although one of the dimensions may be implicit. The most common 
type of series variable is a time series, in which a series of values of some feature or 
event are recorded over a period of time. The series may consist of only a list of 
measurements, giving the appearance of a single dimension, but the ordering is by time, 
which, for a time series, is the implicit variable. 

 

 
 

 

The series values are always measured on one of the scales already discussed, nominal 
through ratio, and are presented as an ordered list. It is the ordering, the expression of the 
implied variable, that requires series data to be prepared for mining using techniques in 
addition to those discussed for nonseries data. Without these additional techniques the 
miner will not be able to best expose the available information. This is because series 
variables carry additional information within the ordering that is not exposed by the 
techniques discussed so far. 

 

 
 

 

Up to this point in the book we have developed precise descriptions of features of 
nonseries data and various methods for manipulating the identified features to expose 
information content. This chapter does the same for series data and so has two main 
tasks: 

 

 
 

  
1. 

 
Find unambiguous ways to describe the component features of a series data set so 
that it can be accurately and completely characterized 

 

 
 

  
2. 

 
Find methods for manipulating the unique features of series data to expose the 
information content to mining tools 

 

 
 

 

Series data has features that require more involvement by the miner in the preparation 
process than for nonseries data. Where miner involvement is required, fully automated 
preparation tools cannot be used. The miner just has to be involved in the preparation and 
exercise judgment and experience. Much of the preparation requires visualizing the data set 
and manipulating the series features discussed. There are a number of excellent commercial 
tools for series data visualization and manipulation, so the demonstration software does not 
include support for these functions. Thus, instead of implementation notes concluding the 
chapter discussing how the features discussed in the chapter are put into practice, this 
chapter concludes with a suggested checklist of actions for preparing series data for the 
miner to use. 

 

 



9.1  Here There Be Dragons!  
 
 

 

Mariners and explorers of old used fanciful and not always adequate maps. In unexplored or 
unknown territory, the map warned of dragons—terrors of the unknown. So it is when 
preparing data, for the miner knows at least some of the territory. Many data explorers have 
passed this way. A road exists. Signposts point the way. Maybe the dragons were chased 
away, but still be warned. “Danger, quicksand!” Trouble lurks inside series data; the road of 
data preparation is rocky and uncertain, sometimes ending mired in difficulties. It is all too 
easy to seriously damage data, render it useless, or worse, create wonderful-looking 
distortions that are but chimera that melt away when exposed to the bright light of reality. 
Like all explorers faced with uncertainty, the miner needs to exercise care and experience 
here more than elsewhere. The road is rough and not always well marked. Unfortunately, the 
existing signposts, with the best of intentions, can still lead the miner seriously astray. Tread 
this path with caution! 

 

 
9.2  Types of Series  
 
 

 

Nonseries multivariable measurements are taken without any particular note of their 
ordering. Ordering is a critical feature of a series. Unless ordered, it’s not a series. One of 
the variables (called the displacement variable, and described in a moment) is always 
monotonic—either constantly increasing or constantly decreasing. Whether there is one 
or several other variables in the series, their measurements are taken at defined points on 
the range of the monotonic variable. The key ordering feature is the change in the 
monotonic variable as its values change across part or all of its range. 

 

 
 

 

Time series are by far the most common type of series. Measurements of one variable are 
taken at different times and ordered such that an earlier measurement always comes 
before a later measurement. For a time series, time is the displacement variable—the 
measurements of the other variable (or variables) are made as time is “displaced,” or 
changed. The displacement variable is also called the index variable. That is because the 
points along the displacement variable at which the measurements are taken are called 
the index points. 

 

 
 

 

Dimensions other than time can serve as the displacement dimension. Distance, for 
instance, can be used. For example, measuring the height of the American continent 
above sea level at different points on a line extending from the Atlantic to the Pacific 
produces a distance displacement series. 

 

 
 

 

Since time series are the most common series, where this chapter makes assumptions, a 
time series will be assumed. The issues and techniques described about time series also 
apply to any other displacement series. Series, however indexed, share many features in 
common, and techniques that apply to one type of series usually apply to other types of 
series. Although the exact nature of the displacement variable may make little difference to 
the preparation and even, to some degree, the analysis of the series itself, it makes all the 



difference to the interpretation of the result! 
 

 
9.3  Describing Series Data  
 
 

 

Series data differs from the forms of data so far discussed mainly in the way in which the 
data enfolds the information. The main difference is that the ordering of the data carries 
information. This ordering, naturally, precludes random sampling since random sampling 
deliberately avoids, and actually destroys, any ordering. Preserving the ordering is the 
main reason that series data has to be prepared differently from nonseries data. 

 

 
 

 

There is a large difference between preparing data for modeling and actually modeling the 
data. This book focuses almost entirely on how to prepare the data for modeling, leaving 
aside almost all of the issues about the actual modeling, insofar as is practical. The same 
approach will apply to series data. Some of the tools needed to address the data 
preparation problems may look similar, indeed are similar, to those used to model and 
glean information and insight into series data. However, they are put to different purposes 
when preparing data. That said, in order to understand some of the potential problems 
and how to address them, some precise method of describing a series is needed. A key 
question is, What are the features of series data? 

 

 
 

 

To answer this question, the chapter will first identify some consistent, recognizable, and 
useful features of series data. The features described have to be consistent and 
recognizable as well as useful. The useful features are those that best help the miner in 
preparing series data for modeling. The miner also needs these same features when 
modeling. This is not surprising, as finding the best way to expose the features of interest 
for modeling is the main objective of data preparation. 

 

 

 

 9.3.1  Constructing a Series  
 
 

 
A series is constructed by measuring and recording a feature of an object or event at 
defined index points on a displacement dimension. 

 

 
 

 
This statement sufficiently identifies a series for mining purposes. It is not a formal 
definition but a conceptual description, which also includes the following assumptions: 

 

 
 

  1.  The feature or event is recorded as numerical information.  
 
 

  
2. 

 
The index point information is either recorded, or at least the displacements are 
defined. 

 

 
 

  3.  The index, if recorded, is recorded numerically.  
 
 

 
It is quite possible to record a time series using alpha labels for the nondisplacement 
dimension, but this is extremely rare. Numerating such alpha values within the series is 

 



possible, although it requires extremely complex methods. While it is very unusual indeed 
to encounter series with one alpha dimension, it is practically unknown to find a series 
with an alpha-denominated displacement variable. The displacement dimension has to be 
at least an ordinal variable (ratio more likely), and these are invariably numerical. 
Because series with all dimensions numerical are so prevalent, we will focus entirely on 
those. 

 
 

 

It is also quite possible to record multivariable series sharing a common displacement 
variable, in other words, capturing several features or events at each index mark. An 
example is collecting figures for sales, backlog, new orders, and inventory level every 
week. “Time” is the displacement variable for all the measurements, and the index point is 
weekly. The index point corresponds to the validating event referred to in Chapter 2. 
There is no reason at all why several features should not be captured at each index, the 
same as in any nonseries multidimensional data set. However, just as each of the 
variables can be considered separately from each other during much of the nonseries 
data preparation process, so too can each series variable in a multidimensional series be 
considered separately during preparation. 

 

 

 

 9.3.2  Features of a Series  
 
 

 

By its nature a series has some implicit pattern within the ordering. That pattern may 
repeat itself over a period. Often, time series are thought of by default as repetitive, or 
cyclic, but there is no reason that any repeating pattern should in fact exist. There is, for 
example, a continuing debate about whether the stock market exhibits a repetitive pattern 
or is simply the result of a random walk (touched on later). Enormous effort has been put 
into detecting any cyclic pattern that may exist, and still the debate continues. There is, 
nonetheless, a pattern in series data, albeit not necessarily a repeating one. One of the 
objectives of analyzing series data is to describe that pattern, identify it as recognizable if 
possible, and find any parts that are repetitive. Preparing series data for modeling, then, 
must preserve the nature of the pattern that exists. Preparation also includes putting the 
data into a form in which the desired information is best exposed to a modeling tool. Once 
again, a warning: this is not always easy! 

 

 
 

 

Before looking at how series data may be prepared, and what problems may be detected 
and corrected, the focus now turns to finding some way to unambiguously describe the 
series. 

 

 

 

 9.3.3  Describing a Series—Fourier  
 
 

 

Jean Baptiste Joseph Fourier was not a professional mathematician. Nonetheless, he 
exerted an influence on mathematicians and scientists of his day second only to that of Sir 
Isaac Newton. Until Fourier revealed new tools for analyzing data, several scientists 
lamented that the power of mathematics seemed to be just about exhausted. His insights 
reinvigorated the field. Such is the power of Fourier’s insight that its impact continues to 

 



reverberate in the modern world today. Indeed, Fourier provided the key insights and 
methods for developing the tools responsible for building the modern technology that we 
take for granted. 

 
 

 

To be fair, the techniques today brought under the umbrella description of Fourier 
analysis were not all entirely due to Fourier. He drew on the work of others, and 
subsequent work enormously extends his original insight. His name remains linked to 
these techniques, and deservedly so, because he had the key insights from which all else 
flowed. 

 

 
 

 

One of the tools he devised is a sort of mathematical prism. Newton used a prism to 
discover that white light consists of component parts (colors). Fourier’s prism scatters the 
information in a series into component parts. It is a truly amazing device that hinges on 
two insights: waves can be added together, and adding enough simple sine and cosine 
waves of different frequencies, phases, and amplitudes together is sufficient to create any 
series shape. Any series shape! 

 

 
 

 When adding waveforms together, several things can be varied. The three key items are  
 
 

  •  The frequency, or how many times a waveform repeats its pattern in a given time  
 
 

  
• 
 
The phase, that is, where the peaks and troughs of a wave occur in relation to peaks 
and troughs of other waves 

 

 
 

  •  The amplitude, or distance between the highest and lowest values of a wave  
 
 

 

Figure 9.1 shows how two waveforms can be added together to produce a third. The 
frequency simply measures how many waves, or cycles, occur in a given time. The top 
two waveforms are symmetrical and uniform. It is easy to see where they begin to repeat 
the previous pattern. The two top waveforms also have different frequencies, which is 
shown by the identified wavelengths tracing out different lengths on the graph. The lower, 
composite waveform cannot, just by looking at it, positively be determined to have 
completed a repeating pattern in the width of the graph. 

 

 

 



 

 

 

 
 

 

Figure 9.1  The addition of two waveforms shows how to create a 
new  waveform. The values of the consine and sine waveforms are added 
together and the result plotted. The resulting wave-form may look nothing like the 
source that created it. 

 

   
 
 

 
Figure 9.2 shows two waveforms that are both complete cycles, and both are identical in 
length. The waveforms illustrate the sine and the cosine functions: 

 

 
 

 y = sine(xo)  
 
 

 and  
 
 

 y = cosine(xo)  
 

 

 

 

 

 
 

 
Figure 9.2  Values of the functions “sine” and “cosine” plotted for the number of 
degrees shown on the central viniculum. 

 

   
 
 

 When used in basic trigonometry, both of these functions return specific values for any  



number of degrees. They are shown plotted over 360°, the range of a circle. Because 0° 
represents the same circular position as 360° (both are due north on a compass, for 
example), this has to represent one complete cycle for sine and cosine waveforms—they 
begin an identical repetition after that point. Looking at the two waveforms shows that the 
sine has identical values to the cosine, but occurring 90° later (further to the right on the 
graph). The sine is an identical waveform to the cosine, shifted 90°. “Shifted” here literally 
means moved to the right by a distance corresponding to 90°. This shift is called a phase 
shift, and the two waveforms are said to be 90° out of phase with each other. 

 
 

 

The two upper images in Figure 9.3 show the effect of changing amplitude. Six sine and 
cosine waveforms, three of each, are added together. The frequencies of each 
corresponding waveform in the two upper images are identical. All that has changed is the 
amplitude of each of the waveforms. This makes a very considerable difference to the 
resulting waveform shown at the bottom of each image. The lower two images show the 
amplitudes held constant, but the frequency of each contributing waveform differs. The 
resulting waveforms—the lower waveform of each frame—show very considerable 
differences. 

 

 

 

 

 

 

 
 

 

Figure 9.3  These four images show the result of summing six waveforms. In the 
top two images, the frequencies of the source waveforms are the same; only their 
amplitude differs. In both of the two lower images, all waveforms have similar 
amplitude. 

 

   
 
 

 

It was Fourier’s insight that by combining enough of these two types of waveforms, 
varying their amplitude, phase, and frequency as needed, any desired resultant waveform 
can be built. Fourier analysis is the “prism” that takes in a complex waveform and “splits” it 
into its component parts—just as a crystal prism takes in white light and splits it into the 
various colors. And just as there is only one rainbow of colors, so too, for any specific 
input waveform, there is a single “rainbow” of outputs. 

 

 



 

 

A Fourier analysis provides one way of uniquely describing a series. In Figure 9.4, Fourier 
analysis illustrates the prism effect—splitting a composite waveform into components. 
Also in Figure 9.4, Fourier synthesis shows how the reverse effect works—reassembling 
the waveform from components. 

 

 

 

 

 

 

 
 

 

Figure 9.4  Fourier analysis takes in a complex waveform and yields an 
expression giving the appropriate component sine and cosine expressions, 
together with their amplitude, frequency, and phase, to re-create the analyzed 
waveform. Fourier synthesis takes the analyzed expression and yeilds the 
composite waveform. 

 

   
 

 

 9.3.4  Describing a Series—Spectrum  
 
 

 

A spectrum is normally thought of as an array of colors—“the colors of the spectrum.” For 
light, that exactly describes a spectrum, but an infinite variety of different spectra exist. 
When sunlight passes through a prism, it breaks into a band showing the array of all 
colors possible from white light. If, however, a colored light beam passes through a prism, 
the resulting spectrum does not show all of the possible colors equally brightly. 
Depending on the exact color of the original colored light beam, all of the possible colors 
may be present. The brightest intensity of color in the spectrum will correspond to the 
apparent color of the incoming beam. Because light is a form of energy, the energy of the 
brightest portion of the spectrum contains the most energy. For light, a spectrum shows 
the energy distribution of an incoming light beam—brightest color, highest energy. 

 

 
 

 

Fourier analysis also allows a spectrum to be generated. The previous section explained 
that any shape of waveform can be built out of component parts—various individual sine 
and cosine waveforms of specific frequency, phase, and amplitude. (Fourier analysis 
produces information about which [sine/cosine] waveforms are present in the series, 
which frequencies are present, and how strong [amplitude] each of the component parts 
is.) Figure 9.5 shows a cosine waveform in the upper image, with the associated “power” 
spectrum below. The power in this case relates to the most prevalent component 
waveform. The cosine waveform is “pure” in the sense that it consists of entirely one 
wavelength and is uniform in amplitude. When producing the spectrum for this waveform, 
there is a single spike in the spectrum that corresponds to the frequency of the waveform. 
There are no other spikes, and most of the curve shows zero energy, which is to be 

 



expected from a pure waveform. 
 

 

 

 

 

 
 

 
Figure 9.5  A pure cosine waveform of uniform amplitude and fequency (top) and
the frequency spectrum for this waveform (bottom). 

 

   
 
 

 

What happens if there are several frequencies present? Figure 9.6, in the top image, 
shows a composite waveform created from the six waveforms shown above it. When a 
spectral analysis is made of the composite waveform, shown in the lower image, there are 
six spikes. The height of each spike corresponds to the amplitude of each component 
waveform, and the position along the x (horizontal) axis of the graph corresponds to the 
frequency of the component waveform. The spectrum shows clearly that there are six 
component frequencies, declining approximately in amplitude from left to right. Inspection 
of the upper image reveals that the upper six waveforms, the components of the lower 
composite waveform, increase in frequency from top to bottom, and also decrease in 
amplitude from top to bottom. So the spectrum accurately reflects the way the analyzed 
composite waveform was actually constructed. In this example, Figures 9.5 and 9.6 show 
a spectrum for single and composite waveforms that consist of “clean” components. What 
does a spectrum look like for a noisy signal? 

 

 

 



 

 

 

 
 

 

Figure 9.6  Six components of a composite waveform (top) the composite 
waveform itself is shown as the lowest waveform—and the power spectrum for the 
composite waveform (bottom). 

 

   
 
 

 

Figure 9.7 uses the same composite signal built of six components. Considerable noise is 
added to the waveform. The top-left image graphs the noise. This is a random waveform, 
varying in value between x1. The bottom-left image shows the power spectrum for the 
all-noise waveform. The power is distributed fairly evenly along the bottom of the graph. 
This indicates that there is a fairly equal amount of power present at all wavelengths 
(frequencies). However, even though this is randomly generated noise, some 
frequencies, by chance, have more power than others, as shown by the fact that the 
graphed power spectrum has peaks and valleys. Since this is known to be random noise, 
the peaks of power are known positively to be spurious in this case. (They are present as 
shown in the sample of noise generated for the example, but another, identically 
generated random sample would have minor fluctuations in totally unpredictable places.) 

 

 

 

 

 

 

 
 



 

Figure 9.7  Composite signal built of six components showing graph of the 
random noise (top left), composite waveform with random noise (top right), and 
two power spectrums (lower left and right). 

 

   
 
 

 

In any case, the level of power is low relative to the lower-right image of Figure 9.7. The 
composite waveform, together with the noise added to it, is shown in the upper-right 
image. The power spectrum in the lower-right image still shows the peaks corresponding 
to the six component waveforms, but the noise obscures exactly how many there are and 
precisely where they are located. Adding noise, in other words, “blurred” the original 
waveform. 

 

 
 

 

So far, all of the waveforms examined have no trend. A trend is a noncyclic, monotonically 
increasing or decreasing component of the waveform. Figure 9.8 shows the composite 
waveform with an increasing trend in the top image. The bottom image shows the 
spectrum for such a trended waveform. The power in the trend swamps the detail. The 
peak at 0 on the x-axis is very large compared with the power shown in the other spectra. 
(Most of the spectral images share a common vertical scale within each figure. The 
vertical scale of this image has to be much larger than in other images in other figures to 
show the amplitude of the energy present.) Clearly this causes a problem for the analysis, 
and dealing with it is discussed shortly. 

 

 

 

 

 

 

 
 

 

Figure 9.8  Adding a trend to the composite waveform makes it rise overall over 
time. The rise appears quite modest (top), but the power in the trend component 
completely swamps any other detail in the power spectrum (bottom). 

 

   
 
 

 

In these examples, almost all of the waveforms discussed are produced by sine and 
cosine functions. Distorting noise, not deliberately produced by sine or cosine functions, is 
added, but the underlying waveforms are regularly cyclical. Figure 9.9 looks at the 

 



spectral analysis of a waveform generated at random. This is the type of shape known as 
a “random walk.” The random walk shown in the top image starts at 0. From whatever 
point it is at, it moves from that position either up or down at random, and for a distance of 
between 0–1 chosen at random, to reach its next position. Each step in distance and 
direction that the waveform takes, starts wherever the last one ended. (Although removing 
trend has not been discussed yet, because the random walk shows an apparent trend that 
causes a spectral analysis problem, the waveform has been detrended before the 
spectrum was produced. Detrending is discussed later in this chapter.) 

 

 

 

 

 

 
 

 

Figure 9.9  A waveform generated by a random selection of the next direction 
and distance in which to move from every point (top) and a spectral analysis, 
which shows high energy at some frequencies (bottom). 

 

   
 
 

 

The spectral analysis in the lower image shows that one frequency predominates in this 
random walk. Indeed, Fourier analysis describes this waveform as an assemblage of sine 
and cosine functions. Does this mean that the random walk is predictable? Unfortunately 
not. Describing an existing waveform, and predicting some future shape for a waveform, 
are entirely different activities. This waveform is randomly shaped. Random numbers 
have a distribution. That distribution may be rectangular, normal, or some other shape. It 
may change over time. It may even be completely unknown. Regardless, it is nonetheless 
present, and, since a distribution has some structure, even truly random numbers drawn 
from this distribution carry evidence of the structure of the distribution. This shows up in 
the spectral analysis. In this case, no prediction at all can be made about the future 
progress of this particular series. Some inferences about various probabilities can be 
made, but no valid predictions. 

 

 
 

 

But surely, if inferences can be made, predictions can be made too! As an example of the 
difference between an inference and a prediction, observe that each discrete step in the 
random walk is never more than one unit in each direction. Furthermore, by adding the 

 



assumption that the future will continue to be like the past, we can infer that each step will 
continue to be less than one unit in each direction. This still does not lead to a prediction 
of any future value. The best that can be said is that next direction and distance of change 
will remain less than one unit, positive or negative. We can estimate some probability of 
any particular value being the next value based on the observed past distribution of step 
direction and sizes. Even then, unless one knows the causative mechanism that is 
generating the size and direction of the positive and negative steps, that too can change 
at any time, invalidating the assumption. Even though there is a structure, the next-step 
direction, for instance, is no more certain than the outcome of the flip of a fair coin. 

 
 

 

How to tell, then, if this is a random walk, or a genuine cyclic pattern? That too is a very 
fraught question. There are tests for randomness, and some “fingerprints” of randomness 
are discussed later in this chapter. Even so, it is very easy to “discover” meaningless 
patterns. Aspects of series data preparation, even as opposed to analysis, depend to 
some extent on discovering patterns. Meaningless patterns are worse than useless, and 
as discussed later, they may be positively damaging. Here indeed lurk dragons, chimera, 
and quicksand! 

 

 

 

 9.3.5  Describing a Series—Trend, Seasonality, Cycles, Noise   
 

 

A form of time series analysis known as classical decomposition looks at the series as 
being built from four separate components: trend, seasonality, cycles, and noise. Three of 
these components turned up during the discussion of spectral analysis. Regarding the 
components as separate entities helps in dealing with data preparation problems. For 
instance, in the example used in Figure 9.8, adding a trend component to a cyclical 
component swamped any other information in the power spectra. In building a description 
of how power spectra describe waveforms, it was convenient and natural to describe the 
components in terms of trend, cycles, and noise. Since these components will be 
manipulated in preparing series data, a slightly closer look at each of them is useful, as 
well as a look at what “seasonality” might be. 

 

 
 

 

Trend moves in a consistent direction. That is, it is monotonically unidirectional—either 
never decreasing or never increasing. If never decreasing, it is increasing, and although 
the rate at which it increases may vary over time, even to 0, it never falls below 0. 
Similarly, if decreasing, the rate at which it decreases may vary over time, but while it may 
be flat (fails to actually decrease), it never actually increases. Should the trend line 
moving in one direction change to the other direction, it is regarded as a different trend, or 
perhaps as a long period cycle. 

 

 
 

 

Note that what is regarded as a trend over one time period may be a cycle over a different 
period. For instance, sales, fraud, or some other measure may increase in an upward 
trend over a year or two. Over 10 years that same trend may be seen to be a part of a 
larger cyclical pattern such as the business or economic cycle. This piece of the overall 
pattern, then, would be seen as a trend over 2 years, and a cycle over 10. This distinction 

 



is valid, not arbitrary, as trend components have to be treated differently from cyclical 
components. So it is true that the difference between finding a trend and finding a cycle 
may depend entirely on the period that the data covers. 

 
 

 

Seasonality reflects the insight that, regardless of any other trend, cycle, or noise 
influence, certain seasons are inherently different. In time series, seasons are often 
exactly that—seasons of the year. For example, regardless of economic conditions and 
other factors, consumers spend more in late December than at other times of the year. 
Although it appears to be a cyclic effect, it isn’t. It is caused by a phenomenon that is local 
to the season: Christmas. Although Christmas occurs cyclically, it is not a cyclic event 
itself. That is to say, Christmas doesn’t wax and wane over the course of the year. What is 
the level of “Christmasness” in, say, June, July, or August? Is the change in 
Christmasness part of a cycle during those months? The answer is no, since Christmas is 
not a cyclical phenomenon but a seasonal one. For instance, to understand how a June 
sales campaign performed relative to a December campaign, the effect of Christmas 
occurring in December needs to be removed before attempting to make a fair 
comparison. 

 

 
 

 

What in a time series are called seasonal effects do occur in other types of displacement 
series, although they are usually much harder to intuitively understand. Where they do 
occur, it usually requires a domain expert to identify the seasonalities. 

 

 
 

 

Cycles are fluctuations in the level of the series that have some identifiable repetitive form 
and structure. Cycles represent the “what goes around, comes around” part of the series. 
So long as what is going around and coming around can be positively identified, and it 
reoccurs over some defined period—even if the period itself changes over time—it forms 
a cycle. Cycles aren’t necessarily based on, or thought of as, a collection of sine and 
cosine waves. That is only the way that Fourier analysis looks at cycles—indeed, at whole 
waveforms. Very useful, but not necessary. It is only necessary to be able to identify the 
shape of the repetitive component. 

 

 
 

 

Noise has also been discussed. Chapter 2 looked at some of the sources of noise that in 
series data can appear in a number of guises. Figure 9.7 shows it as a distortion added to 
a signal, hiding the underlying structure of the signal. There it is seen as a sort of “fog.” 
Figure 9.9, on the other hand, shows noise as the generating process of a waveform. 
Seeing through the murk of Figure 9.7 is the problem there. Detecting that it is murk at all, 
and that it’s all murk, is the problem in Figure 9.9! 

 

 
 

 

Noise is the component that is left after the trend, cyclic, and seasonal components have 
been extracted. It is irregular, for if it were not, it would be characterized as something 
else. Even so, it has characteristics. Noise comes in different types, colors actually. There 
is gray noise, pink noise, white noise, and blue noise, to name but a few. The shades are 
named by analogy with the color spectrum. The color appellation describes, by analogy, 
the frequency distribution of the noise. Blue light is at the high-frequency end of the color 

 



spectrum. So too, blue noise has a power distribution weighted towards the higher 
frequencies. White light’s energy is evenly distributed at all frequencies—so too with white 
noise. Just as with blue and white noise, the other noise-shaded frequencies share their 
relation with the color spectrum. 

 
 

 

Noise can be generated from a variety of sources. In the physical world, different 
processes tend to generate noise with different “signatures”—characteristic frequency 
distributions. So it is too with noise in behavioral data. Because a noise source may have 
a characteristic signature, which may be seen by looking at a power spectrum, noise 
sources can sometimes be identified. If the noise characteristics are known and constant, 
it can make filtering a waveform out of the noise much easier. (A brief introduction to 
simple filtering techniques is discussed shortly.) 

 

 

 

 9.3.6  Describing a Series—Autocorrelation  
 
 

 

Correlation measures how values of one variable change as values of another variable 
change. There are many types of correlation. Linear correlation measures the closeness 
to linear of the between-variable relationship. (Chapter 8 discussed linear relationships in 
terms of linear regression.) If two variables vary in such a way that the relationship is 
exactly linear, then, knowing of the linear relationship, and knowing the value of one of the 
variables, a 100% confident prediction can be made of the value of the other. For 
instance, the “two times table” has a perfectly correlated, linear relationship between the 
number to be multiplied and the result. Knowing the value of one variable, “the number to 
be multiplied,” is enough to completely define the value of the other variable, “the result.” 

 

 
 

 

Correlation is expressed as a number ranging between +1 and –1. A correlation of x1 
indicates perfect predictability. The linear correlation between the two variables in the two 
times table example is +1. When positive, a linear correlation of ±1 says not only that the 
two variables are completely linearly related, but also that they move in the same 
direction. As one becomes more positive, so does the other. A linear correlation of –1 
indicates a perfectly predictable relationship, but the values of the variables move in 
opposite directions—one getting more positive, the other more negative. The “minus two 
times table” (multiplying any number by –2) would have such a correlation. 

 

 
 

 

Figure 8.5 in the last chapter explained how the equation for a straight line can be 
interpreted. However, the line on that graph does not join all of the points, which are 
shown by small circles. The data points cluster about the line, but the fit is certainly not 
perfect. Knowing one variable’s value gives some idea of the value of the other variable, 
but not an exact idea. Under these circumstances the correlation is less than 1, but since 
there is some relationship, the correlation is not 0. A correlation of 0 means that knowing 
the value of one variable tells nothing about the value of the other variable. 

 

 
 

 
As a general guide, until the correlation gets outside the range of between +0.3 to –0.3, 
any connection is tenuous at best. Not until correlations get to be greater than 0.8, or less 

 



than –0.8, do they begin to indicate a good fit. A difficulty in understanding what 
correlation says about the “goodness of fit” between two variables is that the relationship 
between correlation and the goodness of fit itself is not linear! When trying to understand 
what correlation reveals about the goodness of fit between two variables, perhaps a more 
useful measure is the amount of “explanatory power” one variable has about the value of 
another. This explanatory power represents a linear relationship of how well one 
variable’s value explains another variable’s value. This value, commonly denoted by the 
symbol r2 (technically known as the sample coefficient of determination), is the square of 
the correlation. The square of a number between 0 and 1 is smaller than the original 
number. So a correlation of 0.3 represents a r2 of 0.3 x 0.3 = 0.09, a very small value that 
indicates little explanatory power indeed. Even a correlation of 0.8 only represents an 
explanatory power of 0.8 x 0.8 = 0.64. Note that r2 can never have a negative value since 
the square of any number is always positive and r2 ranges in value from 0 to 1. Correlation 
values are most commonly used and quoted, but it is well to keep in mind that the strength 
of the connection is perhaps more intuitively represented by the square of the correlation. 

 
 

 

Having looked at correlation, autocorrelation follows naturally. Autocorrelation literally 
means correlation with self. When used as a series description, it is a measure of how 
well one part of the series correlates with another part of the same series some fixed 
number of steps away. The distance between index points on the series is called the lag. 
An autocorrelation with a lag of one measures the correlation between every point and its 
immediate neighbor. A lag of two measures the correlation between every point and its 
neighbor two distant. Figure 9.10 shows how the data points can be placed into the 
columns of a matrix so that each column has a different lag from the first column. Using 
this matrix, it is easy to find the linear correlation between each column, each 
corresponding to a different lag. 

 

 

 

 

 

 

 
 

 

Figure 9.10  Building a matrix to find linear correlation for many lags. Every 
additional column is one point further lagged from the first column. Finding the 
correlation between every column gives the data needed to build a correlogram. 

 

   
 
 

 

The result of building a multiple lag autocorrelation is a correlogram. A correlogram 
measures, and shows in graphical form, the correlation for each of many different lags. 
This is done by plotting the linear correlation for a lag of one, then for a lag of two, then 

 



three, and so on. Figure 9.11 shows a series of the waveforms used so far, together with 
their associated correlograms. Comparison between the correlograms and the spectra for 
the same waveforms shows that different features about the waveforms are emphasized 
by each descriptive technique. 

 

 

 

 

 

 
 

 Figure 9.11  Waterforms and their correlograms. 
 

 
9.4  Modeling Series Data  
 
 

 

Given these tools for describing series data, how do they help with preparing the data for 
modeling? There are two main approaches to modeling series data. One uses extensions 
to the descriptive tools just discussed, and attempts to understand and explicate the 
within-variable and between-variable interactions in terms of the series itself. The other 
approach decomposes the data, using something like a reverse pivot (described in 
Chapter 4), and uses nonseries tools to further analyze the data. 

 

 
 

 

Both of these approaches try to understand the interactions of the data over time. The first 
approach tries to understand the data in time, whereas the second tries to understand the 
effect of time. For instance: 

 

 
 

  •  Approach 1 shows how sales/fraud/claims vary over time.  
 
 

  
• 
 
Approach 2 shows what the effect of the trend/season/cycle/noise of sales/fraud/claims 
has on inferences/predictions about backlog/losses/payments. 

 

 
 

 

Deciding which approach, or deciding to use both approaches, does have an impact on data 
preparation. However, it mainly affects data set assembly, rather than other aspects of 
preparing series data. In general, the same problems need to be addressed regardless of 
which approach is used. For instance, and this is discussed more fully later, a trend is a 
monotonic component of a series. Monotonicity is a problem that needs to be addressed 



whether or not it is a series that is being modeled, and regardless of which type of series 
model is being built. 

 

 
9.5  Repairing Series Data Problems  
 
 

 

Series data shares most of the problems of nonseries data, plus some additional ones of 
its own. Where the problems are similar, some of the preparation techniques are similar 
too. Some are not. Even those that are similar may need to be implemented differently. 
The important point for the miner to remember about series data is maintaining the 
information contained in the ordering. 

 

 

 

 9.5.1  Missing Values  
 
 

 

While a poorly constructed series can contain empty values, it is very unlikely. Missing 
values cause a major problem in series data, and it is very unlikely that any series would 
be constructed to permit empty values. (Chapter 2 discusses the difference between 
missing and empty values.) In any case, whether missing or empty, series modeling 
techniques fare even worse with values that are absent than nonseries techniques. 

 

 
 

 

There are two dimensions of a series in which a value could be missing: the feature 
variable, and the index variable. Index variable problems are addressed next. Here 
attention will be confined to a value missing in the feature variable. 

 

 
 

 

When replacing a missing value in nonseries data, joint variability is preserved between 
variables, and a suitable value for the replacement is found using the information that is 
contained in whatever variable values are present. If the series is a multivariable series, 
that technique works here too. Instead of multiple regression, a multiple autoregression is 
used to find a replacement value. The concept represents a straightforward extension of 
multiple regression, described in Chapter 8, combined with autocorrelation described 
earlier in this chapter. 

 

 
 

 

Autoregression measures the self-similarity of the waveform across different lags. Just as 
with single linear or multiple regression, so too can autoregressions be determined using 
the ratio method (Chapter 8). Using multiple autoregression techniques for replacing 
missing values can provide a robust estimate for missing values. However, chimerical 
dragons rear their heads when doing this! 

 

 
 

 

Often, time series, both in physical and in behavioral data sets, tend to have contiguous 
missing values—that is, runs of values all missing. This can easily happen if the collection 
mechanism either fails or is intermittent in operation. Then there may occur runs of data 
with periods of no data in between. Filling in these holes with self-similar patterns from 
other parts of the series reinforces the apparent self-similarity. The estimated missing 
values will be smoothed (smoothing is mentioned later) by the replacement process itself 
since they represent some sort of aggregated estimate of the missing value. Unfortunately 

 



for missing-value replacement, smoothing enhances any regular patterns in the data that 
are being used to make the estimate. So replacing missing values necessarily enhances 
a pattern that is discovered elsewhere in the series and used to replace the missing runs 
of data. 

 
 

 

This means that not only is a missing run replaced with an aggregate pattern borrowed 
from elsewhere, it is an aggregate pattern enhanced by smoothing! When the prepared 
data is later modeled, this enhanced pattern may be, almost certainly will be, 
“discovered.” Depending on the length of the replaced run, it may predominate in a 
spectral analysis or correlogram, for instance. 

 

 
 

 

One way to ameliorate the problem to some extent is to add noise to the replacement 
values. A glance at the correlograms in Figure 9.11 shows that the noise added to the 
composite waveform considerably masks the strength of the correlations at various lags. 
But how much noise to add? One estimate for additional noise to add is to use the same 
level that is estimated to exist in the values that are present. And what is that level of 
noise? That question, although examined later, does not always have an easy answer. 

 

 
 

 

This is a very tough chimerical dragon to slay! The miner needs to look carefully at which 
patterns are being reinforced by the replacement of missing values, and be very 
circumspect in deciding later that these are at all meaningful when they are later 
“discovered” during modeling. It is, unfortunately, quite possible that the training, test, and 
evaluation data sets all suffer from the same replacement problem, and thus, seem to 
confirm the “discovery” of the pattern. This chimera can be very persuasive; caution is the 
watchword! 

 

 

 

 9.5.2  Outliers  
 
 

 

Chapter 2 first mentioned outliers—a few values that lie far from the bulk of the range. 
Outliers occur in time series too. They come as individual occurrences and, sometimes, in 
“runs”—clusters of consecutive values of the same order of magnitude as each other, but 
as a group lying well outside the range of the other values. The miner will need to ask 
hard questions about why the outliers exist. Are they really significant? What sort of 
process could account for them? Can they be translated back into the normal range if they 
are indeed errors? 

 

 
 

 
If no rationale can account for the outliers, with all of the same caveats mentioned for 
missing values, as a last resort replace the outliers, exactly as for missing values. 

 

 

 

 9.5.3  Nonuniform Displacement  
 
 

 

Usually, although not invariably, displacement steps are spaced uniformly across the 
indexing dimension—measurements, in other words, taken in regular and uniform 
increments. Many of the analytical techniques assume this uniformity and won’t work well, 

 



or at all, if the displacement is not constant. Since almost all techniques, including spectral 
analysis and correlogramming, assume uniform displacement between indexes, the 
values must be adjusted to reflect what they would have been had they been taken with 
uniform displacement. 

 
 

 

Figure 9.12 shows a sine wave sampled at nonuniform displacements. Graphing it as if 
the displacements were uniform clearly shows jagged distortion. The less uniform the 
displacement intervals, the worse the situation becomes. Since the jagged waveform 
appears affected by noise, techniques for removing the noise work well to estimate the 
original waveform as it would have been if sampled at uniform displacements. 

 

 

 

 

 

 

 
 

 
Figure 9.12  A sine wave that is sampled with a nonconstant displacement. When 
reproduced as if the intervals were constant, the waveform becomes distorted. 

 

   
 

 

 9.5.4  Trend  
 
 

 

Trend is the monotonically increasing or decreasing component of a waveform. Leaving a 
trend present in a waveform causes problems for almost all modeling methods. If the 
trend is nonlinear, then removing the linear component leaves only the nonlinear 
component of the trend. The nonlinear component then appears cyclic. Figure 9.13 shows 
how this can be done. In the left image, performing a linear regression linearly 
approximates the nonlinear trend. Subtracting the linear component from the trend is 
shown in the right image. This leaves the cyclic part of the trend, but there is no trend 
remaining—or at least, stated differently, what there is of the trend now appears to be 
cyclic. 

 

 

 



 

 

 

 
 

 

Figure 9.13  A nonlinear trend and a linear estimates found by linear regression 
(left). Subtracting the linear part of the trend from the nonlinear part turns the 
nonlinear part of the trend, in the case, into a cyclic representation (right). 

 

   
 
 

 

Detrending a series is obviously, at least on occasion, an absolute necessity. (Figure 9.8 
showed how trend can swamp the spectrum.) None of the modeling techniques discussed 
can deal with the problem, whether it is called monotonicity or trend. But detrending has 
dangers. Figure 9.14 shows a cosine waveform. This is a perfectly cyclic waveform that 
oscillates uniformly about the 0 point. A cosine waveform actually has a completely flat 
trend component since, if extended far enough, it has a completely symmetrical 
distribution about the 0 point. Here, as much of the waveform as is available has been 
linearly detrended. The “discovered” linear trend shown apparently has a downward 
slope. Subtracting this slope from the “trended” waveform distorts the waveform. Using 
such a distorted waveform in modeling the data leads to many problems, and 
bad—frequently useless—models. Detrending nontrended data can do enormous 
damage. But can the miner avoid it? 

 

 

 

 

 

 

 
 

 

Figure 9.14  A cosine waveform and straight line indicating a trend even though 
the waveform actually has no trend. This is caused by using less than a complete 
waveform. 

 

   
 
 

 The problem in Figure 9.14 is that only partial cycles were used. In the example, which  



was constructed specifically to show the problem, this is obvious. In real-world data it is 
often very much harder, impossible even, to determine if apparent trend is an artifact of 
the data or real. There is no substitute for looking at the data in the form of data plots, 
correlograms, spectra, and so on. Also, as always, the miner should try to determine if 
there is a rationale for any discovery. Always the miner should ask, “In this case, is there 
some reason to expect the existence of the discovered trend?” More than that, if there is a 
positive known reason that precludes the existence of trend, data should not be 
detrended—even if it appears to have a trend. Look back at the random walk, say, Figure 
9.11. This waveform was entirely generated by additive noise processes—accumulated 
errors. Suppose that this additive error had contaminated the series that otherwise 
contained no trend. Detrending this type of waveform can make the cyclic information 
impossible for a modeling tool to discover. Over the long run, such additive noise as is 
shown averages to 0—that is, over the long haul it is trendless. Including trend as part of 
the model not only hides the cyclic information, but also adds a nonexistent trend to the 
predictions. On the other hand, it may be almost impossible to work with a waveform that 
is not detrended. 

 
 

 

Deep quicksand here! The only real answer is to experiment! Survey the data extensively, 
trended and detrended. If access to surveying software is difficult, at least build multiple 
models and work extensively with the data, both trended and detrended. 

 

 
9.6  Tools  
 
 

 

Removing trend involves identifying and removing a component of the overall waveform. 
Doing this makes the remaining waveform more convenient or tractable to handle, or 
better reveals information of concern for modeling. But removing trend is really just a 
special case in a set of manipulations for exposing series information. These 
manipulations—filtering, moving averages, and smoothing—are the miner’s basic series 
manipulation tools. 

 

 

 

 9.6.1  Filtering  
 
 

 

A filter is a device that selectively holds some things back and lets other pass. In the case 
of series data, the filtering is performed on different components of the overall waveform. 
Since a complex waveform can be thought of as being constructed from simpler 
waveforms, each of a separate single frequency, the components can be thought of as 
those simpler waveforms. A wide array of filters can be constructed. High-pass filters, for 
example, let only high frequencies through, “holding back” the lower frequencies. Actually 
the “holding back” is known as attenuation. Attenuation means “to make less,” and the 
lower-frequency amplitude is actually reduced, rather than held back, leaving the higher 
frequencies more visible. If selected components at different frequencies are attenuated, 
their amplitude is reduced. Changing the amplitude of component cycles changes the 
shape of the waveform, as shown in Figure 9.3. By using filters, various parts of the 
frequency spectrum can be removed from the overall waveform and investigated 

 



separately from the effects of the remaining frequencies. 
 
 

 
While it is possible to construct complex mathematical structures to perform the 
necessary filtering, the purpose behind filtering is easy to understand and to see. 

 

 
 

 

Figure 9.8 showed the spectrum of a trended waveform. Almost all of the power in this 
spectrum occurs at the lowest frequency, which is 0. With a frequency of 0, the 
corresponding waveform to that frequency doesn’t change. And indeed, that is a linear 
trend—an unvarying increase or decrease over time. At each uniform displacement, the 
trend changes by a uniform amount. Removing trend corresponds to low-frequency 
filtering at the lowest possible frequency—0. If the trend is retained, it is called low-pass 
filtering as the trend (the low-frequency component) is “passed through” the filter. If the 
trend is removed, it would be called high-pass filtering since all frequencies but the lowest 
are “passed through” the filter. 

 

 
 

 

In addition to the zero frequency component, there are an infinite number of possible 
low-frequency components that are usefully identified and removed from series data. 
These components consist of fractional frequencies. Whereas a zero frequency 
represents a completely unvarying component, a fractional frequency simply represents a 
fraction of the whole cycle. If the first quarter of a sine wave is present in a composite 
waveform, for example, that component would rise from 0 to 1, and look like a nonlinear 
trend. 

 

 
 

 

Some of the more common fractional frequency components include exponential growth 
curves, logistic function curves, logarithmic curves, and power-law growth curves, as well 
as the linear trend already discussed. Figure 9.15 illustrates several common trend lines. 
Where these can be identified, and a suitable underlying generating mechanism 
proposed, that mechanism can be used to remove the trend. For instance, taking the 
logarithm of all of the series values for modeling is a common practice for some series 
data sets. Doing this removes the logarithmic effect of a trend. Where an underlying 
generating mechanism cannot be suggested, some other technique is needed. 

 

 

 

 

 

 

 
 



 
Figure 9.15  Several low-frequency components commonly discovered in a 
series data that can be beneficially identified and removed. 

 

   
 

 

 9.6.2  Moving Averages  
 
 

 

Moving averages are used for general-purpose filtering, for both high and low 
frequencies. Moving averages come in an enormous range and variety. To examine the 
most straightforward case of a simple moving average, pick some number of samples of 
the series, say, five. Starting at the fifth position, and moving from there onward through 
the series, use the average of that position plus the previous four positions instead of the 
actual value. This simple averaging reduces the variance of the waveform. The longer the 
period of the average, the more the variance is reduced. With more values in the 
weighting period, the less effect any single value has on the resulting average. 

 

 

 

 TABLE 9.1  Log-five SMA  
 
 

   
 
 

 Position  
 

 

 Series value  
 

 
 

 SMA5  
 

 
 

 SMA5 range  
 

 

 

   
 
 

 1  
 

 

 0.1338  
 

 
 

   
 

 
 

   
 

 

 

 2  
 

 

 0.4622  
 

 
 

   
 

 
 

   
 

 

 

 3  
 

 

 0.1448  
 

 
 

 0.2940  
 

 
 

 1-5  
 

 

 

 4  
 

 

 0.6538  
 

 
 

 0.3168  
 

 
 

 2-6  
 

 

 

 5  
 

 

 0.0752  
 

 
 

 0.3067  
 

 
 

 3-7  
 

 

 

 6  
 

 

 0.2482  
 

 
 

 0.3497  
 

 
 

 4-8  
 

 

 

 7  
 

 

 0.4114  
 

 
 

 0.3751  
 

 
 

 5-9  
 

 

 

 8  
 

 

 0.3598  
 

 
 

 0.4673  
 

 
 

 6-10  
 

 

 

 9  
 

 

 0.7809  
 

 
 

   
 

 
 

   
 

 

 

 10  
 

 

 0.5362  
 

 
 

   
 

 
 

   
 

 

 

   
 



 

 

9.1 shows a lag-five simple moving average (SMA). The values are shown in the column 
“Series value,” with the value of the average in the column “SMA5.” Each moving average 
value is the average of the two series values above it, the one series value opposite and 
the two next series values, making five series values in all. The column “SMA5 range” 
shows which positions are included in any particular moving average value. 

 

 
 

 

One drawback with SMAs, especially for long period weightings, is that the average 
cannot begin to be calculated until the number of periods in the weighting has passed. 
Also, the average value refers to the data point that is at the center of the weighting 
period. (Table 9.1 plots the average of positions 1–5 in position 3.) With a weighting 
period of, say, five days, the average can only be known as of two days ago. To know the 
moving average value for today, two days have to pass. 

 

 
 

 

Another potential drawback is that the contribution of each data point is equal to that of all 
the other data points in the weighting period. It may be that the more distant past data 
values are less relevant than more recent ones. This leads to the creation of a weighted 
moving average (WMA). In such a construction, the data values are weighted so that the 
more recent ones contribute more to the average value than earlier ones. Weights are 
chosen for each point in the weighting period such that they sum to 1. 

 

 
 

 

Table 9.2 shows the weights for constructing the lag-five WMA that is shown in Table 9.3. 
The “v–4 indicates that the series value four steps back is used, and the weight “0.066” 
indicates that the value with that lag is multiplied by the number 0.066, which is the 
weight. The lag-five WMA’s value is calculated by multiplying the last five series values by 
the appropriate weights. 

 

 

 

 TABLE 9.2  Weight for calculating a lag-five WMA.  
 
 

   
 
 

 Log  
 

 

 Weight  
 

 

 

   
 
 

 V-4  
 

 

 0.576766  
 

 

 

 V-3  
 

 

 0.423234  
 

 

 

 V-2  
 

 

 0.576766  
 

 

 

 V-1  
 

 

 0.423234  
 

 

 

 V0  
 

 

 0.576766  
 

 



 

   
 

 

   
 

 

 

 Wt total  
 

 

 1.000  
 

 

 

   
 

 

 TABLE 9.3  Log-five WMA  
 
 

   
 
 

 Position  
 

 

 Series value  
 

 
 

 WMA5  
 

 

 

   
 
 

 1  
 

 

 0.1338  
 

 
 

   
 

 

 

 2  
 

 

 0.4622  
 

 
 

   
 

 

 

 3  
 

 

 0.1448  
 

 
 

   
 

 

 

 4  
 

 

 0.6538  
 

 
 

 0.2966  
 

 

 

 5  
 

 

 0.0752  
 

 
 

 0.2833  
 

 

 

 6  
 

 

 0.2482  
 

 
 

 0.3161  
 

 

 

 7  
 

 

 0.4114  
 

 
 

 0.3331  
 

 

 

 8  
 

 

 0.3598  
 

 
 

 0.4796  
 

 

 

 9  
 

 

 0.7809  
 

 
 

 0.5303  
 

 

 

 10  
 

 

 0.5362  
 

 
 

   
 

 

 

   
 
 

 

Table 9.3 shows the actual average values. Because of the weights, it is difficult to 
“center” a WMA. Here it is shown “centered” one advanced on the lag-five SMA. This is 
done because the weights favor the most recent values over the past values—so it should 
be plotted to reflect that weighting. 

 

 
 

 
Exponential moving averages (EMAs) solve the delay problem. Such averages consist of 
two parts, a “head” and a “tail.” The tail value is the previous average value. The head 

 



value is the current data value. The average’s value is found by moving the tail some way 
closer to the head, but not all of the way. A weight is applied to decide how far to move the 
tail toward the head. With light tail weights, the tail follows the head quite closely, and the 
average behaves much like a short weighting period simple moving average. With heavier 
tail weights, the tail moves more slowly, and it behaves somewhat like a longer-period 
SMA. The head weight and the tail weight taken together must always sum to a value of 1.

 
 

 

No two averages behave in exactly the same way, but for EMAs, obviously the heavier 
the head weight, the “faster” the EMA value will move—that is to say, the more closely it 
follows the value of the series. For comparison, the EMA weights shown in Table 9.4 
approximate the lag-five SMA. 

 

 

 

 TABLE 9.4  Head and tail weights to approximate a lag-five SMA.  
 
 

   
 
 

 Head weight  
 

 

 0.576766  
 

 

 

 Head weight  
 

 

 0.423234  
 

 

 

   
 
 

 

Table 9.5 shows the actual values for the EMA. In this table, position 1 of the EMA is set 
to the starting value of the series. The formula for determining the present value of the 
EMA is 

 

 
 

 vEMA0 = (vs0 x wh) + (vEMA – 1 x wt)  
 
 

 where  
 
 

 vEMA0  
 

 

 is the value of the current EMA  
 

 

 

 vs0  
 

 

 is the current series value  
 

 

 

 wh  
 

 

 is the head weight  
 

 

 

 vEMA-1  
 

 

 is the last value of the EMA  
 

 

 

 wt  
 

 

 is the tail weight  
 

 

 

 TABLE 9.5  Values of the EMA  
 
 

   
 
         



 Position  
 

 Series value  
 

 EMA  
 

 Head  
 

 Tail  
 

 

   
 
 

 1  
 

 

 0.1338  
 

 
 

 0.1338  
 

 
 

   
 

 
 

   
 

 

 

 2  
 

 

 0.4622  
 

 
 

 0.3232  
 

 
 

 0.2666  
 

 
 

 0.0566  
 

 

 

 3  
 

 

 0.1448  
 

 
 

 0.2203  
 

 
 

 0.0835  
 

 
 

 0.1956  
 

 

 

 4  
 

 

 0.6538  
 

 
 

 0.4703  
 

 
 

 0.3771  
 

 
 

 0.0613  
 

 

 

 5  
 

 

 0.0752  
 

 
 

 0.2424  
 

 
 

 0.0434  
 

 
 

 0.2767  
 

 

 

 6  
 

 

 0.2482  
 

 
 

 0.2458  
 

 
 

 0.1432  
 

 
 

 0.0318  
 

 

 

 7  
 

 

 0.4114  
 

 
 

 0.3413  
 

 
 

 0.2373  
 

 
 

 0.1051  
 

 

 

 8  
 

 

 0.3598  
 

 
 

 0.3519  
 

 
 

 0.2075  
 

 
 

 0.1741  
 

 

 

 9  
 

 

 0.7809  
 

 
 

 0.5993  
 

 
 

 0.4504  
 

 
 

 0.1523  
 

 

 

 10  
 

 

 0.5362  
 

 
 

 0.5629  
 

 
 

 0.3092  
 

 
 

 0.3305  
 

 

 

   
 
 

 

This formula, with these weights, specifies that the current average value is found by 
multiplying the current series value by 0.576766, and the last value of the average by 
0.423243. The results are added together. The table shows the value of the series, the 
current EMA, and the head and the tail values. 

 

 
 

 

Figure 9.16 illustrates the moving averages discussed so far, and the effects of changing 
the way they are constructed. The series itself changes value quite abruptly, and all of the 
averages change more slowly. The SMA is the slowest to change of the averages shown. 
The WMA moves similarly to the SMA, but clearly responds more to the recent values, 
exactly as it is constructed to do. 

 

 

 



 

 

 

 
 

 

Figure 9.16  Various moving averages and the effects of changing weights 
showing SMAs, WMAs (weights shown separately), and EMAs (weights included 
in formula). The graph illustrates the data shown in Tables 9.1, 9.2, and 9.5. 

 

   
 
 

 

The EMA is the most responsive to the actual series value of the three averages shown. 
Yet the weights were chosen to make it approximate the lag-five SMA average. Since 
they seem to behave so differently, in what sense are these two approximately the same? 
Over a longer series, with this set of weights, the EMA tends to be centered about the 
value of the lag-five SMA. A series length of 10, as in the examples, is not sufficient to 
show the effect clearly. 

 

 
 

 

In general, as the lag periods get longer for SMAs and WMAs, or the head weights get 
lighter (so the tail weights get heavier) for the EMAs, the average reacts more slowly to 
changes in the series. Slow changes correspond to longer wavelengths, and longer 
wavelengths are the same as lower frequencies. It is this ability to effectively change the 
frequency at which the moving average reacts that makes them so useful as filters. 

 

 
 

 

Although specific moving averages are constructed for specific purposes, for the 
examples that follow later in the chapter, an EMA is the most convenient. The 
convenience here is that given a data value (head), the immediate EMA past value (tail), 
and the head and tail weights, then the EMA needs no delay before its value is known. It 
is also quick and easy to calculate. 

 

 
 

 

Moving averages can be used to separate series data into two frequency 
domains—above and below the threshold set by the reactive frequency of the moving 
average. How does this work in practice? 

 

 

 

 Moving Averages as Filters—Removing Noise  
 
 

 The composite-plus-noise waveform, first shown in Figure 9.7, seems to have a slower  



cycle buried in higher-frequency noise. That is, buried in the rapid fluctuations, there 
appears to be some slower fluctuation. Since this is a waveform built especially for the 
example, this is in fact the case. However, nonmanufactured signals often show this type 
of noise pattern too. Discovery of the underlying signal starts by trying to remove some of 
the noise. Using an EMA, the high frequencies can be separated from the lower 
frequencies. 

 
 

 

High frequencies imply an EMA that moves fast. The speed of reaction of an EMA is set 
by adjusting its weights. In this case, the head weight is set at 0.44 so that it moves very 
fast. However, because of the tail weight, it cannot follow the fastest changes in the 
waveform—and the fastest changes are the highest frequencies. The path of the EMA 
itself represents the waveform without the higher frequencies. To separate out just the 
high frequencies, subtract the EMA from the original waveform. The difference is the high-
frequency component missing from the EMA trace. Figure 9.17 shows the original 
waveform, waveform plus noise, EMA, and high frequencies remaining after subtraction. 
Using an EMA with a head weight of 0.44 better resembles the original signal than the 
noisy version because it has filtered out the high frequencies. Subtracting the EMA from 
the noisy signal leaves the high frequencies removed by the EMA (top). 

 

 

 

 

 

 

 
 

 
Figure 9.17  The original waveform, waveform plus noise, EMA, and high 
frequencies remaining after subtraction. 

 

   
 
 

 

It turns out that with this amount of weighting, the EMA is approximately equivalent to a 
three-sample SMA (SMA3). An SMA3 has its value centered over position two, the middle 
position. Doing this for the EMA used in the example recovers the original composite 
waveform with a correlation of about 0.8127, as compared to the correlation for the signal 
plus noise of about 0.6. 

 

 

 

 9.6.3  Smoothing 1—PVM Smoothing  
 
 

 There are many other methods for removing noise from an underlying waveform that do  



not use moving averages as such. One of these is peak-valley-mean (PVM) smoothing. 
Using PVM, a peak is defined as a value higher than the previous and next values. A 
valley is defined as a value lower than the previous and next values. PVM smoothing uses 
the mean of the last peak and valley (i.e., (P + V)/2) as the estimate of the underlying 
waveform, instead of a moving average. The PVM retains the value of the last peak as the 
current peak value until a new peak is discovered, and the same is true for the valleys. 
This is the shortest possible PVM and covers three data points, so it is a lag-three PVM. It 
should be noted that PVMs with other, larger lags are possible. 

 
 

 

Figure 9.18 shows in the upper image the peak, valley, and mean values. The lower 
image superimposes the recovered waveform on the original complex waveform without 
any noise added. Once again, as with moving averages, the recovered waveform needs 
to be centered appropriately. Centering again is at position two of three, halfway along the 
lag distance, as from there it is always the last and next positions that are being 
evaluated. The recovery is quite good, a correlation a little better than 0.8145, very similar 
to the EMA method. 

 

 

 

 

 

 

 
 

 

Figure 9.18  PVM smoothing: the peak, valley, and mean values for the 
composite-plus-noise waveform (top) and the mean estimate superimposed on 
the actual composite waveform (bottom). 

 

   
 

 

 
9.6.4  Smoothing 2—Median Smoothing, Resmoothing, and 
Hanning 

 

 
 

 

Median smoothing uses “windows.” A window is a group of some specific number of 
contiguous data points. It corresponds to the lag distance mentioned before. The only 
difference between a window and a lag is that the data in a window is manipulated in 
some way, say, changed in order. A lag implies that the data is not manipulated. As the 
window moves through the series, the oldest data point is discarded, and a new one is 

 



added. When median smoothing, use the median of the values in the window in place of 
the actual value. A median is the value that comes in the middle of a list of values ordered 
by value. When the window is an even length, use as the median value the average of the 
two middle values in the list. In many ways, median smoothing is similar to average 
smoothing except that the median is used instead of the average. Using the median 
makes the smoothed value less sensitive to extremes in the window since it is always the 
middle value of the ordered values that is taken. A single extreme value will never appear 
in the middle of the ordered list, and thus does not affect the median value. 

 
 

 

Resmoothing is a technique of smoothing the smoothed values. One form of resmoothing 
continues until there is no change in the resmoothed waveform. Other resmoothing 
techniques use a fixed number of resmooths, but vary the window size from smoothing to 
smoothing. 

 

 
 

 

Hanning is a technique borrowed from computer vision, where it is used for image 
smoothing. Essentially it is a form of weighted averaging. The window is three long, left in 
the original order, so it is really a lag. The three data points are multiplied by the weights 
0.25, 0.50, 0.25, respectively. The hanning operation removes any final spikes left after 
smoothing or resmoothing. 

 

 
 

 

There are very many types of resmoothing. A couple of examples of the technique will be 
briefly examined. The first, called “3R2H,” is a median smooth with a window of three, 
repeated (the “R” in the name) until no change in the waveform occurs; then a median 
smoothing with a window length of two; then one hanning operation. When applied to the 
example waveform, this smoothing has a correlation with the original waveform of about 
0.8082. 

 

 
 

 

Another, called “4253H” smoothing, has four median smoothing operations with windows 
of four, two, five, and three, respectively, followed by a hanning operation. This has a 
correlation with the original example waveform of about 0.8030. Although not illustrated, 
both of these smooths produce a waveform that appears to be very similar to that shown 
in the lower image of Figure 9.18. 

 

 
 

 

Again, although not illustrated, these techniques can be combined in almost any number 
of ways. Smoothing the PVM waveform and performing the hanning operation, for 
example, improves the fit with the original slightly to a correlation of about 0.8602. 

 

 

 

 9.6.5  Extraction  
 
 

 

All of these methods remove noise or high-frequency components. Sometimes the 
high-frequency components are not actually noise, but an integral part of the 
measurement. If the miner is interested in the slower interactions, the high-frequency 
component only serves to mask the slower interactions. Extracting the slower interactions 
can be done in several ways, including moving averages and smoothing. The various 

 



smoothing and filtering operations can be combined in numerous ways, just as smoothing 
and hanning the PVM smooth shows. Many other filtering methods are also available, 
some based on very sophisticated mathematics. All are intended to separate information 
in the waveform into its component parts. 

 
 

 

What is extracted by the techniques described here comes in two parts, high and lower 
frequencies. The first part is the filtered or smoothed part. The remainder forms the 
second part and is found by subtracting the first part, the filtered waveform, from the 
original waveform. When further extraction is made on either, or both, of the extracted 
waveforms, this is called reextraction. There seems to be an endless array of smoothing 
and resmoothing, extraction and reextraction possibilities! 

 

 
 

 

Waveforms can be separated in high-, middle-, and low-frequency components—and 
then the separated components further separated. Here is where the miner must use 
judgment. Examination of the extracted waveforms is called for—indeed, it is essential. 
The object of all filtering and smoothing is to separate waveforms with pattern from noise. 
The time to stop is when the extraction provides no additional separation. But how does 
the miner know when to stop? 

 

 
 

 

This is where the spectra and correlograms are very useful. The noise spectrum (Figure 
9.7) and correlogram (Figure 9.11) show that noise, at least of the sort shown here, has a 
fairly uniform spectrum and uniformly low autocorrelation at all lags. There still might be 
useful information contained in the waveform, but the chance is small. This is a good sign 
that extra effort will probably be better placed elsewhere. But what of the random walk? 
Here there is a strong correlation in the correlogram, and the spectrum shows clear 
peaks. Is there any way to determine that this is random walking? 

 

 

 

 9.6.6  Differencing  
 
 

 

Differencing a waveform provides another powerful way to look at the information it 
contains. The method takes the difference between each value and some previous value, 
and analyzes the differences. A lag value determines exactly which previous value is 
used, the lag having the same meaning as mentioned previously. A lag of one, for 
instance, takes the difference between a value and the immediately preceding value. 

 

 
 

 

The actual differences tend to appear noisy, and it is often very hard to see any pattern 
when the difference values are plotted. Figure 9.19 shows the lag-one difference plot for 
the composite-plus-noise waveform (left). It is hard to see what, if anything, this plot 
indicates about the regularity and predictability of the waveform! Figure 9.19 also shows 
the lag-one difference plot for the complex waveform without noise added (right). Here it is 
easy to see that the differences are regular, but that was easy to see from the waveform 
itself too—little is learned from the regularity shown. 

 

 

 



 

 

 

 
 

 

Figure 9.19  Log-one difference plots: composite-plus-noise waveform 
differences (left) and pattern of differences for the composite waveform without 
noise (right). 

 

   
 

 

 Forward Differencing  
 
 

 

Looking at the spectra and correlograms of the lag-one difference plots, however, does 
reveal information. When first seen, the spectra and correlograms shown in Figure 9.20 
look somewhat surprising. It is worth looking back to compare them with the 
nondifferenced spectra for the same waveforms in Figures 9.6, 9.7, and 9.9, and the 
nondifferenced correlograms in Figure 9.11. 

 

 

 

 

 

 

 
 

 Figure 9.20  Differences spectra and correlograms for various waveforms.  

   
 
 

 

Figure 9.20(a) shows that the differenced composite waveform contains little spectral 
energy at any of the frequencies shown. What energy exists is in the lower frequencies as 
before. The correlogram for the same waveform still shows a high correlation, as 
expected. 

 

 
 

 
In Figure 9.20(b), the noise waveform, the differencing makes a remarkable difference to 
the power spectrum. High energy at high frequencies—but the correlogram shows little 

 



correlation at any lag. 
 
 

 

Although the differenced noise spectrum in Figure 9.20(b) is remarkably changed, it is 
nothing like the spectrum for the differenced random walk in 9.20(d). Yet both of these 
waveforms were created from random noise. What is actually going on here? 

 

 

 

 Randomness Detector?  
 
 

 

What is happening that makes the random waveforms produce such different spectra? 
The noise power spectrum (shown in Figure 9.7) is fairly flat. Differencing it, as shown in 
Figure 9.20(b), amplified—made larger—the higher frequencies. In fact, the higher the 
frequency, the more the amplification. At the same time, differencing attenuated—made 
smaller—the lower frequencies. So differencing serves as a high-pass filter. 

 

 
 

 

What of the random walk? The random walk was actually constructed by taking random 
noise, in the form of numbers in the range of –1 to +1, and adding them together step by 
step. When this was differenced, back came the original random noise used to generate 
it. In other words, creating a walk, or “undifferencing,” serves to amplify the low 
frequencies and attenuate the high frequencies—exactly the opposite of differencing! 
Building the random walk obviously did something that hid the underlying nature of the 
random noise used to construct it. When differenced, the building process was undone, 
and back came a spectrum characteristic of noise. So, to go back to the question, “Is 
there a way to tell that the random walk is generated by a random process?” the answer is 
a definite “maybe.” Differencing can at least give some clues that the waveform was 
generated by some process that, at least by this test, looks random. 

 

 
 

 

There is no way to tell from the series itself if the random walk is in fact random. That 
requires knowing the underlying process in the real world that is actually responsible for 
producing the series. The numbers used here, for instance, were not actually random, but 
what is known as pseudo-random. (Genuinely random numbers turn out to be fiendishly 
difficult to come by!) A computer algorithm was used that has an internal mechanism that 
produces a string of numbers that pass certain tests for randomness. However, the 
sequence is actually precisely defined, and not random at all. Nonetheless, it looks 
random, and lacking an underlying explanation, which may or may not be predictive, it is 
at least known to have some of the properties of a random number. Simply finding a 
spectrum indicating possible randomness only serves as a flag that more tests are 
needed. If it eventually passes enough tests, this indeed serves as a practical definition of 
randomness. What constitutes “enough” tests depends on the miner and the needs of the 
application. But nonetheless, the working definition of randomness for a series is simply 
one that passes all the tests of randomness and has no underlying explanation that shows 
it to be otherwise. 

 

 

 

 Reverse Differencing (Summing)  
 
 



 

Interestingly, discovering a way to potentially expose random characteristics used the 
reverse process of differencing. Building the random walk required adding together 
random distance and direction steps generated by random noise. It turns out that creating 
any series in a similar way is the equivalent of reverse differencing! (This, of course, is 
summing—the exact opposite of taking a difference. “Reverse differencing” seems more 
descriptive.) Without going into details, the power spectrum and correlogram for the 
reverse-differenced composite-plus-noise waveform is shown in Figure 9.21. The power 
spectrum shows the low-frequency amplification, high-frequency attenuation that is the 
opposite effect of forward differencing. The correlogram is interesting as the correlation 
curve is much stronger altogether when the high-frequency components are attenuated. 
In this case, the reverse-differenced curve becomes very highly autocorrelated—in other 
words, highly predictable. 

 

 

 

 

 

 

 
 

 
Figure 9.21  Effects of reverse differencing. Low frequencies are enhanced, and 
high frequencies are attenuated. 

 

   
 
 

 
Just as differencing can yield insights, so too can summing. Linearly detrending the 
waveform before the summing operation may help too. 

 

 
9.7  Other Problems  
 
 

 

So far, the problems examined have been specific to series data. The solutions have 
focused on ways of extracting information from noisy or distorted series data. They have 
involved extracting a variety of waveforms from the original waveform that emphasize 
particular aspects of the data useful for modeling. But whatever has been pulled out, or 
extracted, from the original series, it is still in the form of another series. It is quite possible 
to look at the distribution of values in such a series exactly as if it were not a series. That 
is to say, taking care not to actually lose the indexing, the variable can be treated exactly 
as if it were a nonseries variable. Looking at the series this way allows some of the tools 

 



used for nonseries data to be applied to series data. Can this be done, and where does it 
help? 

 

 

 9.7.1  Numerating Alpha Values  
 
 

 

As mentioned in the introduction to this chapter, numeration of alpha values in a series 
presents some difficulties. It can be done, but alpha series values are almost never found 
in practice. On the rare occasions when they do occur, numerating them using the 
nonseries techniques already discussed, while not providing an optimal numeration, does 
far better than numeration without any rationale. Random or arbitrary assignment of 
values to alpha labels is always damaging, and is just as damaging when the data is a 
series. It is not optimal because the ordering information is not fully used in the 
numeration. However, using such information involves projecting the alpha values in a 
nonlinear phase space that is difficult to discover and computationally intense to 
manipulate. Establishing the nonlinear modes presents problems because they too have 
to be constructed from the components cycle, season, trend, and noise. Accurately 
determining those components is not straightforward, as we have seen in this chapter. 
This enormously compounds the problem of in-series numeration. 

 

 
 

 

The good news is that, with time series in particular, it seems easier to find an appropriate 
rationale for numerating alpha values from a domain expert than for nonseries data. 
Reverse pivoting the alphas into a table format, and numerating them there, is a good 
approach. However, the caveat has to be noted that since alpha numerated series occur 
so rarely, there is little experience to draw on when preparing them for mining. This makes 
it difficult to draw any hard and fast general conclusions. 

 

 

 

 9.7.2  Distribution  
 
 

 

As far as distributions are concerned, a series variable has a distribution that exists 
without reference to the ordering. When looked at in this way, so long as the 
ordering—that is, the index variable—is not disturbed, the displacement variable can be 
redistributed in exactly the same manner as a nonseries variable. Chapter 7 discussed 
the nature of distributions, and reasons and methods for redistributing values. The 
rationale and methods of redistribution are similar for series data and may be even more 
applicable in some ways. There are time series methods that require the variables’ data to 
be centered (equally distributed above and below the mean) and normalized. For series 
data, the distribution should be normalized after removing any trend. 

 

 
 

 

When modeling series data, the series should, if possible, be what is known as stationary. 
A stationary series has no trend and constant variance over the length of the series, so it 
fluctuates uniformly about a constant level. 

 

 

 

 Redistribution Modifying Waveform Shape  
 
 



 

Redistribution as described in Chapter 7, when applied to series variables’ data, goes far 
toward achieving a stationary series. Any series variable can be redistributed exactly as 
described for nonseries. However, this is not always an unambiguous blessing! (More 
dragons.) Whenever the distribution of a variable is altered, the transform required is 
captured so that it can always be undone. Indeed, the PIE-O has to undo any 
transformation for any output variables. However, it may be that the exact shape of the 
waveform is important to the modeling tool. (Only the modeler is in a position to know for 
sure if this is the case at modeling time.) If so, the redistribution may introduce unwanted 
distortion. In Figure 9.22, the top-left image shows a histogram of the distribution of values 
for the sine wave. Redistribution creates a rectangular distribution, shown in the top-right 
image. But redistribution changes the nature of the shape of the wave! The lower image 
shows both a sine wave and the wave shape after redistribution. Redistribution is 
intended to do exactly what is seen here—all of the nonlinearity has been removed. The 
curved waveform is translated into a linear representation—thus the straight lines. This 
may or may not cause a problem. However, the miner must be aware of the issue. 

 

 

 

 

 

 

 
 

 

Figure 9.22  Redistributing the distribution linearizes the nonlinear waveform. As 
the distribution of a pure sine wave is adjusted to be nearer rectangular, so the 
curves are straightened. If maintaining the wave shape is important, some other 
transform is required. 

 

   
 

 

 Distribution Maintaining Waveform Shape  
 
 

 

Redistribution goes a long way toward equalizing the variance. However, some other 
method is required if the wave shape needs to be retained. If the variance of the series 
changes as the series progresses, it may be possible to transform the values so that the 
variance is more constant. Erratic fluctuations of variance over the length of the series 
cause more problems, but may be helped by a transformation. A “Box-Cox” 
transformation (named after the people who first described it) may work well. The 

 



transform is fairly simple to apply, and is as follows: 
 

 

 

 

 

 
 

 

When the changing variance is adjusted, the distribution still has to be balanced. A 
second transform accomplishes this. The second transform subtracts the mean of the 
transformed variable from each transformed value, and divides the result by the standard 
deviation. The formula for this second transformation is 

 

 

 

 

 

 

 
 

 
The index, or displacement, variable should not be redistributed, even if it is of unequal 
increments. 

 

 

 

 9.7.3  Normalization  
 
 

 

Normalization over the range of 0 to 1 needs no modification. The displacement variable can 
be normalized using exactly the same techniques (described in Chapter 7) that work for 
nonseries data. 

 

 
9.7  Other Problems  
 
 

 

So far, the problems examined have been specific to series data. The solutions have 
focused on ways of extracting information from noisy or distorted series data. They have 
involved extracting a variety of waveforms from the original waveform that emphasize 
particular aspects of the data useful for modeling. But whatever has been pulled out, or 
extracted, from the original series, it is still in the form of another series. It is quite possible 
to look at the distribution of values in such a series exactly as if it were not a series. That 
is to say, taking care not to actually lose the indexing, the variable can be treated exactly 
as if it were a nonseries variable. Looking at the series this way allows some of the tools 
used for nonseries data to be applied to series data. Can this be done, and where does it 
help? 

 

 

 

 9.7.1  Numerating Alpha Values  
 



 

 

As mentioned in the introduction to this chapter, numeration of alpha values in a series 
presents some difficulties. It can be done, but alpha series values are almost never found 
in practice. On the rare occasions when they do occur, numerating them using the 
nonseries techniques already discussed, while not providing an optimal numeration, does 
far better than numeration without any rationale. Random or arbitrary assignment of 
values to alpha labels is always damaging, and is just as damaging when the data is a 
series. It is not optimal because the ordering information is not fully used in the 
numeration. However, using such information involves projecting the alpha values in a 
nonlinear phase space that is difficult to discover and computationally intense to 
manipulate. Establishing the nonlinear modes presents problems because they too have 
to be constructed from the components cycle, season, trend, and noise. Accurately 
determining those components is not straightforward, as we have seen in this chapter. 
This enormously compounds the problem of in-series numeration. 

 

 
 

 

The good news is that, with time series in particular, it seems easier to find an appropriate 
rationale for numerating alpha values from a domain expert than for nonseries data. 
Reverse pivoting the alphas into a table format, and numerating them there, is a good 
approach. However, the caveat has to be noted that since alpha numerated series occur 
so rarely, there is little experience to draw on when preparing them for mining. This makes 
it difficult to draw any hard and fast general conclusions. 

 

 

 

 9.7.2  Distribution  
 
 

 

As far as distributions are concerned, a series variable has a distribution that exists 
without reference to the ordering. When looked at in this way, so long as the 
ordering—that is, the index variable—is not disturbed, the displacement variable can be 
redistributed in exactly the same manner as a nonseries variable. Chapter 7 discussed 
the nature of distributions, and reasons and methods for redistributing values. The 
rationale and methods of redistribution are similar for series data and may be even more 
applicable in some ways. There are time series methods that require the variables’ data to 
be centered (equally distributed above and below the mean) and normalized. For series 
data, the distribution should be normalized after removing any trend. 

 

 
 

 

When modeling series data, the series should, if possible, be what is known as stationary. 
A stationary series has no trend and constant variance over the length of the series, so it 
fluctuates uniformly about a constant level. 

 

 

 

 Redistribution Modifying Waveform Shape  
 
 

 

Redistribution as described in Chapter 7, when applied to series variables’ data, goes far 
toward achieving a stationary series. Any series variable can be redistributed exactly as 
described for nonseries. However, this is not always an unambiguous blessing! (More 
dragons.) Whenever the distribution of a variable is altered, the transform required is 

 



captured so that it can always be undone. Indeed, the PIE-O has to undo any 
transformation for any output variables. However, it may be that the exact shape of the 
waveform is important to the modeling tool. (Only the modeler is in a position to know for 
sure if this is the case at modeling time.) If so, the redistribution may introduce unwanted 
distortion. In Figure 9.22, the top-left image shows a histogram of the distribution of values 
for the sine wave. Redistribution creates a rectangular distribution, shown in the top-right 
image. But redistribution changes the nature of the shape of the wave! The lower image 
shows both a sine wave and the wave shape after redistribution. Redistribution is 
intended to do exactly what is seen here—all of the nonlinearity has been removed. The 
curved waveform is translated into a linear representation—thus the straight lines. This 
may or may not cause a problem. However, the miner must be aware of the issue. 

 

 

 

 

 

 
 

 

Figure 9.22  Redistributing the distribution linearizes the nonlinear waveform. As 
the distribution of a pure sine wave is adjusted to be nearer rectangular, so the 
curves are straightened. If maintaining the wave shape is important, some other 
transform is required. 

 

   
 

 

 Distribution Maintaining Waveform Shape  
 
 

 

Redistribution goes a long way toward equalizing the variance. However, some other 
method is required if the wave shape needs to be retained. If the variance of the series 
changes as the series progresses, it may be possible to transform the values so that the 
variance is more constant. Erratic fluctuations of variance over the length of the series 
cause more problems, but may be helped by a transformation. A “Box-Cox” 
transformation (named after the people who first described it) may work well. The 
transform is fairly simple to apply, and is as follows: 

 

 

 



 

 

 

 
 

 

When the changing variance is adjusted, the distribution still has to be balanced. A 
second transform accomplishes this. The second transform subtracts the mean of the 
transformed variable from each transformed value, and divides the result by the standard 
deviation. The formula for this second transformation is 

 

 

 

 

 

 

 
 

 
The index, or displacement, variable should not be redistributed, even if it is of unequal 
increments. 

 

 

 

 9.7.3  Normalization  
 
 

 

Normalization over the range of 0 to 1 needs no modification. The displacement variable can 
be normalized using exactly the same techniques (described in Chapter 7) that work for 
nonseries data. 

 

 
9.8  Preparing Series Data  
 
 

 
A lot of ground was covered in this chapter. A brief review will help before pulling all the 
pieces together and looking at a process for actually preparing series data. 

 

 
 

  

• 
 

Series come in various types, of which the most common by far is the time series. All 
series share a common structure in that the ordering of the measurements carries 
information that the miner needs to use. 

 

 
 

  

• 

 

Series data can be completely described in terms of its four component parts: trend, 
cycles, seasonality, and noise. Alternatively, series can also be completely described as 
consisting of sine and cosine waveforms in various numbers and of various amplitudes, 
phases, and frequencies. Tools to discover the various components include Fourier 
analysis, power spectra, and correlograms. 

 

 
 

  •  Series data are modeled either to discover the effects of time or to look at how the data  



changes in time. 
 
 

  
• 
 
Series data shares all the problems that nonseries data has, plus several that are 
unique to series. 

 

 
 

  

—
 

Missing values require special procedures, and care needs to be taken not to insert a 
pattern into the missing values by replicating part of a pattern found elsewhere in the 
series. 

 

 
 

  — Nonuniform displacement is dealt with as if it were any other form of noise.  
 
 

  — Trend needs special handling, exactly as any other monotonic value.  
 
 

  
• 
 
Various techniques exist for filtering out components of the total waveform. They 
include, as well as complex mathematical devices for filtering frequencies, 

 

 
 

  

—

 

Moving averages of various types. A moving average involves using lagged values 
over the series data points and using all of the lagged values in some way to 
reestimate the data point value. A large variety of moving average techniques exist, 
including simple moving averages (SMAs), weighted moving averages (WMAs), and 
exponential moving averages (EMAs). 

 

 
 

  

—

 

Smoothing techniques of several types. Smoothing is a windowing technique in 
which a window of adjustable length selects a particular subseries of data points for 
manipulation. The window slides over the whole series and manipulates each 
separate subset of data points to reestimate the window’s central data point value. 
Smoothing techniques include peak-valley-mean (PVM), median smoothing, and 
Hanning. 

 

 
 

  

—
 

Resmoothing is a smoothing technique that involves either reapplying the same 
smoothing technique several times until no change occurs, or applying different 
window sizes or techniques several times. 

 

 
 

  

• 
 

Differencing and reverse differencing (summing) offer alternative ways of looking at 
high- or low-frequency components of a waveform. Differencing and summing also 
transform waveforms in ways that may give clues to underlying randomness. 

 

 
 

  

• 

 

The series data alone cannot ever be positively determined to contain a random 
component, although additional tests can raise the confidence level that detected noise 
is randomly generated. Only a rationale or causal explanation external to the data can 
confirm random noise generation. 

 

 
 

  
• 
 
Components of a waveform can be separated out from the original waveform using one 
or several of the above techniques. These components are themselves series that 

 



express some part of the information contained in the whole original series. Having the 
parts separated aids modeling by making the model either more understandable or 
more predictive, or meets some other need of the miner. 

 

 

 9.8.1  Looking at the Data  
 
 

 

Series data must be looked at. There is positively no substitute whatsoever for looking at 
the data—graphing it, looking at correlograms, looking at spectra, differencing, and so on. 
There are a huge variety of other powerful tools used for analyzing series data, but those 
mentioned here, at least, must be used to prepare series data. The best aid that the miner 
has is a powerful series data manipulation and visualization tool, and preferably one that 
allows on-the-fly data manipulation, as well as use of the tools discussed. The underlying 
software used here to manipulate data and produce the images used for illustration was 
Statistica. (The accompanying CD-ROM includes a demonstration version.) This is one of 
several powerful statistical software packages that easily and quickly perform these and 
many other manipulations. Looking at the information revealed, and becoming familiar 
with what it means, is without any doubt the miner’s most important tool in preparing 
series data. It is, after all, the only way to look for dragons, chimera, and quicksand, not to 
mention the marked rocky road! 

 

 

 

 9.8.2  Signposts on the Rocky Road  
 
 

 
So how should the miner use these tools and pointers when faced with series data? Here 
is a possible plan of attack. 

 

 
 

  

• 

 

Plot the data Not only at the beginning should the data be plotted—plot everything. 
Keep plotting. Plot noise, plot smoothed, look at correlograms, look at spectra—and 
keep doing it. Work with it. Get a feel for what is in the data. Simply play with it. Video 
games with series data! This is not a frivolous approach. There is no more powerful 
pattern recognition tool known than the one inside the human head. Look and think 
closely about what is in the data and what it might mean. Although stated first, this is a 
continuous activity for all the stages that follow. 

 

 
 

  

• 

 

Fill in missing values After a first look at the data, decide what to do about any that is 
missing. If possible, find any missing values. Seek them out. Digging them up, if at all 
possible, is a far better alternative than making them up! If they positively are not 
available, build autoregressive models and replace them. 

 

 
 

 

Now—build models before and after replacement! The “before” models will use subsets of 
the data without any missing values. Build “after” models of the same sample length as 
the “before” models, but include the replaced values. If possible, build several “after” 
models with the replaced values at the beginning, middle, and end of the series. At least 
build “after” models with the replaced values at different places in the modeled series. 

 

 
 



 

What changes? What is the relative strength of the patterns “discovered” in the “after” 
models that are not in the “before” models? If specific strong patterns only appear in the 
“after” models, try diluting them by adding neutral white noise to the replaced values. Look 
again. Try again. Keep trying until the replacement values appear to make no noticeable 
difference to the pattern density. 

 

 
 

  

• 

 

Replace outliers Are there outliers? Are they really outliers, or just extremes of the 
range? Can individual outliers be accounted for as measurement error? Are there runs 
of outliers? If so, what process could cause them? Can the values be translated into the 
normal range? 

 

 
 

 

Just as with missing values, work at finding out what caused the outliers and finding the 
accurate values. If they are positively not available, replace them exactly as for missing 
values. 

 

 
 

  

• 

 

Remove trend Linear trend is easy to remove. Try fitting some other fractional frequency 
trend lines if they look like they might fit. If uncertain, fit a few different trend lines—log, 
square, exponential—see what they look like. Does one of them seem to fit some 
underlying trend in the data? If so, subtract it from the data. When graphed, does the 
data fit the horizontal axis better? If yes, fine. If no, keep trying. 

 

 
 

  

• 

 

Adjust variance Subtract out the trend. Eyeball the variance, that is, the way the data 
scatters along the horizontal axis. Is it constant? Does it increase or decrease as the 
series progresses? If it isn’t constant, try Box-Cox transforms (or other transforms if they 
feel more comfortable). Get the variance as uniform as possible. 

 

 
 

  

• 

 

Smooth Try various smoothing techniques, if needed. Unless there is some good 
reason to expect sharp spikes in the data, use hanning to get rid of them. Look at the 
spectrum. Look at the correlogram. Does smoothing help make what is happening in the 
data clearer? Subtract out the high frequencies and look at them. What is left in there? 
Any pattern? Mainly random? Extract what is in the noise until what is left seems 
random. 

 

 
 

 
Now start again using forward and reverse differencing. Same patterns found? If not, why 
not? If so, why? Which makes most sense? 

 

 
 

  

• 

 

Account for seasonalities Are there seasonal effects? What are they? Can they be 
identified? Subtract them out. If possible, create a separate variable for each, or a 
separate alpha label if more appropriate (so that when building a model, the model 
“knows” about the seasonalities). 

 

 
 

  
• 
 
Extract main cycle Look for the main underlying “heartbeat” in the data. Smooth and 
filter until it seems clear. Extract it from the data. 

 

 
 



  
• 
 
Extract minor cycles Look at what is left in the “noise.” Smooth it again. PVM works well 
very often. Look at spectra and correlograms. Any pattern? If so, extract it. 

 

 
 

 

Look at the main waveform—the heartbeat. Look with a spectrum. What are the main 
component frequencies? Does this make sense? Is it reasonable to expect this set of 
frequencies? If it cannot be explained, is there at least no reason that it shouldn’t be so? 

 

 
 

  
• 
 
Redistribute and normalize Redistribute and normalize the values if strictly maintaining 
the waveform shape is not critical; otherwise, just normalize. 

 

 
 

  

• 

 

Model or reverse pivot If modeling the series, time to start. Otherwise, reverse pivot. For 
the reverse pivot, build an array of variables of different lags that are least correlated with 
each other. Try a variable for each of the main frequencies. Try a variable for the main 
cycle. Try a variable for the noise level. Survey the results. (When modeling, build several 
quick models to see which looks like it might work best.) 

 

 
9.9  Implementation Notes  
 
 

 

Familiarity with what displacement series look like and hands-on experience are the best 
data preparation tool that a miner can find for preparing series data. As computer systems 
become ever more powerful, it appears that there are various heuristic and algorithmic 
procedures that will allow automated series data preparation. Testing the performance of 
these procedures awaits the arrival of yet more powerful, low-cost computer systems. 
This has already happened with nonseries data preparation algorithms as the 
demonstration code shows. What is here today is a stunning array of automated tools for 
letting the miner look at series data in a phenomenal number of ways. This chapter hardly 
scratched the surface of the full panoply of techniques available. The tools that are 
available put power to look into the miners’ hands that has never before been available. 
The ability to see has to be found by experience. 

 

 
 

 

Since handling series data is a very highly visual activity, and since fully automated 
preparation is so potentially damaging to data, the demonstration software has no specific 
routines for preparing displacement series data. Data visualization is a broad field in itself, 
and there are many highly powerful tools for handling data that have superb visualization 
capability. For small to moderate data sets, even a spreadsheet can serve as a good 
place to start. Spectral analysis is difficult, although not impossible, and correlograms are 
fairly easy. Moving on from there are many other reasonably priced data imaging and 
manipulation tools. Data imaging is so broad and deep a field, it is impossible to begin to 
cover the topic here. 

 

 
 

 

This chapter has dealt exclusively with displacement series data. The miner has covered 
sufficient ground to prepare the series data so that it can be modeled. Having prepared such 
data, it can be modeled using the full array of the miner’s tools. As with previous chapters, 
attention is now turned back to looking at data without considering the information contained 



in any ordering. It is time to examine the data set as a whole. 
 

 



 

Chapter 10: Preparing the Data Set  

 

 

 Overview  
 
 

 

In this chapter, the focus of attention is on the data set itself. Using the term “data set” 
places emphasis on the interactions between the variables, whereas the term “data” has 
implied focusing on individual variables and their instance values. In all of the data 
preparation techniques discussed so far, care has been taken to expose the information 
content of the individual variables to a modeling tool. The issue now is how to make the 
information content of the data set itself most accessible. Here we cover using sparsely 
populated variables, handling problems associated with excessive dimensionality, 
determining an appropriate number of instances, and balancing the sample. 

 

 
 

 
These are all issues that focus on the data set and require restructuring it as a whole, or at 
least, looking at groups of variables instead of looking at the variables individually. 

 

 
10.1  Using Sparsely Populated Variables  
 
 

 

Why use sparsely populated variables? When originally choosing the variables to be 
included in the data set, any in which the percentage of missing values is too high are 
usually discarded. They are discarded as simply not having enough information to be 
worth retaining. Some forms of analysis traditionally discard variables if 10 or 20% of the 
values are missing. Very often, when data mining, this discards far too many variables, 
and the threshold is set far lower. Frequently, the threshold is set to only exclude 
variables with more than 80 or 90% of missing values, if not more. Occasionally, a miner 
is constrained to use extremely sparsely populated variables—even using variables with 
only fractions of 1% of the values present. Sometimes, almost all of the variables in a data 
set are sparsely populated. When that is the case, it is these sparsely populated variables 
that carry the only real information available. The miner either uses them or gives up 
mining the data set. 

 

 
 

 

For instance, one financial brokerage data set contained more than 700 variables. A few 
were well populated: account balance, account number, margin account balance, and so 
on. The variables carrying the information to be modeled, almost all of the variables 
present, were populated at below 10%, more than half below 2%; and a full one-third of all 
the variables present were populated below 1%—that is, with less than 1% of the values 
present. These were fields like “trades-in-corn-last-quarter,” “open-contracts-oil,” 
“June-open-options-hogs-bellies,” “number-stop-loss-per-cycle,” and other specialized 
information. How can such sparsely populated variables be used? 

 

 
 

 
The techniques discussed up to this point in this book will not meet the need. For the 
brokerage data set just mentioned, for instance, the company wanted to predict portfolio 
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trading proclivity so that the brokers could concentrate on high-value clients. Traditional 
modeling techniques have extreme difficulty in using such sparse data. Indeed, the 
brokerage analysts had difficulty in estimating trading proclivity with better than a 0.2 
correlation. The full data preparation tool set, of which a demonstration version is on the 
accompanying CD-ROM, produced models with somewhat better than a 0.4 correlation 
when very sparsely populated variables were not included. When such variables were 
included, prepared as usual (see Chapter 8), the correlation increased to just less than 
0.5. However, when these variables were identified and prepared as very sparsely 
populated, the correlation climbed to better than 0.7. 

 
 

 

Clearly, there are occasions when the sparsely populated variables carry information that 
must be used. The problem is that, unless somehow concentrated, the information density 
is too low for mining tools to make good use of it. The solution is to increase the 
information density to the point where mining tools can use it. 

 

 

 

 
10.1.1  Increasing Information Density Using Sparsely 
Populated Variables 

 

 
 

 

When using very sparsely populated variables, missing-value replacement is not useful. 
Even when the missing values are replaced so they can be used, the dimensionality of 
state space increases by every sparsely populated variable included. Almost no 
information is gained in spite of this increase, since the sparsely populated variable simply 
does not carry much information. (Recall that replacing a missing value adds no 
information to the data set.) However, sometimes, and for some applications, variables 
populated with extreme sparsity have to be at least considered for use. 

 

 
 

 

One solution, which has proved to work well when sparsely populated variables have to 
be used, collapses the sparse variables into fewer composite variables. Each composite 
variable carries information from several to many sparsely populated variables. If the 
sparsely populated variables are alpha, they are left in that form. If they are not alpha, 
categories are created from the numerical information. If there are many discrete numeric 
values, their number may have to be reduced. One method that works well is to “bin” the 
values and assign an alpha label to each bin. Collapsing the numeric information needs a 
situation-specific solution. Some method needs to be devised by the miner, together with 
a domain expert if necessary, to make sure that the needed information is available to the 
model. 

 

 
 

 

It may be that several categories can occur simultaneously, so that simply creating a label 
for each individual variable category is not enough. Labels have to be created for each 
category combination that occurs, not just the categories themselves. 

 

 

 

 10.1.2  Binning Sparse Numerical Values  
 
 

 Binning is not a mysterious process. It only involves dividing the range of values into  

chenliangA
Highlight

chenliangA
Highlight



subranges and using subrange labels as substitutes for the actual values. Alpha labels 
are used to identify the subranges. This idea is very intuitive and widely used in daily life. 
Coffee temperature, say, may be binned into the categories “scalding,” “too hot,” “hot,” 
“cool,” and “cold.” These five alpha labels each represent part of the temperature range of 
coffee. These bins immediately translate into alpha labels. If the coffee temperature is in 
the range of “hot,” then assign the label “hot.” Figure 10.1 shows how binning works for 
coffee temperature. 

 

 

 

 

 

 
 

 

Figure 10.1  Binning coffee temperature to assign alpha labels. The left bar 
represents coffee assigned the label “Scalding” even though it falls close to the 
edge of the bin, near the boundary between ”Scalding” and “Too hot.” Likewise, 
the centrally located bar is assigned the label “Hot.” 

 

   
 
 

 

This method of assigning labels to numerical values extends to any numerical variable. 
Domain knowledge facilitates bin boundaries assignment, appropriately locating where 
meaningful boundaries fall. For coffee temperature, both the number of bins and the bin 
boundaries have a rationale that can be justified. Where this is not the case, arbitrary 
boundaries and bin count have to be assigned. When there is no rationale, it is a good 
idea to assign bin boundaries so that each bin contains approximately equal numbers of 
labels. 

 

 

 

 10.1.3  Present-Value Patterns (PVPs)  
 
 

 

Chapter 8 discussed missing-value patterns (MVPs). MVPs are created when most of the 
values are present and just a few are missing. Very sparsely populated variables present 
almost exactly the reverse situation. Most of the values are missing, and just a few are 
present. There is one major difference. With MVPs, the values were either missing or 
present. With PVPs, it is not enough to simply note the fact of the presence of a label; the 
PVP must also note the indentity of the label. The miner needs to account for this 
difference. Instead of simply noting, say, “P” for present and “A” for absent, the “P” must 
be a label of some sort that reflects which label or labels are present in the sparse 
variables. The miner must map every unique combination of labels present to a unique 
label and use that second label. This collapses many variables into one. Figure 10.2 
shows this schematically, although for illustration the density of values in each variable in 
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the figure is enormously higher than this method would ever be applied to in practice. 
 

 

 

 

 

 
 

 

Figure 10.2  Sparsely populated variables generate unique patterns for those 
values that are present. Every PVP has a unique label. The density of values 
shown in the figure is far above the fractional percent density for which this 
method of compression is designed. 

 

   
 
 

 

Note that PVPs are only created for variables that are very sparsely populated—usually at 
less than 1%. Creating PVPs for more populous variables results in a proliferation of 
alpha labels that simply explodes! In fact, if there are too many PVPs in any one created 
variable, subsets of the sparsely populated variables should be collapsed so that the label 
count does not get too high. What are too many PVPs? As a rule of thumb, if the number 
of PVPs is more than four times the total number of individual variable labels, use multiple 
PVP variables. Where multiple PVP variables are needed, select groups of sparsely 
populated variables so that the PVP label count is minimized. 

 

 
 

 

Building PVP patterns this way does lose some information. Binning itself discards 
information in the variables for a practical gain in usability. However, using PVPs makes 
much of the information in very sparsely populated variables available to the mining tool, 
where it would otherwise be completely discarded. The created PVP variable(s) is 
numerated exactly as any other alpha variable. Chapter 6 discusses numerating alpha 
values. 

 

 
10.2  Problems with High-Dimensionality Data Sets  
 
 

 

The dimensionality of a data set is really a count of the number of variables it contains. 
When discussing state space (Chapter 6), each of the variables was referred to as a 
“dimension.” Very large state spaces—those with large numbers of dimensions—present 
problems for all mining tools. Why problems? For one reason, no matter how fast or 
powerful the mining tool, or the computer running the tool, there is always some level of 
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dimensionality that will defeat any effort to build a comprehensive model. Even a 
massively parallel processor, totally dedicated to the project and running a highly 
advanced and optimized mining toolset, could not deal with a multiterabyte, 7000+ 
variable data set required on one mining project. 

 
 

 

Another reason that high dimensionality presents difficulties for mining tools is that as the 
dimensionality increases, the size (multidimensional volume) of state space increases. 
This requires more data points to fill the space to any particular density. Low-density state 
spaces leave more “wiggle room” between the data points where the shape of the 
manifold is undefined. In these spaces there is more probability of overfitting than in more 
populous state spaces. (Chapter 3 discusses overfitting.) To reduce the risk of overfitting, 
more instances are needed—lots more instances. Just how many is discussed later in this 
chapter. 

 

 
 

 

What seems to be another problem with increasing dimensionality, but is actually the 
same problem in different clothing, is the combinatorial explosion problem. 
“Combinatorial” here refers to the number of different ways that the values of the variables 
can be combined. The problem is caused by the number of possible unique system states 
increasing as the multiple of the individual variable states. For instance, if three variables 
have two, three, and four possible states each, there are 2 x 3 x 4 = 24 possible system 
states. When each variable can take tens, hundreds, thousands, or millions of meaningful 
discrete states, and there are hundreds or thousands of variables, the number of possible 
discrete, meaningful system states becomes very large—very large! And yet, to create a 
fully representative model, a mining tool ideally needs at least one example of each 
meaningful system state represented in state space. The number of instances required 
can very quickly become impractical, and shortly thereafter impossible to assemble. 

 

 
 

 

There seem to be three separate problems here. First, the sheer amount of data defeats 
the hardware/software mining tools. Second, low density of population in a voluminous 
state space does not well define the shape of the manifold in the spaces between the data 
points. Third, the number of possible combinations of values requires an impossibly huge 
amount of data for a representative sample—more data than can actually be practically 
assembled. As if these three (apparently) separate problems weren’t enough, high 
dimensionality brings with it other problems too! As an example, if variables are 
“colinear”—that is, they are so similar in information content as to carry nearly identical 
information—some tools, particularly those derived from statistical techniques, can have 
extreme problems dealing with some representations of such variables. The chance that 
two such variables occur together goes up tremendously as dimensionality increases. 
There are ways around this particular problem, and around many other problems. But it is 
much better to avoid them if possible. 

 

 
 

 

What can be done to alleviate the problem? The answer requires somehow reducing the 
amount of data to be mined. Reducing the number of instances doesn’t help since large 
state spaces need more, not less, data to define the shape of the manifold than small 
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ones. The only other answer requires reducing the number of dimensions. But that seems 
to mean removing variables, and removing variables means removing information, and 
removing information is a poor answer since a good model needs all the information it can 
get. Even if removing variables is absolutely required in order to be able to mine at all, 
how should the miner select the variables to discard? 

 

 

 10.2.1  Information Representation  
 
 

 

The real problem here is very frequently with the data representation, not really with high 
dimensionality. More properly, the problem is with information representation. Information 
representation is discussed more fully in Chapter 11. All that need be understood for the 
moment is that the values in the variables carry information. Some variables may 
duplicate all or part of the information that is also carried by other variables. However, the 
data set as a whole carries within it some underlying pattern of information distributed 
among its constituent variables. It is this information, carried in the weft and warp of the 
variables—the intertwining variability, distribution patterns, and other 
interrelationships—that the mining tool needs to access. 

 

 
 

 

Where two variables carry identical information, one can be safely removed. After all, if 
the information carried by each variable is identical, there has to be a correlation of either 
+1 or –1 between them. It is easy to re-create one variable from the other with perfect 
fidelity. Note that although the information carried is identical, the form in which it is 
carried may differ. Consider the two times table. The instance values of the variable “the 
number to multiply” are different from the corresponding instance values of the variable 
“the answer.” When connected by the relationship “two times table,” both variables carry 
identical information and have a correlation of +1. One variable carries information to 
perfectly re-create instance values of the other, but the actual content of the variables is 
not at all similar. 

 

 
 

 

What happens when the information shared between the variables is only partially 
duplicated? Suppose that several people are measured for height, weight, and girth, 
creating a data set with these as variables. Suppose also that any one variable’s value 
can be derived from the other two, but not from any other one. There is, of course, a 
correlation between any two, probably a very strong one in this case, but not a perfect 
correlation. The height, weight, and girth measurements are all different from each other 
and they can all be plotted in a three-dimensional state space. But is a three-dimensional 
state space needed to capture the information? Since any two variables serve to 
completely specify the value of the third, one of the variables isn’t actually needed. In fact, 
it only requires a two-dimensional state space to carry all of the information present. 
Regardless of which two variables are retained in the state space, a transformation 
function, suitably chosen, will perfectly give the value of the third. In this case, the 
information can be “embedded” into a two-dimensional state space without any loss of 
either predictive or inferential power. Three dimensions are needed to capture the 
variables’ values—but only two dimensions to capture the information. 
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To take this example a little further, it is very unlikely that two variables will perfectly 
predict the third. Noise (perhaps as measurement errors and slightly different 
muscle/fat/bone ratios, etc.) will prevent any variable from being perfectly correlated with 
the other two. The noise adds some unique information to each variable—but is it 
wanted? Usually a miner wants to discard noise and is interested in the underlying 
relationship, not the noise relationship. The underlying relationship can still be embedded 
in two dimensions. The noise, in this example, will be small compared to the relationship 
but needs three dimensions. In multidimensional scaling (MDS) terms (see Chapter 6), 
projecting the relationship into two dimensions causes some, but only a little, stress. For 
this example, the stress is caused by noise, not by the underlying information. 

 

 
 

 

Using MDS to collapse a large data set can be highly computationally intensive. In 
Chapter 6, MDS was used in the numeration of alpha labels. When using MDS to reduce 
data set dimensionality, instead of alpha label dimensionality, discrete system states have 
to be discovered and mapped into phase space. There may be a very large number of 
these, creating an enormous “shape.” Projecting and manipulating this shape is difficult 
and time-consuming. It can be a viable option. Collapsing a large data set is always a 
computationally intensive problem. MDS may be no slower or more difficult than any other 
option. 

 

 
 

 

But MDS is an “all-or-nothing” approach in that only at the end is there any indication 
whether the technique will collapse the dimensionality, and by how much. From a 
practical standpoint, it is helpful to have an incremental system that can give some idea of 
what compression might achieve as it goes along. MDS requires the miner to choose the 
number of variables into which to attempt compression. (Even if the number is chosen 
automatically as in the demonstration software.) When compressing the whole data set, a 
preferable method allows the miner to specify a required level of confidence that the 
information content of the original data set has been retained, instead of specifying the 
final number of compressed variables. Let the required confidence level determine the 
number of variables instead of guessing how many might work. 

 

 

 

 
10.2.2  Representing High-Dimensionality Data in Fewer 
Dimensions 

 

 
 

 

There are dimensionality-reducing methods that work well for linear between-variable 
relationships. Methods such as principal components analysis and factor analysis are 
well-known ways of compressing information from many variables into fewer variables. 
(Statisticians typically refer to these as data reduction methods.) 

 

 
 

 

Principal components analysis is a technique used for concentrating variability in a data 
set. Each of the dimensions in a data set possesses a variability. (Variability is discussed 
in many places; see, for example, Chapter 5.) Variability can be normalized, so that each 
dimension has a variability of 1. Variability can also be redistributed. A component is an 

 



artificially constructed variable that is fitted to all of the original variables in a data set in 
such a way that it extracts the highest possible amount of variability. 

 
 

 

The total amount of variability in a specific data set is a fixed quantity. However, although 
each original variable contributes the same amount of variability as any other original 
variable, redistributing it concentrates data set variability in some components, reducing it 
in others. With, for example, 10 dimensions, the variability of the data set is 10. The first 
component, however, might have a variability not of 1—as each of the original variables 
has—but perhaps of 5. The second component, constructed to carry as much of the 
remaining variability as possible, might have a variability of 4. In principal components 
analysis, there are always in total as many components as there are original variables, but 
the remaining eight variables in this example now have a variability of 1 to share between 
them. It works out this way: there is a total amount of variability of 10/10 in the 10 original 
variables. The first two components carry 5/10 + 4/10 = 9/10, or 90% of the variability of 
the data set. The remaining eight components therefore have only 10% of the variability to
carry between them. 

 

 
 

 

Inasmuch as variability is a measure of the information content of a variable (discussed in 
Chapter 11), in this example, 90% of the information content has been squeezed into only 
two of the specially constructed variables called components. Capturing the full variability 
of the data set still requires 10 components, no change over having to use the 10 original 
variables. But it is highly likely that the later components carry noise, which is well 
ignored. Even if noise does not exist in the remaining components, the benefit gained in 
collapsing the number of variables to be modeled by 80% may well be worth the loss of 
information. 

 

 
 

 

The problem for the miner with principal component methods is that they only work well 
for linear relationships. Such methods, unfortunately, actually damage or destroy 
nonlinear relationships—catastrophic and disastrous for the mining process! Some form 
of nonlinear principal components analysis seems an ideal solution. Such techniques are 
now being developed, but are extremely computationally intensive—so intensive, in fact, 
that they themselves become intractable at quite moderate dimensionalities. Although 
promising for the future, such techniques are not yet of help when collapsing information 
in intractably large dimensionality data sets. 

 

 
 

 

Removing variables is a solution to dimensionality reduction. Sometimes this is required 
since no other method will suffice. For instance, in the data set of 7000+ variables mentioned 
before, removing variables was the only option. Such dimensionality mandates a reduction in 
the number of dimensions before it is practical to either mine or compress it with any 
technique available today. But when discarding variables is required, selecting the variables 
to discard needs a rationale that selects the least important variables. These are the 
variables least needed by the model. But how are the least needed variables to be 
discovered? 
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10.3  Introducing the Neural Network  
 
 

 

One problem, then, is how to squash the information in a data set into fewer variables 
without destroying any nonlinear relationships. Additionally, if squashing the data set is 
impossible, how can the miner determine which are the least contributing variables so that 
they can be removed? There is, in fact, a tool in the data miner’s toolkit that serves both 
dimensionality reduction purposes. It is a very powerful tool that is normally used as a 
modeling tool. Although data preparation uses the full range of its power, it is applied to 
totally different objectives than when mining. It is introduced here in general terms before 
examining the modifications needed for dimensionality reduction. The tool is the standard, 
back-propagation, artificial neural network (BP-ANN). 

 

 
 

 

The idea underlying a BP-ANN is very simple. The BP-ANN has to learn to make 
predictions. The learning stage is called training. Inputs are as a pattern of numbers—one 
number per network input. That makes it easy to associate an input with a variable such 
that every variable has its corresponding input. Outputs are also a pattern of 
numbers—one number per output. Each output is associated with an output variable. 
Each of the inputs and outputs is associated with a “neuron,” so there are input neurons 
and output neurons. Sandwiched between these two kinds of neurons is another set of 
neurons called the hidden layer, so called for the same reason that the cheese in a 
cheese sandwich is hidden from the outside world by the bread. So too are the hidden 
neurons hidden from the world by the input and output neurons. Figure 10.3 shows 
schematically a typical representation of a neural network with three input neurons, two 
hidden neurons, and one output neuron. Each of the input neurons connects to each of 
the hidden neurons, and each of the hidden neurons connects to the output neuron. This 
configuration is known as a fully connected ANN. 

 

 

 

 

 

 

 
 

 
Figure 10.3  A three-input, one-output neural network with two neurons in the 
hidden layer. 

 

   
 
 

 

The BP-ANN is usually in the form of a fully autonomous algorithm—often a compiled and 
ready-to-run computer program—which the miner uses. Use of a BP-ANN usually 
requires the miner only to select the input and output data that the network will train on, or 
predict about, and possibly some learning parameters. Seldom do miners write their own 
BP-ANN software today. The explanation here is to introduce the features and 

 



architecture of the BP-ANN that facilitate data compression and dimensionality reduction. 
This gives the miner an insight about why and how the information compression works, 
why the compressed output is in the form it is, and some insight into the limitations and 
problems that might be expected. 

 

 

 10.3.1  Training a Neural Network  
 
 

 

Training takes place in two steps. During the first step, the network processes a set of 
input values and the matching output value. The network looks at the inputs and 
estimates the output—ignoring its actual value for the time being. 

 

 
 

 

In the second step, the network compares the value it estimated and the actual value of 
the output. Perhaps there is some error between the estimated and actual values. 
Whatever it is, this error reflects back through the network, from output to inputs. The 
network adjusts itself so that, if those adjustments were used, the error would be made 
smaller. Since there are only neurons and connections, where are the adjustments made? 
Inside the neurons. 

 

 
 

 

Each neuron has input(s) and an output. When training, it takes each of its inputs and 
multiplies them by a weight specific to that input. The weighted inputs merge together and 
pass out of the neuron as its response to these particular inputs. In the second step, back 
comes some level of error. The neuron adjusts its internal weights so that the actual 
neuron output, for these specific inputs, is closer to the desired level. In other words, it 
adjusts to reduce the size of the error. 

 

 
 

 

This reflecting the output error backwards from the output is known as propagating the 
error backwards, or back-propagation. The back-propagation referred to in the name of 
the network only takes place during training. When predicting, the weights are frozen, and 
only the forward-propagation of the prediction takes place. 

 

 
 

 

Neural networks, then, are built from neurons and interconnections between neurons. By 
continually adjusting its internal neuron weightings to reduce the error of each neuron’s 
predictions, the neural network eventually learns the correct output for any input, if it is 
possible. Sometimes, of course, the output is not learnable from the information contained 
in the input. When it is possible, the network learns (in its neurons) the relationship 
between inputs and output. In many places in this book, those relationships are described 
as curved manifolds in state space. Can a neural network learn any conceivable manifold 
shape? Unfortunately not. The sorts of relationship that a neural network can learn are 
those that can be described by a function—but it is potentially any function! (A function is 
a mathematical device that produces a single output value for every set of input values. 
See Chapter 6 for a discussion of functions, and relationships not describable by 
functions.) Despite the limitation, this is remarkable! How is it that changing the weights 
inside neurons, connected to other neurons in layers, can create a device that can learn 
what may be complex nonlinear functions? To answer that question, we need to take a 

 



much closer look at what goes on inside an artificial neuron. 
 

 

 10.3.2  Neurons  
 
 

 

Neurons are so called because, to some extent, they are modeled after the functionality of 
units of the human brain, which is built of biochemical neurons. The neurons in an artificial 
neural network copy some of the simple but salient features of the way biochemical 
neurons are believed to work. They both perform the same essential job. They take 
several inputs and, based on those inputs, produce some output. The output reflects the 
state and value of the inputs, and the error in the output is reduced with training. 

 

 
 

 

For an artificial neuron, the input consists of a number. The input number transfers across 
the inner workings of the neuron and pops out the other side altered in some way. 
Because of this, what is going on inside a neuron is called a transfer function. In order for 
the network as a whole to learn nonlinear relationships, the neuron’s transfer function has 
to be nonlinear, which allows the neuron to learn a small piece of an overall nonlinear 
function. Each neuron finds a small piece of nonlinearity and learns how to duplicate it—or 
at least come as close as it can. If there are enough neurons, the network can learn 
enough small pieces in its neurons that, as a whole, it learns complete, complex nonlinear 
functions. 

 

 
 

 

There are a wide variety of neuron transfer functions. In practice, by far the most popular 
transfer function used in neural network neurons is the logistic function. (See the 
Supplemental Material section at the end of Chapter 7 for a brief description of how the 
logistic function works.) The logistic function takes in a number of any value and produces 
as its output a number between 0 and 1. But since the exact shape of the logistic curve 
can be changed, the exact number that comes out depends not only on what number was 
put in, but on the particular shape of the logistic curve. 

 

 

 

 10.3.3  Reshaping the Logistic Curve  
 
 

 
First, a brief note about nomenclature. A function can be expressed as a formula, just as 
the formula for determining the value of the logistic function is 

 

 
 

 
 

 

 
 

 

For convenience, this whole formula can be taken as a given and represented by a single 
letter, say g. This letter g stands for the logistic function. Specific values are input into the 
logistic function, which returns some other specific value between 0 and 1. When using 
this sort of notation for a function, the input value is shown in brackets, thus: 

 

 
 

 y = g(10)  
 
 



 

This means that y gets whatever value comes out of the logistic function, represented by 
g, when the value 10 is entered. A most useful feature of this shorthand notation is that 
any valid expression can be placed inside the brackets. This nomenclature is used to 
indicate that the value of the expression inside the brackets is input to the logistic function, 
and the logistic function output is the final result of the overall expression. Using this 
notation removes much distraction, making the expression in brackets visually prominent.

 

 

 

 10.3.4  Single-Input Neurons  
 
 

 

A neuron uses two internal weight types: the bias weight and input weights. As discussed 
elsewhere, a bias is an offset that moves all other values by some constant amount. 
(Elsewhere, bias has implied noise or distortion—here it only indicates offsetting 
movement.) The bias weight moves, or biases, the position of the logistic curve. The input 
weight modifies an input value—effectively changing the shape of the logistic curve. Both 
of these weight types are adjustable to reduce the back-propagated error. 

 

 
 

 The formula for this arrangement of weights is exactly the formula for a straight line:  
 
 

 yn x a0 + bnxn  
 
 

 

So, given this formula, exactly what effect does adjusting these weights have on the 
logistic function’s output? In order to understand each weight’s effects, it is easiest to start 
by looking at the effect of each type of weight separately. In the following discussion a 
one-input neuron is used so there is a single-bias weight and a single-input weight. First, 
the bias weight. 

 

 
 

 

Figure 10.4 shows the effect on the logistic curve for several different bias weights. Recall 
that the curve itself represents, on the y (vertical) axis, values that come out of the logistic 
function when the values on the x (horizontal) axis represent the input values. As the bias 
weight changes, the position of the logistic curve moves along the horizontal x-axis. This 
does not change the range of values that are translated by the logistic 
function—essentially it takes a range of 10 to take the function from 0 to 1. (The logistic 
function never reaches either 0 or 1, but, as shown, covers about 99% of its output range 
for a change in input of 10, say –5 to +5 with a bias of 0.) 

 

 

 



 

 

 

 
 

 

Figure 10.4  Changing the bias weight a moves the center of the logistic curve 
along the x-axis. The center of the curve, value 0.5, is positioned at the value of 
the bias weight. 

 

   
 
 

 

The bias displaces the range over which the output moves from 0 to 1. In actual fact, it 
moves the center of the range, and why it is important that it is the center that moves will 
be seen in a moment. The logistic curves have a central value of 0.5, and the bias weight 
positions this point along the x-axis. 

 

 
 

 

The input weight has a very different effect. Figure 10.5 shows the effect of changing the 
input weight. For ease of illustration, the bias weight remains at 0. In this image the shape 
of the curve stretches over a larger range of values. The smaller the input weight, the 
more widely the translation range stretches. In fact, although not shown, for very large 
values the function is essentially a “step,” suddenly switching from 0 to 1. For a value of 0, 
the function looks like a horizontal line at a value of 0.5. 

 

 

 

 

 

 

 
 

 Figure 10.5  Holding the bias weight at 0 and changing the input weight b  



changes the transition range of the logistic function. 
   
 
 

 

Figure 10.6 has similar curves except that they all move in the opposite direction! This is 
the result of using a negative input weight. With positive weights, the output values 
translate from 0 to 1 as the input moves from negative to positive values of x. With 
negative input weights, the translation moves from 1 toward 0, but is otherwise completely 
adjustable exactly as for positive weights. 

 

 

 

 

 

 

 
 

 

Figure 10.6  When the input weight is negative, the curve is identical in shape to 
a positively weighted curve, except that it moves in the opposite 
direction—positive to negative instead of negative to positive. 

 

   
 
 

 

The logistic curve can be positioned and shaped as needed by the use of the bias and 
input weights. The range, slope, and center of the curve are fully adjustable. While the 
characteristic shape of the curve itself is not modified, weight modification positions the 
center and range of the curve wherever desired. 

 

 
 

 

This is indeed what a neuron does. It moves its transfer function around so that whatever 
output it actually gives best matches the required output—which is found by 
back-propagating the errors. 

 

 
 

 

Well, it can easily be seen that the logistic function is nonlinear, so a neuron can learn at 
least that much of a nonlinear function. But how does this become part of a complex 
nonlinear function? 

 

 

 

 10.3.5  Multiple-Input Neurons  
 
 

 
So far, the neuron in the example has dealt with only one input. Whether the hidden layer 
neurons have multiple inputs or not, the output neuron of a multi-hidden-node network 

 



must deal with multiple inputs. How does a neuron weigh multiple inputs and pass them 
across its transfer function? 

 
 

 

Figure 10.7 shows schematically a five-input neuron. Looking at this figure shows that the 
bias weight, a0, is common to all of the inputs. Every input into this neuron shares the 
effect of this common bias weight. The input weights, on the other hand, bn, are specific 
to each input. The input value itself is denoted by xn. 

 

 

 

 

 

 

 
 

 

Figure 10.7  The “Secret Life of Neurons”! Inside a neuron, the common bias 
weight (a0®MDNM¯) is added to all inputs, but each separate input is multiplied 
by its own input weight (bn). The summed result is applied to the transfer function, 
which produces the neuron’s output (y). 

 

   
 
 

 There is an equation specific to each of the five inputs:  
 
 

 yn = a0 + bnxn  
 
 

 

where n is the number of the input. In this example, n ranges from 1 to 5. The neuron 
code evaluates the equations for specific input values and sums the results. The 
expression in the top box inside the neuron indicates this operation. The logistic function 
(shown in the neuron’s lower box) transfers the sum, and the result is the neuron’s output 
value. 

 

 
 

 

Because each input has a separate weight, the neuron can translate and move each input 
into the required position and direction of effect to approximate the actual output. This is 
critical to approximating a complex function. It allows the neuron to use each input to 
estimate part of the overall output and assembles the whole range of the output from 
these component parts. 

 

 

 

 10.3.6  Networking Neurons to Estimate a Function  
 



 

 

Figure 10.8 shows a complete one-input, five-hidden-neuron, one-output neural network. 
There are seven neurons in all. The network has to learn to reproduce the 2 cycles of 
cosine wave shown as input to the network. 

 

 

 

 

 

 

 
 

 

Figure 10.8  A neural network learning the shape of a cosine waveform. The 
input neuron splits the input to the hidden neurons. Each hidden neuron learns 
part of the overall wave shape, which the output neuron reassembles when 
prediction is required. 

 

   
 
 

 

The input neuron itself serves only as a placeholder. It has no internal structure, serving 
only to represent a single input point. Think of it as a “splitter” that takes the single input 
and splits it between all of the neurons in the hidden layer. Each hidden-layer neuron 
“sees” the whole input waveform, in this case the 2 1/4 cosine wave cycles. The amplitude 
of the cosine waveform is 1 unit, from 0 to 1, corresponding to the input range for the 
logistic transfer function neurons. The limit in output range of 0–1 requires that the input 
range be limited too. Since the neuron has to try to duplicate the input as its output, then 
the input has to be limited to the range the neuron actually can output. The “time” range 
for the waveform is also normalized to be across the range 0–1, again matching the 
neuron output requirements. 

 

 
 

 

The reexpression of the time is necessary because the network has to learn to predict the 
value of the cosine wave at specific times. When predicting with this network, it will be 
asked, in suitably anthropomorphic form, “What is the value of the function at time x?” 
where x is a number between 0 and 1. 

 

 
 

 

Each hidden-layer neuron will learn part of the overall waveform shape. Figure 10.9 
shows why five neurons are needed. Each neuron can move and modify the exact shape 
of its logistic transfer function, but it is still limited to fitting the modified logistic shape to 
part of the pattern to be learned as well as it can. The cosine waveform has five roughly 

 



logistic-function-shaped pieces, and so needs five hidden-layer neurons to learn the five 
pieces. 

 

 

 

 

 

 
 

 

Figure 10.9  Learning this waveform needs at least five neurons. Each neuron 
can only learn an approximately logistic-function-shaped piece of the overall 
waveform. There are five such pieces in this wave shape. 

 

   
 

 

 10.3.7  Network Learning  
 
 

 

During network setup, the network designer takes care to set all of the neuron weights at 
random. This is an important part of network learning. If the neuron weights are all set 
identically, for instance, each neuron tries to learn the same part of the input waveform as 
all of the other neurons. Since identical errors are then back-propagated to each, they all 
continue to be stuck looking at one small part of the input, and no overall learning takes 
place. Setting the weights at random ensures that, even if they all start trying to 
approximate the same part of the input, the errors will be different. One of the neurons 
predominates and the others wander off to look at approximating other parts of the curve. 
(The algorithm uses sophisticated methods of ensuring that the neurons do all wander to 
different parts of the overall curve, but they do not need to be explored here.) 

 

 
 

 

Training the network requires presenting it with instances one after the other. These 
instances, of course, comprise the miner-selected training data set. For each instance of 
data presented, the network predicts the output based on the state of its neuron weights. 
At the output there is some error (difference between actual value and predicted 
value)—even if in a particular instance the error is 0. These errors are accumulated, not 
fed back on an instance-by-instance basis. A complete pass through the training data set 
is called an epoch. Adequately training a neural network usually requires many epochs. 
Back-propagation only happens at the end of each epoch. Then, each neuron adjusts its 
weights to better modify and fit the logistic curve to the shape of its input. This ensures 
that each neuron is trying to fit its own curve to some “average” shape of the overall input 

 



waveform. 
 
 

 

Overall, each neuron tries to modify and fit its logistic function as well as possible to some 
part of the curve. It may succeed well, or it may do very poorly, but when training is 
complete, each approximates a part of the input as well as possible. The miner 
determines the criteria that determine training to be “complete.” Usually, training stops 
either when the input wave shape can be re-created with less than some selected level of 
error, say, 10%, or when a selected number of epochs have passed without any 
improvement in the prediction. 

 

 
 

 

It is usual to reserve a test data set for use during training. The network learns the 
function from the training set, but fitting the function to the test data determines that 
training is complete. As training begins, and the network better estimates the needed 
function in the training data set, the function improves its fit with the test data too. When 
the function learned in the training data begins to fit the test data less well, training is 
halted. This helps prevent learning noise. (Chapter 2 discusses sources of noise, Chapter 
3 discusses noise and the need for multiple data sets when training, and Chapter 9 
discusses noise in time series data, and waveforms.) 

 

 

 

 10.3.8  Network Prediction—Hidden Layer  
 
 

 

So what has the network learned, and how can the cosine waveform be reproduced? 
Returning to Figure 10.8, after training, each hidden-layer neuron learned part of the 
waveform. The center graph shows the five transfer functions of the individual 
hidden-layer neurons. But looking at these transfer functions, it doesn’t appear that 
putting them together will reproduce a cosine waveform! 

 

 
 

 

Observe, however, that the transfer functions for each neuron are each in a separate 
position of the input range, shown on the (horizontal) x-axis. None of the transfer functions 
seems to be quite the same shape as any other, as well as being horizontally shifted. The 
actual weights learned for each hidden neuron are shown in the lower-left box. It is these 
weights that modify and shape the transfer function. For any given input value (between 0 
and 1), the five neurons will be in some characteristic state. 

 

 
 

 

Suppose the value 0.5 is input—what will be the state of the hidden-layer neurons? 
Hidden neurons 1 and 2 will both produce an output close in value to 1. Hidden neuron 3 
is just about in the middle of its range and will produce an output close to 0.5. Hidden 
neurons 4 and 5 will produce an output close to 0. So it is for any specific input value—the 
hidden neurons will each produce a specific value. 

 

 
 

 
But these outputs are not yet similar to the original cosine waveform. How can they be 
assembled to resemble the input cosine waveform? 

 

 

 

 10.3.9  Network Prediction—Output Layer  
 



 

 

The task of the output neuron involves taking as input the various values output by the 
hidden layer and reproducing the input waveform from them. This, of course, is a 
multiple-input neuron. The lower-right box in Figure 10.8 shows the learned values for its 
inputs. The bias weight (a0) is common, but the input weights are each separate. Careful 
inspection shows that some of them are negative. Negative input weights, recall, have the
effect of “flipping” the direction in which the transfer function moves. In fact, the first, third, 
and fifth weights (b1, b3, b5) are all negative. During the part of the input range when these 
hidden-layer neurons are changing value, their positive going change will be translated at 
the output neuron into a negative going change. It is these weights that change the 
direction of the hidden-layer transfer functions. 

 

 
 

 

The output layer sums the inputs, transfers the resulting value across its own internal 
function, and produces the output shown. Clearly the network did not learn to reproduce 
the input perfectly. More training would improve the shape of the output. In fact, with 
enough training, it is possible to come as close as the miner desires to the original shape. 
But there is another distortion. The range of the original input was 0 to 1. The smallest 
input value was actually 0, while the largest was actually 1. The output seems to span a 
range of about 0.1 to 0.9. Is this an error? Can it be corrected? 

 

 
 

 

Unfortunately, the logistic function cannot actually reach values of 0 or 1. Recall that it is 
this feature that makes it so useful as a squashing function (Chapter 7). To actually reach 
values of 0 or 1, the input to the logistic function has to be infinitely negative or infinitely 
positive. This allows neural networks to take input values of any size during modeling. 
However, the network will only actually “see” any very significant change over the linear 
part of the transfer function—and it will only produce output over the range it “sees” in the 
input. 

 

 

 

 10.3.10  Stochastic Network Performance  
 
 

 

A neural network is a stochastic device. Stochastic comes from a Greek word meaning “to 
aim at a mark, to guess.” Stochastic devices work by making guesses and improving their 
performance, often based on error feedback. Their strength is that they usually produce 
approximate answers very quickly. Approximate can mean quite close to the precise 
answer (should one exist) or having a reasonably high degree of confidence in the answer 
given. Actually producing exact answers requires unlimited repetitions of the feedback 
cycle—in other words, a 100% accurate answer (or 100% confidence in the answer) 
takes, essentially, forever. 

 

 
 

 

This makes stochastic devices very useful for solving a huge class of real-world problems. 
There are an enormous number of problems that are extremely difficult, perhaps 
impossible, to solve exactly, but where a good enough answer, quickly, is far better than 
an exact answer at some very remote time. 

 

 
 



 

Humans use stochastic techniques all the time. From grocery shopping to investment 
analysis, it is difficult, tedious, and time-consuming, and most likely impossible in practice, 
to get completely accurate answers. For instance, exactly—to the nearest whole 
molecule—how much coffee will you require next week? Who knows? Probably a quarter 
of a pound or so will do (give or take several trillions of molecules). Or again—compare 
two investments: one a stock mutual fund and the other T-bills. Precisely how much—to 
the exact penny, and including all transaction costs, reinvestments, bonuses, dividends, 
postage, and so on—will each return over the next 10 years (to the nearest nanosecond)? 
Again, who knows, but stocks typically do better over the long haul than T-bills. T-bills are 
safer. But only safer stochastically. If a precise prediction was available, there would be 
no uncertainty. 

 

 
 

 

With both of these examples, more work will give more accurate results. But there comes 
a point at which good enough is good enough. More work is simply wasted. A fast, close 
enough answer is useable now. A comprehensive and accurate answer is not obtainable 
in a useful time frame. 

 

 
 

 

Recall that at this stage in the data preparation process, all of the variables are fully 
prepared—normalized, redistributed, and no missing values—and all network input 
values are known. Because of this, the dimensionality collapse or reduction part of data 
preparation doesn’t use another enormously powerful aspect of stochastic techniques. 
Many of them are able to make estimates, inferences, and predictions when the input 
conditions are uncertain or unknown. Future stock market performance, for instance, is 
impossible to accurately predict—this is intrinsically unknowable information, not just 
unknown-but-in-principle-knowable information. Stochastic techniques can still estimate 
market performance even with inadequate, incomplete, or even inaccurate inputs. 

 

 
 

 

The point here is that while it is not possible for a neural network to produce 100% 
accurate predictions in any realistic situation, it will quickly come to some estimate and 
converge, ever more slowly, never quite stopping, toward its final answer. The miner must 
always choose some acceptable level of accuracy or confidence as a stopping criterion. 
That accuracy or confidence must, of necessity, always be less than 100%. 

 

 

 

 
10.3.11  Network Architecture 1—The Autoassociative 
Network 

 

 
 

 

There are many varieties of neural networks. Many networks work on slightly different 
principles than the BP-ANN described here, and there are an infinite variety of possible 
network architectures. The architecture, in part, defines the number, layout, and 
connectivity of neurons within a network. Data preparation uses a class of architectures 
called autoassociative networks. 

 

 
 

 
One of the most common neural network architectures is some variant of that previously 
shown in Figure 10.3. This type of network uses input neurons, some lesser number of 

 



hidden neurons fully connected to the input layer, and one, or at most a few, output 
neurons fully connected to the hidden layer. Such networks are typically used to predict 
the value of an output(s) when the output value(s) is not included in the input 
variables—for example, predicting the level of tomorrow’s stock market index given 
selected current information. 

 
 

 

An autoassociative network has a very different architecture, as shown in Figure 10.10. A 
key point is that the number of inputs and outputs are identical. Not only is the number 
identical, but all of the values put into the network are also applied as outputs! This 
network is simply learning to predict the value of its own inputs. This would ordinarily be a 
trivial task, and as far as predicting values for the outputs goes, it is trivial. After all, the 
value of the inputs is known, so why predict them? 

 

 

 

 

 

 

 
 

 

Figure 10.10  An autoassociative neural network has the same number of inputs 
and outputs. Each value applied as an input is also an output. The network learns 
to duplicate all of the inputs as outputs. 

 

   
 
 

 
The key to this answer lies in the hidden layer. The hidden layer has less neurons than 
either input or output. The importance of this is discussed in a moment. 

 

 

 

 
10.3.12  Network Architecture 2—The Sparsely Connected 
Network 

 

 
 

 

The networks discussed so far were all fully connected. That is to say, every neuron in the 
input layer connects to every neuron in the hidden layer, and every neuron in the hidden 
layer connects to every neuron in the output layer. For a fully connected autoassociative 
neural network, the number of interconnections rises quite steeply as the dimensionality 
of the data set to be modeled increases. The actual number of interconnections is twice 
the number of dimensions multiplied by the number of neurons in the hidden layer: 

 

 
 



 c = 2(ni x nh)  
 
 

 where  
 
 

 c  
 

 

 is number of interconnections  
 

 

 

 ni  
 

 

 is number of inputs  
 

 

 

 nh  
 

 

 is number of hidden neurons  
 

 

 

 

For the example shown in Figure 10.10, that number is 2(6 x 3)= 36. For a 100-input, 
50-hidden neuron network, the number is already 10,000. With 1000 inputs (not untypical 
with data compression problems), a 50% reduction in the size of the hidden layer requires 
1,000,000 connections in a fully interconnected neural network. Each interconnection 
requires a small calculation for each instance value. When multiplied by the number of 
instances in a representative high-dimensionality data set, multiplied again by the number 
of training epochs, the number of calculations required to converge a large 
autoassociative network becomes truly vast. 

 

 
 

 

Fortunately, there is an easy way around the problem. Any inputs to a neuron that are not 
being used to influence the transfer function can be ignored. A neuron with 1000 inputs may 
be using only a small fraction of them, and the others need not be calculated. A caveat to 
such a connection reduction method requires each unused interconnection to be sampled 
occasionally to see if it makes a difference if used. As the neuron moves its transfer function, 
it may be able to use other information from additional inputs. Dropping internal connections 
in this way can lead to a 90% reduction in interconnections—with a concomitant increase in 
training speed. When so configured, this is called a sparsely connected network. Although 
the predictive power of the network does degrade as the interconnectivity level falls, it is a 
graceful degradation. Such networks frequently retain 90% of their power with only 10% of 
the fully interconnected connections. (The exact performance depends very highly on the 
complexity of the function required, and so on.) A sparsely connected network that is making 
a good estimation of the required output values also strongly indicates that the required 
function can be approximated well with less hidden neurons. 

 

 
10.4  Compressing Variables  
 
 

 

The basic data compression tool, and the one included with the demonstration software 
on the accompanying CD-ROM, is the sparsely connected autoassociative neural network
(SCANN). Its one task is to learn to predict its own inputs to some selected level of 
confidence—but with less neurons in the hidden layer than there are in the input and 
output layers. What does this achieve? 

 

 
 

 
If the connections were “straight through,” that is, input connected directly to output, the 
task would be easy. Each input would perfectly predict the output, since the required 

 



prediction for the output value is the input value! But the fact is that there is not a direct 
connection. Whatever information is contained in the input has to be compressed into the 
hidden neurons. These neurons seek a relationship such that a few of them can predict, 
as accurately as needed, many outputs. And here, when the hidden neurons number less 
than the inputs, the information is squeezed into the hidden neurons. This is compressed 
information. Inasmuch as the hidden neurons can, at the outputs, re-create all of the 
values at the input, so they hold all of the information at the input, but in less neurons. 

 
 

 

Suppose that a trained SCANN network is split between the hidden layer and the output 
layer. As instance values of a data set are applied to the input, the hidden-layer outputs 
are recorded in a file—one variable per hidden neuron. This “hidden-layer” file has less 
variables than the original file, yet holds information sufficient to re-create the input file. 
Applying the captured data to the output neurons re-creates the original file. This 
combination of outputs from the hidden neurons, together with the transform in the output 
neurons, shows that the information from many variables is compressed into fewer. 

 

 
 

 

Compression serves to remove much of the redundancy embedded in the data. If several 
variables can be predicted from the same embedded information, that information only 
needs to be recognized once by the hidden neurons. Once the relationship is captured, 
the output neurons can use the single relationship recognized by the hidden neurons to 
re-create the several variables. 

 

 

 

 10.4.1  Using Compressed Dimensionality Data  
 
 

 

When the miner and domain expert have a high degree of confidence that the training 
data set for the compression model is fully representative of the execution data, 
compression works well. A problem with compression is that the algorithm, at execution 
time, cannot know if the data being compressed can be recovered. If the execution data 
moves outside of the training sample parameters, the compression will not work, and the 
original values cannot be recovered. There are ways to establish a confidence level that 
the execution data originates from the same population distribution as the training sample 
(discussed in Chapter 11; see “Novelty Detection”), and these need to be used along with 
compression techniques. 

 

 
 

 

Compressing data can offer great benefits. Compression is used because the 
dimensionality of the execution data set is too high for any modeling method to actually 
model the uncompressed data. Since a representative subset of the whole data set is 
used to build the compression model (part of the PIE described in Chapter 2), the 
compression model can be built relatively quickly. Using that compression model, the 
information in the full data set is quickly compressed for modeling. Compression, if 
practicable, reduces an intractable data set and puts it into tractable form. The 
compressed data can be modeled using any of the usual mining tools available to the 
miner, whereas the original data set cannot. 

 

 
 



 

Creating a predictive model requires that the variable(s) to be predicted are kept out of the 
compressed data set. Because at execution time the prediction variable’s value is 
unknown, it cannot be included for compression. If there are a very large number of 
prediction variables, they could be compressed separately and predicted in their 
compressed form. The decompression algorithm included in the PIE-O (see Chapter 2) 
will recover the actual predicted values. 

 

 
 

 

Such compression models have been used successfully with both physical and 
behavioral data. Monitoring large industrial processes, for example, may produce data 
streams from high hundreds to thousands of instrumented monitoring points throughout 
the process. Since many instrumentation points very often turn out to be correlated (carry 
similar information), such as flow rates, temperature, and pressure, from many points, it is 
possible to compress such data for modeling very effectively. Compression models of the 
process require data from both normal and abnormal operations, as well as careful 
automated monitoring of the data stream to ensure that the data remains with the model’s 
limits. This allows successful, real-time modeling and optimization of vast industrial 
processes. 

 

 
 

 

Compressing large telecommunications data sets has also been successful for problem 
domains in which customer behavior changes relatively slowly over time. Huge behavioral 
data sets can be made tractable to model, particularly as many of the features are 
correlated, although often not highly. In very high dimensionality data sets there is enough 
redundancy in the information representation to facilitate good compression ratios. 

 

 
10.5  Removing Variables  
 
 

 

This is a last-ditch, when-all-else-fails option for the miner. However, sometimes there is 
nothing else to do if the dimensionality exceeds the limits of the compression or modeling 
tool and computer resources available. 

 

 
 

 

The ideal solution requires removing redundant variables only. Redundant variables show 
a high degree of possibly nonlinear correlation. The solution, then, seems to be to remove
variables that are most highly nonlinearly correlated. (Note that linearly correlated 
variables are also correlated when using nonlinear estimates. Linear correlation is, in a 
sense, just a special case of nonlinear correlation.) Unfortunately, there are many 
practical problems with discovering high-dimensionality nonlinear correlations. One of the 
problems is that there are an unlimited number of degrees of nonlinearity. However deep 
a so-far-fruitless search, it’s always possible some yet greater degree of nonlinearity will 
show a high correlation. Another problem is deciding whether to compare single 
correlation (one variable with another one at a time) or multiple correlation (one variable 
against several at a time in combinations). Conducting such a search for massive 
dimensionality input spaces can be just as large a problem as trying to model the 
data—which couldn’t be done, hence the search for variables to remove in the first place! 

 

 
 



 

Once again the SCANN steps forward. Due to the sparse interconnections within the 
SCANN, it will build models of very high dimensionality data sets. The models will almost 
certainly be poor, but perhaps surprisingly, it is not the models themselves that are of 
interest when removing variables. 

 

 
 

 

Recall that the weights of a SCANN are assigned random values when the network is set 
up. Even identically configured networks, training on identical data sets, are initiated with 
different neuron weights from training run to training run. Indeed, which neuron learns 
which piece of the overall function will very likely change from run to run. The precise way 
that two architecturally identical networks will represent a function internally may be totally 
different even though they are identically trained—same data, same number of epochs, 
and so on. Random initialization of weights ensures that the starting conditions are 
different. 

 

 
 

 

Caution: Do not confuse a training cycle with an epoch. An epoch is a single pass through 
the training set. A training cycle is start-to-finish training to some degree of network 
convergence selected by the miner, usually consisting of many epochs. 

 

 
 

 

However, variables that are important to the network will very likely remain important from 
training session to training session, random initialization or not. More significant from the 
standpoint of removing variables is that variables that remain unimportant from session to 
session are indeed unimportant. Whether highly correlated with other variables or not, the 
network does not use them much to create the input-to-output relationship. If these 
unimportant variables can be detected, they can be removed. The question is how to 
detect them. 

 

 

 

 10.5.1  Estimating Variable Importance 1: What Doesn’t Work   
 

 

There is great danger in talking about using neuron weights to estimate variable 
importance because the values of the weights themselves are not a measure of the 
variable’s importance. This is a very important point and bears repeating: The importance 
of a variable to estimating the input-to-output relationship cannot be determined from 
inspecting the value of the weights. This may seem counterintuitive, and before looking at 
what can help, it is easier to frame the problem by looking at why inspecting weight values 
does not work. 

 

 
 

 

The problem with looking at weight values is that the effects of different weights can be 
indirect and subtle. Suppose an input weight is very heavy—does it have a large effect on 
the output function? Not if the output neurons it connects to ignore it with a low weight. Or 
again, suppose that an input is very lightly weighted—is it unimportant? Not if all of the 
output neurons weight it heavily, thus amplifying its effect since it participates in every part 
of the function estimation. 

 

 
 

 With highly correlated inputs, just the sort that we are looking for, it may well be that the  



weights for two of them are very high—even if together they make no effect on the output! 
It could be that one of them has a large weight for the sole and exclusive purpose of 
nullifying the effect of the other large weight. The net result on the input-to-output function 
is nil. 

 
 

 

If trying to untangle the interactions between input and hidden layer is hard, determining 
the effect over the whole input range of the network at the output neuron(s) is all but 
impossible. 

 

 
 

 

There is no doubt that the values of the weights do have great significance, but only in 
terms of the entire structure of interactions within the network. And that is notoriously 
impenetrable to human understanding. The problem of explaining what a particular 
network configuration “means” is all but impossible for a network of any complexity. 

 

 

 

 10.5.2  Estimating Variable Importance 2: Clues  
 
 

 

So if looking at the neuron weights doesn’t help, what’s left? Well, actually, it’s the neuron 
weights. But it is not the level of the weights, it’s the change in the weight from training 
cyle to training cycle. 

 

 
 

 

Recall that, even for high-dimensionality systems, a SCANN trains relatively quickly. This 
is particularly so if the hidden layer is small relative to the input count. Speedy training 
allows many networks to be trained in a reasonable time. It is the “many networks” that is 
the key here. The automatic algorithm estimating variable importance starts by capturing 
the state of the initialized weights before each training cycle. After each training cycle is 
completed, the algorithm captures the adjusted state of the weights. It determines the 
difference between initial setting and trained setting, and accumulates that difference for 
every input weight. (The input neurons don’t have any internal structure; the algorithm 
captures the input weights at the hidden layer.) 

 

 
 

 

Looking at the total distance that any input weight has moved over the total number of 
training cycles gives an indication of importance. If the network always finds it necessary 
to move a weight (unless by happenstance it was set near to the correct weight when set 
up), it is clearly using the input for something. If consistently used, the input may well be 
important. More significantly, when looking for unimportant variables, if the network 
doesn’t move the weight for an input much from cycle to cycle, it is definitely not using it 
for much. Since each weight is initially set at random and therefore takes on a range of 
values, if nonmoving during training, it clearly does not really matter what weighting the 
input is given. And if that is true, it won’t matter much if the weighting is 0—which 
definitely means it isn’t used. 

 

 
 

 

Here is where to find clues to which variables are important. It is very unlikely that any 
variable has weights that are never moved by the network. It is the nature of the network 
to at least try many different configurations, so all weights will almost certainly be moved 

 



somewhat over a number of training cycles. However, when data set dimensionality is 
high, removing variables with small weight movement at least removes the variables that 
the network uses the least during many training cycles. 

 

 

 
10.5.3  Estimating Variable Importance 3: Configuring and 
Training the Network 

 

 
 

 

Configuring the training parameters for assessing variable importance differs from other 
training regimes. The quality of the final model is not important. It is important that the 
network does begin to converge. It is only when converging that the network 
demonstrates that it is learning. Network learning is crucial, since only when learning 
(improving performance) are the input variables accurately assessed for their importance. 
However, it is only important for variable importance assessment that significant 
convergence occurs. 

 

 
 

 

Some rules of thumb. These are purely empirical, and the miner should adjust them in the 
light of experience. Actual performance depends heavily on the complexity of the 
relationship actually enfolded within the data set and the type and nature of the 
distributions of the variables, to mention only two factors. These are clearly not 
hard-and-fast rules, but they are a good place to start: 

 

 
 

  
1. 

 
Initially configure the SCANN to have hidden-layer neurons number between 5% and 
10% of the number of input variables. 

 

 
 

  

2. 

 

Test train the network and watch for convergence. Convergence can be measured 
many ways. One measure is to create a pseudo-correlation coefficient looking 
simultaneously at network prediction error for all of the input/outputs from epoch to 
epoch. Ensure that the pseudo-r2 (pr2) measure improves by at least 35–50%. (See 
Chapter 9 for a description of r2. Since this is a pseudo-correlation, it has a pseudo-r2.) 
Failing that, use any measure of convergence that is convenient, but make sure the 
thing converges! 

 

 
 

  3.  If the network will not converge, increase the size of the hidden layer until it does.  
 
 

  
4. 

 
With a network configuration that converges during training, begin the Importance 
Detection Training (IDT) cycles. 

 

 
 

  
5. 

 
Complete at least as many IDT cycles as the 0.6th power of the number of inputs (IDT 
cycles = Inputs0.6). 

 

 
 

  6.  Complete each IDT cycle when convergence reaches a 35–50% pr2 improvement.  
 
 

  7.  Cut as many input variables as needed up to 33% of the total in use.  
 
 



  
8. 

 
If the previous cut did not reduce the dimensionality sufficiently for compression, go 
round again from the start. 

 

 
 

  9.  Don’t necessarily cut down to modeling size; compress when possible.  
 
 

  
10.

 
Do it all again on the rejected variables. If true redundancy was eliminated from the 
first set, both sets of variables should produce comparable models. 

 

 
 

 
Following this method, in one application the automated data reduction schedule was 
approximately as follows: 

 

 
 

  

1. 

 

Starting with the 7000+-variable, multiterabyte data set mentioned earlier, a 
representative sample was extracted. About 2000 variables were collapsed into 5 as 
highly sparse variables. Roughly 5000 remained. The SCANN was initially configured 
with 500 hidden neurons, which was raised to 650 to aid convergence. 35% pr2 
convergence was required as an IDT terminating criterion. (Twenty-five epochs with 
less than 1% improvement was also a terminating criterion, but was never triggered.) 
After about 170 IDT cycles (50000.6 = 166), 1500 variables were discarded. 

 

 
 

  
2. 

 
Restarting with 3500 variables, 400 hidden neurons, 35% pr2 convergence, and 140 
IDT cycles, 1000 variables were discarded. 

 

 
 

  
3. 

 
Restarting with 2500 variables, 300 hidden neurons, 35% pr2 convergence, and 120 
IDT cycles, 1000 variables were discarded. 

 

 
 

  
4. 

 
The remaining 1500 variables were compressed into 700 with a minimum 90% 
confidence for data retention. 

 

 
 

  

5. 
 

For the discarded 3500 variables left after the previous extraction, 2000 were 
eliminated using a similar method as above. This produced two data sets comprised 
of different sets of variables. 

 

 
 

  
6. 

 
From both extracted variable data sets, separate predictive models were constructed 
and compared. Both models produced essentially equivalent results. 

 

 
 

 

This data reduction methodology was largely automated, requiring little miner intervention 
once established. Running on parallel systems, the data reduction phase took about six 
days before modeling began. In a manual data reduction run at the same time, domain 
experts selected the variables considered significant or important, and extracted a data 
set for modeling. For this particular project, performance was measured in terms of 
“lift”—how much better the model did than random selection. The top 20% of selections 
for the domain expert model achieved a lift approaching three times. The extracted, 
compressed model for the top 20% of its selections produced a lift of better than four 
times. 

 

 



 

 

The problem with this example is that it is impossible to separate the effect of the data 
reduction from the effect of data compression. As an academic exercise, the project 
suffers from several other shortcomings since much was not controlled, and much data 
about performance was not collected. However, as a real-world, automated solution to a 
particularly intractable problem requiring effective models to be mined from a massive 
data set to meet business needs, this data reduction method proved invaluable. 

 

 
 

 

In another example, a data set was constructed from many millions of transaction records 
by reverse pivoting. The miners, together with domain experts, devised a number of 
features hypothesized to be predictive of consumer response to construct from the 
transaction data. The resulting reverse pivot produced a source data set for mining with 
more than 1200 variables and over 6,000,000 records. This data set, although not 
enormous by many standards (totaling something less than half a terabyte), was 
nonetheless too large for the mining tool the customer had selected, causing repeated 
mining software failures and system crashes during mining. 

 

 
 

 

The data reduction methodology described above reduced the data set (no compression) 
to 35 variables in less than 12 hours total elapsed time. The mining tool was able to digest 
the reduced data set, producing an effective and robust model. Several other methods of 
selecting variables were tried on the same data set as a validation, but no combination 
produced a model as effective as the original combination of automatically selected 
variables. 

 

 
 

 

Further investigation revealed that five of the reduction system selected variables carried 
unique information that, if not used, prevented any other model not using them from being as 
effective. The automatic reduction technique clearly identified these variables as of highest 
importance, and they were included in the primary model. Since they had been selected by 
the SCANN, they weren’t used in the check data set made exclusively from the discards. 
Without these key variables, no check model performed as well. However, SCANN 
importance ranking singled them out, and further investigation revealed these five as the key 
variables. In this case, the discarded information was indeed redundant, but was not 
sufficient to duplicate the information retained. 

 

 
10.6  How Much Data Is Enough?  
 
 

 

Chapter 5 examined the question of how much data was enough in terms of determining 
how much data was needed to prepare individual variables. Variability turned out to be a 
part of the answer, as did establishing suitable confidence that the variability was 
captured. When considering the data set, the miner ideally needs to capture the variability 
of the whole data set to some acceptable degree of confidence, not just the variability of 
each variable individually. Are these the same thing? 

 

 
 

 There is a difference between individual variability and joint variability. Joint variability was  



discussed previously—for instance, in Chapter 6, maintaining joint variability between 
variables was used as a way of determining a suitable replacement value for missing 
values. Recall that joint variability is a measure of how the values of one (or more) 
variable’s values change as another (or several) variable’s values also change. The joint 
variability of a data set is a measure of how all of the values change based on all of the 
other variables in the data set. 

 
 

 

Chapter 5 showed that because of the close link between distribution and variability, 
assuring that the distribution of a variable was captured to a selected degree of 
confidence assured that the variability of the variable was captured. By extension of the 
same argument, the problem of capturing enough data for modeling can be described in 
terms of capturing, to some degree of confidence, the joint distribution of the data set. 

 

 

 

 10.6.1  Joint Distribution  
 
 

 

Joint distributions extend the ideas of individual distribution. Figure 10.11 shows a 
two-dimensional state space (Chapter 6 discusses state space) showing the positions of 
100 data points. The distribution histograms for the two variables are shown above and to 
the right of the graphical depiction of state space. Each histogram is built from bars that 
cover part of the range. The height of each bar indicates the number of instance values for 
the variable in the range the bar covers. The continuous curved lines on the histograms 
trace a normal distribution curve for the range of each variable. The normal curve 
measures nothing about the variable—it is there only for comparison purposes, so that it 
is easier to judge how close the histogram distribution is to a normal distribution. 
Comparing each histogram with the normal curve shows that the variables are at least 
approximately normally distributed, since the bar heights roughly approximate the height 
of the normal curve. Looking at the state space graph shows, exactly as expected with 
such individual distributions, that the density of the data points is higher around the center 
of this state space than at its borders. Each individual variable distribution has maximum 
density at its center, so the joint density of the state space too is greatest at its center. 

 

 

 

 

 

 

 
 

 Figure 10.11  One hundred data points of two variables mapped into a 2D state  



space with histograms showing the distribution of the individual variables 
compared with the normal curve. 

   
 
 

 

The density of a one-dimensional distribution can be shown by the height of a continuous 
line, rather than histogram bars. This is exactly what the normal curve shows. Such a 
continuous line is, of course, a manifold. By extension, for two dimensions the 
density-mapping manifold is a surface. 

 

 
 

 

Figure 10.12 shows the density manifold for the state space shown in Figure 10.11. The 
features in the manifold, shown by the unevenness (lumps and bumps), are easy to see. 
Every useful distribution has such features that represent variance in the density, 
regardless of the number of dimensions. (Distributions that have no variance also carry no 
useable information.) By extension from the single variable case (Chapter 5), as instance 
count in a sample increases, density structures begin to emerge. The larger the sample, 
the better defined and more stable become the features. With samples that are not yet 
representative of the population’s distribution, adding more samples redefines (moves or 
changes) the features. When the sample is representative, adding more data randomly 
selected from the population essentially reinforces, but does not change, the features of 
the multidimensional distribution. 

 

 

 

 

 

 

 
 

 

Figure 10.12  Density manifold for data points in a 2D state space. The manifold 
clearly shows density features (“lumps and bumps” in the manifold), as the density 
does not vary uniformly across state space. 

 

   
 
 

 

It might seem that fully capturing the variability of individual variables is enough to capture 
the variability of the population. This, unfortunately, is not the case. A simple example 
shows that capturing individual variable variability is not necessarily sufficient to capture 
joint variability. 

 

 
 



 
Suppose that two variables each have three possible values: 1, 2, and 3. The proportions 
in which each value occurs in the population of each variable are shown in Table 10.1. 

 

 

 

 TABLE 10.1  Value frequency for two variables.TABLE 10.1  
 
 

   
 
 

 
Variable A 
values 

 

 

 

 
Variable A  
proportion 

 

 

 

 

 
Variable B 
values 

 

 

 

 

 
Variable B 
proportion 

 

 

 

 

   
 
 

 1  
 

 

 10%  
 

 
 

 1  
 

 
 

 10%  
 

 

 

 2  
 

 

 20%  
 

 
 

 2  
 

 
 

 40%  
 

 

 

 3  
 

 

 70%  
 

 
 

 3  
 

 
 

 50%  
 

 

 

   
 
 

 

Table 10.1 shows, for example, that 10% of the values of variable A are 1, 40% of the 
values of variable B are 2, and so on. It is very important to note that the table does not 
imply which values of variable A occur with which values of variable B. For instance, the 
10% of variable A instances that have the value 1 may be paired with any value of 
variable B—1, 2, or 3. The table does not imply that values are in any way matched with 
each other. 

 

 
 

 

Figure 10.13 shows distributions in samples of each variable. Recall that since each of the 
histograms represents the distribution of a sample of the population, each distribution 
approximates the distribution of the population and is not expected to exactly match the 
population distribution. Two separate samples of the population are shown, for 
convenience labeled “sample 1” and “sample 2.” The figure clearly shows that the 
sample 1 and sample 2 distributions for variable A are very similar to each other, as are 
those for variable B. 

 

 

 



 

 

 

 
 

 

Figure 10.13  Individual distributions of two variables (A and B) from two 
representative samples (1 and 2) show very similar individual distributions in each 
sample. 

 

   
 
 

 

If it is true that capturing the individual variability of each variable also captures the joint 
variability of both, then the joint variability of both samples should be very similar. Is it? 
Figure 10.14 shows very clearly that they are totally different. The histograms above and 
to the right of each joint distribution plot show the individual variable distributions. These 
distributions for both samples are exactly as shown in the previous figure. Yet the joint 
distribution, shown by the positions of the small circles, are completely different. The 
circles show where joint values occur—for instance, the circle at variable A = 3 and 
variable B = 3 shows that there are instances where the values of both variables are 3. It 
is abundantly clear that while the individual distributions of the variables in the two 
samples are essentially identical, the joint distributions are totally different. 

 

 

 

 

 

 

 
 

 Figure 10.14  Although the individual variables’ distributions are effectively  



identical in each sample, the joint distribution, shown by the position of the circles, 
is markedly different between the two samples. 

   
 
 

 

Figure 10.15 shows the joint histogram distributions for the two samples. The height of the 
columns is proportional to the number of instances having the A and B values shown. 
Looking at these images, the difference between the joint distributions is plain to see, 
although it is not so obvious that the individual distributions of the two variables are almost 
unchanged in the two samples. The column layout for the two samples is the same as the 
point layout in the previous figure. The joint histogram, Figure 10.15, shows the relative 
differences in joint values by column height. Figure 10.14 showed which joint values 
occurred, but without indicating how many of each there were. 

 

 

 

 

 

 

 
 

 

Figure 10.15  Joint distribution histograms for variables A and B are clearly seen 
as different between the two samples. The height of the column represents the 
number of instances having a particular joint combination of values. 

 

   
 
 

 

The key point to understand from this example is that capturing individual variable 
variability to any degree of confidence does not in itself provide any degree of confidence 
that joint variability is captured. 

 

 

 

 10.6.2  Capturing Joint Variability  
 
 

 

The clue to capturing joint variability has already been shown in Figure 10.12. This figure 
showed a relative-density plot. It mapped the density of a two-dimensional distribution. 
Very clearly it showed peaks and valleys—high points and low—representing the density 
of the distribution at any point on the map. Clearly, the exact shape of the surface reflects 
the underlying joint distribution of the sample, since the distribution is only an expression 

 



of the density of instance values in state space. 
 
 

 

Just as a population has a specific, characteristic distribution for each individual variable 
(discussed in Chapter 5), so too the population has some particular characteristic joint 
distribution. As a sample gets larger, it better reflects the actual population distribution. At 
first, as instance values are added to the sample, the density manifold will change its 
shape—the peaks and valleys will move in state space. New ones may appear, and old 
ones disappear. When the sample is representative of the joint distribution, then the 
shape of the surface will change little as more data from the same population is added. 
This is no more than a multidimensional description of the way that a single variable was 
sampled in Chapter 5. By extension of the same discussion, multidimensional variability 
can be captured, to any selected degree of confidence, using density manifold stability. 

 

 
 

 

But here is where data preparation steps into the data survey. The data survey 
(Chapter 11) examines the data set as a whole from many different points of view. Two of 
the questions a miner may need answers to are 

 

 
 

  
1. 

 
Given a data set, what is the justifiable level of confidence that the joint variability has 
been captured? 

 

 
 

  
2. 

 
Given a data set, how much more data is estimated to be needed to yield a given level 
of confidence that the sample is representative of the population? 

 

 
 

 

Both of these questions are addressed during the survey. Both questions directly address 
the level of confidence justifiable for particular inferential or predictive models. The 
answers, of course, depend entirely on estimating the confidence for capturing joint 
variability. 

 

 
 

 

Why is estimating joint variability confidence part of the survey, rather than data 
preparation? Data preparation concentrates on transforming and adjusting variables’ 
values to ensure maximum information exposure. Data surveying concentrates on 
examining a prepared data set to glean information that is useful to the miner. Preparation 
manipulates values; surveying answers questions. 

 

 
 

 

In general, a miner has limited data. When the data is prepared, the miner needs to know 
what level of confidence is justified that the sample data set is representative. If more data 
is available, the miner may ask how much more is needed to establish some greater 
required degree of confidence in the predictions or inferences. But both are questions 
about a prepared data set; this is not preparation of the data. Thus the answers fall under 
the bailiwick of data survey. 

 

 

 

 10.6.3  Degrees of Freedom  
 
 

 Degrees of freedom measure, approximately, how many things there are to change in a  



system that can affect the outcome. The more of them that there are, the more likely it is 
that, purely by happenstance, some particular, but actually meaningless, pattern will show 
up. The number of variables in a data set, or the number of weights in a neural network, 
all represent things that can change. So, yet again, high-dimensionality problems turn up, 
this time expressed as degrees of freedom. Fortunately for the purposes of data 
preparation, a definition of degrees of freedom is not needed as, in any case, this is a 
problem previously encountered in many guises. Much discussion, particularly in this 
chapter, has been about reducing the dimensionality/combinatorial explosion problem 
(which is degrees of freedom in disguise) by reducing dimensionality. Nonetheless, a data 
set always has some dimensionality, for if it does not, there is no data set! And having 
some particular dimensionality, or number of degrees of freedom, implies some particular 
chance that spurious patterns will turn up. It also has implications about how much data is 
needed to ensure that any spurious patterns are swamped by valid, real-world patterns. 
The difficulty is that the calculations are not exact because several needed measures, 
such as the number of significant system states, while definable in theory, seem 
impossible to pin down in practice. Also, each modeling tool introduces its own degrees of 
freedom (weights in a neural network, for example), which may be unknown to the 
minere .mi.. 

 
 

 

The ideal, if the miner has access to software that can make the measurements (such as 
data surveying software), requires use of a multivariable sample determined to be 
representative to a suitable degree of confidence. Failing that, as a rule of thumb for the 
minimum amount of data to accept, for mining (as opposed to data preparation), use at least
twice the number of instances required for a data preparation representative sample. The 
key is to have enough representative instances of data to swamp the spurious patterns. 
Each significant system state needs sufficient representation, and having a truly 
representative sample of data is the best way to assure that. 

 

 
10.7  Beyond Joint Distribution  
 
 

 
So far, so good. Capturing the multidimensional distribution captures a representative 
sample of data. What more is needed? On to modeling! 

 

 
 

 

Unfortunately, things are not always quite so easy. Having a representative sample in 
hand is a really good start, but it does not assure that the data set is modelable! Capturing 
a representative sample is an essential minimum—that, and knowing what degree of 
confidence is justified in believing the sample to be representative. However, the miner 
needs a modelable representative sample, and the sample simply being representative of 
the population may not be enough. How so? 

 

 
 

 

Actually, there are any number of reasons, all of them domain specific, why the minimum 
representative sample may not suffice—or indeed, why a nonrepresentative sample is 
needed. (Heresy! All this trouble to ensure that a fully representative sample is collected, 
and now we are off after a nonrepresentative sample. What goes on here?) 

 

 



 

 

Suppose a marketing department needs to improve a direct-mail marketing campaign. 
The normal response rate for the random mailings so far is 1.5%. Mailing rolls out, results 
trickle in. A (neophyte) data miner is asked to improve response. “Aha!,” says the miner, “I 
have just the thing. I’ll whip up a quick response model, infer who’s responding, and 
redirect the mail to similar likely responders. All I need is a genuinely representative 
sample, and I’ll be all set!” With this terrific idea, the miner applies the modeling tools, and 
after furiously mining, the best prediction is that no one at all will respond! Panic sets in; 
staring failure in the face, the neophyte miner begins the balding process by tearing out 
hair in chunks while wondering what to do next. 

 

 
 

 

Fleeing the direct marketers with a modicum of hair, the miner tries an industrial chemical 
manufacturer. Some problem in the process occasionally curdles a production batch. The 
exact nature of the process failure is not well understood, but the COO just read a 
business magazine article extolling the miraculous virtues of data mining. Impressed by 
the freshly minted data miner (who has a beautiful certificate attesting to skill in mining), 
the COO decides that this is a solution to the problem. Copious quantities of data are 
available, and plenty more if needed. The process is well instrumented, and continuous 
chemical batches are being processed daily. Oodles of data representative of the process 
are on hand. Wielding mining tools furiously, the miner conducts an onslaught designed to 
wring every last confession of failure from the recalcitrant data. Using every art and 
artifice, the miner furiously pursues the problem until, staring again at failure and with 
desperation setting in, the miner is forced to fly from the scene, yet more tufts of hair 
flying. 

 

 
 

 

Why has the now mainly hairless miner been so frustrated? The short answer is that while 
the data is representative of the population, it isn’t representative of the problem. 
Consider the direct marketing problem. With a response rate of 1.5%, any predictive 
system has an accuracy of 98.5% if it uniformly predicts “No response here!” Same thing 
with the chemical batch processing—lots of data in general, little data about the failure 
conditions. 

 

 
 

 

Both of these examples are based on real applications, and in spite of the light manner of 
introducing the issue, the problem is difficult to solve. The feature to be modeled is 
insufficiently represented for modeling in a data set that is representative of the 
population. Yet, if the mining results are to be valid, the data set mined must be 
representative of the population or the results will be biased, and may well be useless in 
practice. What to do? 

 

 

 

 10.7.1  Enhancing the Data Set  
 
 

 

When the density of the feature to be modeled is very low, clearly the density of that 
feature needs to be increased—but in a way that does least violence to the distribution of 
the population as a whole. Using the direct marketing response model as an example, 

 



simply increasing the proportion of responders in the sample may not help. It’s assumed 
that there are some other features in the sample that actually do vary as response varies. 
It’s just that they’re swamped by spurious patterns, but only because of their low density 
in the sample. Enhancing the density of responders is intended to enhance the variability 
of connected features. The hope is that when enhanced, these other features become 
visible to the predictive mining tool and, thus, are useful in predicting likely responders. 

 
 

 

These assumptions are to some extent true. Some performance improvement may be 
obtained this way, usually more by happenstance than design, however. The problem is 
that low-density features have more than just low-level interactions with other, potentially 
predictive features. The instances with the low-level feature represent some small 
proportion of the whole sample and form a subsample—the subsample containing only 
those instances that have the required feature. Considered alone, because it is so small, 
the subsample almost certainly does not represent the sample as a whole—let alone the 
population. There is, therefore, a very high probability that the subsample contains much 
noise and bias that are in fact totally unrelated to the feature itself, but are simply 
concomitant to it in the sample taken for modeling. 

 

 
 

 

Simply increasing the desired feature density also increases the noise and bias patterns 
that the subsample carries with it—and those noise and bias patterns will then appear to 
be predictive of the desired feature. Worse, the enhanced noise and bias patterns may 
swamp any genuinely predictive feature that is present. 

 

 
 

 

This is a tough nut to crack. It is very similar to any problem of extracting information from 
noise, and that is the province of information theory, discussed briefly in Chapter 11 in the 
context of the data survey. One of the purposes of the data survey is to understand the 
informational structure of the data set, particularly in terms of any identified predictive 
variables. However, a practical approach to solving the problem does not depend on the 
insights of the data survey, helpful though they might be. The problem is to construct a 
sample data set that represents the population as much as possible while enhancing 
some particular feature. 

 

 

 

 Feature Enhancement with Plentiful Data  
 
 

 

If there is plenty of data to draw upon, instances of data with the desired feature may also 
be plentiful. This is the case in the first example above. The mailing campaign produces 
many responses. The problem is their low density as a proportion of the sample. There 
may be thousands or tens of thousands of responses, even though the response rate is 
only 1.5%. 

 

 
 

 

In such a circumstance, the shortage of instances with the desired feature is not the 
problem, only their relative density in the mining sample. With plenty of data available, the 
miner constructs two data sets, both fully internally representative of the 
population—except for the desired feature. To do this, divide the source data set into two 

 



subsets such that one subset has only instances that contain the feature of interest and 
the other subset has no instances that contain the feature of interest. Use the already 
described techniques (Chapter 5) to extract a representative sample from each subset, 
ignoring the effect of the key feature. This results in two separate subsets, both similar to 
each other and representative of the population as a whole when ignoring the effect of the 
key feature. They are effectively identical except that one has the key feature and the 
other does not. 

 
 

 

Any difference in distribution between the two subsets is due either to noise, bias, or the 
effect of the key feature. Whatever differences there are should be investigated and 
validated whatever else is done, but this procedure minimizes noise and bias since both 
data sets are representative of the population, save for the effect of the key feature. 
Adding the two subsets together gives a composite data set that has an enhanced 
presence of the desired feature, yet is as free from other bias and noise as possible. 

 

 

 

 Feature Enhancement with Limited Data  
 
 

 

Feature enhancement is more difficult when there is only limited data available. This is the 
case in the second example of the chemical processor. The production staff bends every 
effort to prevent the production batch from curdling, which only happens very infrequently. 
The reasons for the batch failure are not well understood anyway (that is what is to be 
investigated), so may not be reliably reproducible. Whether possible or not, batch failure 
is a highly expensive event, hitting directly at the bottom line, so deliberately introducing 
failure is simply not an option management will countenance. The miner was constrained 
to work with the small amount of failure data already collected. 

 

 
 

 

Where data is plentiful, small subsamples that have the feature of interest are very likely 
to also carry much noise and bias. Since more data with the key feature is unavailable, 
the miner is constrained to work with the data at hand. There are several modeling 
techniques that are used to extract the maximum information from small subsamples, 
such as multiway cross-validation on the small feature sample itself, and intersampling 
and resampling techniques. These techniques do not affect data preparation since they 
are only properly applied to already prepared data. However, there is one data 
preparation technique used when data instances with a key feature are particularly low in 
density: data multiplication. 

 

 
 

 

The problem with low feature-containing instance counts is that the mining tool might 
learn the specific pattern in each instance and take those specific patterns as predictive. 
In other words, low key feature counts prevent some mining tools from generalizing from 
the few instances available. Instead of generalizing, the mining tool learns the particular 
instance configurations—which is particularizing rather than generalizing. Data 
multiplication is the process of creating additional data instances that appear to have the 
feature of interest. White (or colorless) noise is added to the key feature subset, producing 
a second data subset. (See Chapter 9 for a discussion of noise and colored noise.) The 

 



interesting thing about the second subset is that its variables all have the same mean 
values, distributions and so on, as the original data set—yet no two instance values, 
except by some small chance, are identical. Of course, the noise-added data set can be 
made as large as the miner needs. If duplicates do exist, they should be removed. 

 
 

 

When added to the original data set, these now appear as more instances with the 
feature, increasing the apparent count and increasing the feature density in the overall 
data set. The added density means that mining tools will generalize their predictions from 
the multiplied data set. A problem is that any noise or bias present will be multiplied too. 
Can this be reduced? Maybe. 

 

 
 

 

A technique called color matching helps. Adding white noise multiplies everything exactly 
as it is, warts and all. Instead of white noise, specially constructed colored noise can be 
added. The multidimensional distribution of a data sample representative of the 
population determines the precise color. Color matching adds noise that matches the 
multivariable distribution found in the representative sample (i.e., it is the same color, or 
has the same spectrum). Any noise or bias present in the original key feature subsample 
is still present, but color matching attempts to avoid duplicating the effect of the original 
bias, even diluting it somewhat in the multiplication. 

 

 
 

 

As always, whenever adding bias to a data set, the miner should put up mental warning 
flags. Data multiplication and color matching adds features to, or changes features of, the 
data set that simply are not present in the real world—or if present, not at the density 
found after modification. Sometimes there is no choice but to modify the data set, and 
frequently the results are excellent, robust, and applicable. Sometimes even good results 
are achieved where none at all were possible without making modifications. Nonetheless, 
biasing data calls for extreme caution, with much validation and verification of the results 
before applying them. 

 

 

 

 10.7.2  Data Sets in Perspective  
 
 

 

Constructing a composite data set enhances the visibility of some pertinent feature in the 
data set that is of interest to the miner. Such a data set is no longer an unbiased sample, 
even if the original source data allowed a truly unbiased sample to be taken in the first 
place. Enhancing data makes it useful only from one particular point of view, or from a 
particular perspective. While more useful in particular circumstances, it is nonetheless not 
so useful in general. It has been biased, but with a purposeful bias deliberately 
introduced. Such data has a perspective. 

 

 
 

 

When mining perspectival data sets, it is very important to use nonperspectival test and 
evaluation sets. With the best of intentions, the mining data has been distorted and, to at 
least that extent, no longer accurately represents the population. The only place that the 
inferences or predictions can be examined to ensure that they do not carry an unacceptable 
distortion through into the real world is to test them against data that is as undistorted—that 



is, as representative of the real world—as possible. 
 

 
10.8  Implementation Notes  
 
 

 

Of the four topics covered in this chapter, the demonstration code implements algorithms 
for the problems that can be automatically adjusted without high risk of unintended data 
set damage. Some of the problems discussed are only very rarely encountered or could 
cause more damage than benefit to the data if applied without care. Where no preparation 
code is available, this section includes pointers to procedures the miner can follow to 
perform the particular preparation activity. 

 

 

 

 10.8.1  Collapsing Extremely Sparsely Populated Variables  
 
 

 

The demonstration code has no explicit support for collapsing extremely sparsely 
populated variables. It is usual to ignore such variables, and only in special circumstances 
do they need to be collapsed. Recall that these variables are usually populated at levels 
of small fractions of 1%, so a much larger proportion than 99% of the values are missing 
(or empty). 

 

 
 

 

While the full tool from which the demonstration code was drawn will fully collapse such 
variables if needed, it is easy to collapse them manually using the statistics file and the 
complete-content file produced by the demonstration code, along with a commercial data 
manipulation tool, say, an implementation of SQL. Most commercial statistical packages 
also provide all of the necessary tools to discover the problem, manipulate the data, and 
create the derived variables. 

 

 
 

  1.  If using the demonstration code, start with the “stat” file.  
 
 

  2.  Identify the population density for each variable.  
 
 

  3.  Check the number of discrete values for each candidate sparse variable.  
 
 

  4.  Look in the complete-content file, which lists all of the values for all of the variables.  
 
 

  5.  Extract the lists for the sparse variables.  
 
 

  

6. 
 

Access the sample data set with your tool of choice and search for, and list, those 
cases where the sparse variables simultaneously have values. (This won’t happen 
often, even in sparse data sets.) 

 

 
 

  7.  Create unique labels for each specific present-value pattern (PVP).  
 
 

  8.  Numerate the PVPs.  
 
 



 

Now comes the only tricky part. Recall that the PVPs were built from the representative 
sample. (It’s representative only to some selected degree of confidence.) The execution 
data set may, and if large enough almost certainly will, contain a PVP that was not in the 
sample data set. If important, and only the domain of the problem provides that answer, 
create labels for all of the possible PVPs, and assign them appropriate values. That is a 
judgment call. It may be that you can ignore any unrecognized PVPs, or more likely, flag 
them if they are found. 

 

 

 

 10.8.2  Reducing Excessive Dimensionality  
 
 

 

Neural networks comprise a vast topic on their own. The brief introduction in this chapter 
only touched the surface. In keeping with all of the other demonstration code segments, 
the neural network design is intended mainly for humans to read and understand. 
Obviously, it also has to be read (and executed) by computer systems, but the primary 
focus is that the internal working of the code be as clearly readable as possible. Of all the 
demonstration code, this requirement for clarity most affects the network code. The 
network is not optimized for speed, performance, or efficiency. The sparsity mechanism is 
modified random assignment without any dynamic interconnection. Compression factor 
(hidden-node count) is discovered by random search. 

 

 
 

 

The included code demonstrates the key principles involved and compresses information. 
Code for a fully optimized autoassociative neural network, including dynamic connection 
search with modified cascade hidden-layer optimization, is an impenetrable beast! The 
full version, from which the demonstration is drawn, also includes many other obfuscating 
(as far as clarity of reading goes) “bells and whistles.” For instance, it includes 
modifications to allow maximum compression of information into the hidden layer, rather 
than spreading it between hidden and output layers, as well as modifications to remove 
linear relationships and represent those separately. While improving performance and 
compression, such features completely obscure the underlying principles. 

 

 

 

 10.8.3  Measuring Variable Importance  
 
 

 

Everything just said about neural networks for data compression applies when using the 
demonstration code to measure variable importance. For explanatory ease, both data 
compression and variable importance estimation use the same code segment. A network 
optimized for importance search can, once again, improve performance, but the principles 
are as well demonstrated by any SCANN-type BP-ANN. 

 

 

 

 10.8.4  Feature Enhancement  
 
 

 
To enhance features in a data set, build multiple representative data subsets, as 
described, and merge them. 

 

 
 

 Describing construction of colored noise for color matching, if needed, is unfortunately  



outside the scope of the present book. It involves significant multivariable frequency 
modeling to reproduce a characteristic noise pattern emulating the sample multivariable 
distribution. Many statistical analysis software packages provide the basic tools for the 
miner to characterize the distribution and develop the necessary noise generation 
function. 

 

 
10.9  Where Next?  
 
 

 

A pause at this point. Data preparation, the focus of this book, is now complete. By 
applying all of the insights and techniques so far covered, raw data in almost any form is 
turned into clean prepared data ready for modeling. Many of the techniques are illustrated 
with computer code on the accompanying CD-ROM, and so far as data preparation for 
data mining is concerned, the journey ends here. 

 

 
 

 

However, the data is still unmined. The ultimate purpose of preparing data is to gain 
understanding of what the data “means” or predicts. The prepared data set still has to be 
used. How is this data used? The last two chapters look not at preparing data, but at 
surveying and using prepared data. 

 

 



 

Chapter 11: The Data Survey  

 

 

 Overview  
 
 

 

Suppose that three separate families are planning a vacation. The Abbott family really 
enjoys lake sailing. Their ideal vacation includes an idyllic mountain lake, surrounded by 
trees, with plenty of wildlife and perhaps a small town or two nearby in case supplies are 
needed. They need only a place to park their car and boat trailer, a place to launch the 
boat, and they are happy. 

 

 
 

 

The Bennigans are amateur archeologists. There is nothing they like better than to find an 
ancient encampment, or other site, and spend their time exploring for artifacts. Their 
four-wheel-drive cruiser can manage most terrain and haul all they need to be entirely 
self-sufficient for a couple of weeks exploring—and the farther from civilization, the better 
they like it. 

 

 
 

 

The Calloways like to stay in touch with their business, even while on vacation. Their ideal 
is to find a luxury hotel in the sun, preferably near the beach but with nightlife. Not just any 
nightlife; they really enjoy cabaret, and would like to find museums to explore and other 
places of interest to fill their days. 

 

 
 

 

These three families all have very different interests and desires for their perfect vacation. 
Can they all be satisfied? Of course. The locations that each family would like to find and 
enjoy exist in many places; their only problem is to find them and narrow down the 
possibilities to a final choice. The obvious starting point is with a map. Any map of the 
whole country indicates broad features—mountains, forests, deserts, lakes, cities, and 
probably roads. The Abbotts will find, perhaps, the Finger Lakes in upstate New York a 
place to focus their attention. The Bennigans may look at the deserts of the Southwest, 
while the Calloways look to Florida. Given their different interests, each family starts by 
narrowing down the area of search for their ideal vacation to those general areas of the 
country that seem likely to meet their needs and interests. 

 

 
 

 

Once they have selected a general area, a more detailed map of the particular territory 
lets each family focus in more closely. Eventually, each family will decide on the best 
choice they can find and leave for their various vacations. Each family explores its own 
vacation site in detail. While the explorations do not seem to produce maps, they reveal 
small details—the very details that the vacations are aimed at. The Abbotts find particular 
lake coves, see particular trees, and watch specific birds and deer. The Bennigans find 
individual artifacts in specific places. The Calloways enjoy particular cabaret performers 
and see specific exhibits at particular museums. It is these detailed explorations that each 
family feels to be the whole purpose for their vacations. 

 

 
 



 

Each family started with a general search to find places likely to be of interest. Their initial 
search was easy. The U.S. Geological Survey has already done the hard work for them. 
Other organizations, some private survey companies, have embellished maps in 
particular ways and for particular purposes—road maps, archeological surveys, sailing 
maps (called “charts”), and so on. Eventually, the level of detail that each family needed 
was more than a general map could provide. Then the families constructed their own 
maps through detailed exploration. 

 

 
 

 

What does this have to do with data mining? The whole purpose of the data survey is to help 
the miner draw a high-level map of the territory. With this map, a data miner discovers the 
general shape of the data, as well as areas of danger, of limitation, and of usefulness. With a 
map, the Abbotts avoided having to explore Arizona to see if any lakes suitable for sailing 
were there. With a data survey, a miner can avoid trying to predict the stock market from 
meteorological data. “Everybody knows” that there are no lakes in Arizona. “Everybody 
knows” that the weather doesn’t predict the stock market. But these “everybodies” only know 
that through experience—mainly the experience of others who have been there first. Every 
territory needed exploring by pioneers—people who entered the territory first to find out what 
there was in general—blazing the trail for the detailed explorations to follow. The data survey 
provides a miner with a map of the territory that guides further exploration and locates the 
areas of particular interest, the areas suitable for mining. On the other hand, just as with 
looking for lakes in Arizona, if there is no value to be found, that is well to know as early as 
possible. 

 

 
11.1  Introduction to the Data Survey  
 
 

 

This chapter deals entirely with the data survey, a topic at least as large as data 
preparation. The introduction to the use, purposes, and methods of data surveying in this 
chapter discusses how prepared data is used during the survey. Most, if not all, of the 
surveying techniques can be automated. Indeed, the full suite of programs from which the 
data preparation demonstration code is drawn is a full data preparation and survey tool 
set. This chapter touches only on the main topics of data surveying. It is an introduction to 
the territory itself. The introduction starts with understanding the concept of “information.” 

 

 
 

 

This book mentions “information” in several places. “Information is embedded in a data 
set.” “The purpose of data preparation is to best expose information to a mining tool.” 
“Information is contained in variability.” Information, information, information. Clearly, 
“information” is a key feature of data preparation. In fact, information—its discovery, 
exposure, and understanding—is what the whole preparation-survey-mining endeavor is 
about. A data set may represent information in a form that is not easily, or even at all, 
understandable by humans. When the data set is large, understanding significant and 
salient points becomes even more difficult. Data mining is devised as a tool to transform 
the impenetrable information embedded in a data set into understandable relationships or 
predictions. 

 

 
 



 

However, it is important to keep in mind that mining is not designed to extract information. 
Data, or the data set, enfolds information. This information describes many and various 
relationships that exist enfolded in the data. When mining, the information is being mined 
for what it contains—an explanation or prediction based on the embedded relationships. It 
is almost always an explanation or prediction of specific details that solves a problem, or 
answers a question, within the domain of inquiry—very often a business problem. What is 
required as the end result is human understanding (enabling, if necessary, some action). 
Examining the nature of, and the relationships in, the information content of a data set is a 
part of the task of the data survey. It prepares the path for the mining that follows. 

 

 
 

 

Some information is always present in the data—understandable or not. Mining finds 
relationships or predictions embedded in the information inherent in a data set. With luck, 
they are not just the obvious relationships. With more luck, they are also useful. In 
discovering and clarifying some novel and useful relationship embedded in data, data 
mining has its greatest success. Nonetheless, the information exists prior to mining. The 
data set enfolds it. It has a shape, a substance, a structure. In some places it is not well 
defined; in others it is bright and clear. It addresses some topics well; others poorly. In 
some places, the relationships are to be relied on; in others not. Finding the places, 
defining the limits, and understanding the structures is the purpose of data surveying. 

 

 
 

 
The fundamental question posed by the data survey is, “Just what information is in here 
anyway?” 

 

 
11.2  Information and Communication  
 
 

 

Everything begins with information. The data set embeds it. The data survey surveys it. 
Data mining translates it. But what exactly is information? The Oxford English Dictionary 
begins its definition with “The act of informing, . . .” and continues in the same definition a 
little later, “Communication of instructive knowledge.” The act referred to is clearly one 
where this thing, “information,” is passed from one person to another. The latter part of the 
definition explicates this by saying it is “communication.” It is in this sense of 
communicating intelligence—transferring insight and understanding—that the term 
“information” is used in data mining. Data possesses information only in its latent form. 
Mining provides the mechanism by which any insight potentially present is explicated. 
Since information is so important to this discussion, it is necessary to try to clarify, and if 
possible quantify, the concept. 

 

 
 

 

Because information enables the transferring of insight and understanding, there is a 
sense in which quantity of information relates to the amount of insight and understanding 
generated; that is, more information produces greater insight. But what is it that creates 
greater insight? 

 

 
 

 
A good mystery novel—say, a detective story—sets up a situation. The situation 
described includes all of the necessary pieces to solve the mystery, but in a nonobvious 

 



way. Insight comes when, at the end of the story, some key information throws all of the 
established structure into a suddenly revealed, surprising new relationship. The larger 
and more complex the situation that the author can create, the greater the insight when 
the true situation is revealed. But in addition to the complexity of the situation, it seems to 
be true that the more surprising or unexpected the solution, the greater the insight. 

 
 

 

The detective story illustrates the two key ingredients for insight. The first is what for a 
detective story is described as “the situation.” The situation comprises a number of 
individual components and the relationship between the components. For a detective 
story, these components are typically the characters, the attributes of characters, their 
relationship to one another, and the revealed actions taken by each during the course of 
the narrative. These various components, together with their relationships, form a 
knowledge structure. The second ingredient is the communication of a key insight that 
readjusts the knowledge structure, changing the relationship between the components. 
The amount of insight seems intuitively related to how much readjustment of the 
knowledge structure is needed to include the new insight, and the degree to which the 
new information is unexpected. 

 

 
 

 

As an example, would you be surprised if you learned that to the best of modern scientific 
knowledge, the moon really is made of green cheese? Why? For a start, it is completely 
unexpected. Can you honestly say that you have ever given the remotest credence to the 
possibility that the moon might really be made of green cheese? If true, such a simple 
communication carries an enormous amount of information. It would probably require you 
to reconfigure a great deal of your knowledge of the world. After all, what sort of possible 
rational explanation could be constructed to explain the existence of such a 
phenomenon? In fact, it is so unlikely that it would almost certainly take much repetition of 
the information in different contexts (more evidence) before you would accept this as 
valid. (Speaking personally, it would take an enormous readjustment of my world view to 
accept any rational explanation that includes several trillion tons of curdled milk products 
hanging in the sky a quarter of a million miles distant!) 

 

 
 

 

These two very fundamental points about information—how surprising the communication 
is, and how much existing knowledge requires revision—both indicate something about 
how much information is communicated. But these seem very subjective measures, and 
indeed they are, which is partly why defining information is so difficult to come to grips 
with. 

 

 
 

 

Claude E. Shannon did come to grips with the problem in 1948. In what has turned out to 
be one of the seminal scientific papers of the twentieth century, “A Mathematical Theory 
of Communication,” he grappled directly with the problem. This was published the next 
year as a book and established a whole field of endeavor, now called “information theory.” 
Shannon himself referred to it as “communication theory,” but its effects and applicability 
have reached out into a vast number of areas, far beyond communications. In at least one 
sense it is only about communications, because unless information is communicated, it 

 



informs nothing and no one. Nonetheless, information theory has come to describe 
information as if it were an object rather than a process. A more detailed look at 
information will assume where needed, at least for the sake of explanation, that it exists 
as a thing in itself. 

 

 

 11.2.1  Measuring Information: Signals and Dictionaries  
 
 

 

Information comes in two pieces: 1) an informing communication and 2) a framework in 
which to interpret the information. For instance, in order to understand that the moon is 
made of green cheese, you have to know what “green cheese” is, what “the moon” is, 
what “is made of” means, and so on. So the first piece of information is a signal of some 
sort that indicates the informing communication, and the second is a dictionary that 
defines the interpretation of the signaled communication. It is the dictionary that allows the 
signaled information to be placed into context within a framework of existing knowledge. 

 

 
 

 

Paul Revere, in his famous ride, exemplified all of the basic principles with the “One if by 
land, two if by sea” dictionary. Implicit in this is “None if not coming.” This number of lamps 
shown—0, 1, or 2 in the Old North Church tower in Boston, indicating the direction of 
British advance—formed the dictionary for the communication system. The actual signal 
consisted of 0 or 1 or 2 lamps showing in the tower window. 

 

 

 

 11.2.2  Measuring Information: Signals  
 
 

 

A signal is a system state that indicates a defined communication. A system can have any 
number of signals. The English language has many thousands—each word carrying, or 
signaling, a unique meaning. Paul Revere came close to using the least possible signal. 
The least possible signal is a system state that is either present or not present. Any light in 
the Old North Church signaled that the British were coming—no light, no British coming. 
This minimal amount of signaled information can be indicated by any two-state 
arrangement: on and off, 1 and 0, up and down, present and absent. It is from this 
two-state system of signal information that we get the now ubiquitous binary digit, or bit of 
information. Modern computer systems are all built from many millions of two-state 
switches, each of which can represent this minimal signal. 

 

 
 

 

Back to the Old North Church tower. How many bits did Paul Revere’s signal need? Well, 
there are three defined system states: 0 lamps = no sign of the British, 1 lamp = British 
coming by land, 2 lamps = British coming by sea. One bit can carry only two system 
states. State 0 = (say) no British coming, state 1 = (say) land advance. (Note that there is 
no necessary connection between the number of lamps showing and the number of bits.) 
There is no more room in one bit to define more than two system states. So in addition to 
one bit signaling two states—no advance or land advance—at least one more bit is 
needed to indicate a sea advance. With two bits, up to four system states can be 
encoded, as shown in Table 11.1. 

 

 

 



 
TABLE 11.1  Only three system states are needed to carry Paul Revere’s message 
(using two bits leaves one state undefined). 

 

 
 

   
 
 

 Bit 1 state  
 

 

 Bit 2 state  
 

 
 

 Tower lights  
 

 
 

 Meaning  
 

 

 

   
 
 

 0  
 

 

 0  
 

 
 

 None  
 

 
 

 No sign of the British  
 

 

 

 0  
 

 

 1  
 

 
 

 1  
 

 
 Land advance 

  
 

 

 

 1  
 

 

 0  
 

 
 

 2  
 

 
 Sea advance 

  
 

 

 

 1  
 

 

 1  
 

 
 

 Undefined  
 

 
 Undefined 

  
 

 

 

   
 
 

 

But two bits seems to be too many as this communication system has only three states. 
There is an undefined system state when, in this example, both bits are in their “1” state. It 
looks like 1 1/2 bits is enough to carry the message—and indeed it is. Fractional bits may 
seem odd. It may seem that fractional bits can’t exist, which is true. But the measurement 
here is only of how many bits are needed to signal the information, and for that about 1 
1/2 bits will do the job. 

 

 
 

 

When Paul Revere constructed his signaling system, he directly faced the problem that, in 
practice, two bits are needed. When the signals were devised, Paul used one lighted 
lantern to indicate the state of one bit. He needed only 1 1/2 lights, but what does it mean 
to show 1/2 a light? His solution introduced a redundant system state, as shown in Table 
11.2 

 

 

 

 
TABLE 11.2  Paul Revere’s signaling system used redundancy in having  
two states carry the same message. 

 

 
 

   
 
 

 Bit 1 state  
 

 

 Bit 2 state  
 

 
 

 Tower lights  
 

 
 

 Meaning  
 

 

 

   
 
 

 0  
 

 

 0  
 

 
 

 None  
 

 
 

 No sign of the British  
 

 

 

 0  
 

 

 1  
 

 
 

 1  
 

 
 

 Land advance  
 

 



 

 1  
 

 

 0  
 

 
 

 1  
 

 
 

 Land advance  
 

 

 

 1  
 

 

 1  
 

 
 

 2  
 

 
 

 Sea advance  
 

 

 

   
 
 

 

With this signaling system, land advance is indicated by two separate system states. 
Each state could have been used to carry a separate message, but instead of having an 
undefined system state, an identical meaning was assigned to multiple system states. 
Since the entire information content of the communication system could be carried by 
about 1/2 bits, there is roughly 1/2 a bit of redundancy in this system. 

 

 
 

 

Redundancy measures duplicate information in system states. Most information-carrying 
systems have redundancy—the English language is estimated to be approximately 50% 
redundant. Tht is why yu cn undrstnd ths sntnce, evn thgh mst f th vwls are mssng! It is 
also what allows data set compression—squeezing out some of the redundancy. 

 

 
 

 

There are many measures that can be used to measure information content, but the use 
of bits has gained wide currency and is one of the most common. It is also convenient 
because one bit carries the least possible amount of information. So the information 
content of a data set is conveniently measured as the number of bits of information it 
carries. But given a data set, how can we discover how many bits of information it does 
carry? 

 

 

 

 11.2.3  Measuring Information: Bits of Information  
 
 

 

When starting out to measure the information content of a data set, what can be easily 
discovered within a data set is its number of system states—not (at least directly) the 
number of bits needed to carry the information. As an understandable example, however, 
imagine two data sets. The first, set A, is a two-bit data set. It comprises two variables 
each of which can take values of 0 or 1. The second data set, set B, comprises one 
one-bit variable, which can take on values of 0 or 1. If these two data sets are merged to 
form a joint data set, the resulting data set must carry three bits of information. 

 

 
 

 

To see that this is so, consider that set A has four possible system states, as shown in 
Table 11.3. Set B, on the other hand, has two possible system states, as shown in Table 
11.4. 

 

 

 

 TABLE 11.3  Data set A, using two bits, has four discrete states.  
 
 

   
 
 

 Set A variable 1  
 

 

 Set A variable 2  
 

 
 

 System state  
 

 



 

   
 
 

 0  
 

 

 0  
 

 
 

 1  
 

 

 

 0  
 

 

 1  
 

 
 

 2  
 

 

 

 1  
 

 

 0  
 

 
 

 3  
 

 

 

 1  
 

 

 1  
 

 
 

 4  
 

 

 

   
 

 

 TABLE 11.4  Data set B, using one bit, has two discrete states.  
 
 

   
 
 

 Set B variable 1  
 

 

 System state  
 

 

 

   
 
 

 0  
 

 

 1  
 

 

 

 1  
 

 

 2  
 

 

 

   
 
 

 

Clearly, combining the two data sets must result in an information-carrying measurement 
for the combined data set of three bits of information total. However, usually the 
information content in bits is unknown; only the numbers of system states in each data set 
is known. But adding the two data sets requires multiplying the number of possible system 
states in the combined data set, as Table 11.5 shows. 

 

 

 

 
TABLE 11.5  Combining data sets A and B results in a composite data set with 2 x 4 
= 8 states, not 2 + 4 = 6 states. 

 

 
 

   
 
 

 

Set A 
variable 
1 

 

 

 

 
Set A 
variable 2 

 

 

 

 

 

Set B 
variable 
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Set A 
system 
state 

 

 

 

 

 

Set B 
system  
state 

 

 

 

 

 

Composite  
system  
state 

 

 

 

 

   
 
           



 0  
 

 0  
 

 0  
 

 1  
 

 1  
 

 1  
 

 

 0  
 

 

 0  
 

 
 

 1  
 

 
 

 1  
 

 
 

 2  
 

 
 

 2  
 

 

 

 0  
 

 

 1  
 

 
 

 0  
 

 
 

 2  
 

 
 

 1  
 

 
 

 3  
 

 

 

 0  
 

 

 1  
 

 
 

 1  
 

 
 

 2  
 

 
 

 2  
 

 
 

 4  
 

 

 

 1  
 

 

 0  
 

 
 

 0  
 

 
 

 3  
 

 
 

 1  
 

 
 

 5  
 

 

 

 1  
 

 

 0  
 

 
 

 1  
 

 
 

 3  
 

 
 

 2  
 

 
 

 6  
 

 

 

 1  
 

 

 1  
 

 
 

 0  
 

 
 

 4  
 

 
 

 1  
 

 
 

 7  
 

 

 

 1  
 

 

 1  
 

 
 

 1  
 

 
 

 4  
 

 
 

 2  
 

 
 

 8  
 

 

 

   
 
 

 

There are not 4 + 2 = 6 combined states, but 4 x 2 = 8 combined states. Adding data sets 
requires multiplying the number of system states. However, although the number of 
system states is multiplicative, the number of bits of information is additive—two bits in 
data set A and one bit in data set B gives 2 + 1 = 3 bits of information. This relationship 
allows a very convenient measure of information that is based on the properties of 
logarithms. 

 

 
 

 

Adding the logarithms of numbers is an easy way to multiply the numbers themselves. 
The logarithm of a number simply consists of whatever power some base number has to 
be raised to so as to yield the required number. The relationship is 

 

 
 

 baselogarithm = number  
 
 

 
So, for instance, since 62 = 36, and 63 = 216, the logarithm of 36, to the base of 6, is 2, 
and the logarithm of 216, to the base of 6, is 3. But 

 

 
 

 36 x 216 = 7776.  
 
 

 Since 62 = 36, and 63 = 216, then substituting gives  
 
 

 62 x 63 = 7776  
 
 

 but  
 
 

 62 + 3 = 65 = 7776.  
 
 



 So  
 
 

 log6(36) + log6(216) = 36 x 216 = 7776.  
 
 

 
So it is easy to see that adding the logarithms of numbers is equivalent to multiplying the 
numbers themselves. 

 

 
 

 

When measuring information content, the bit has already been seen to be a useful unit of 
measurement. The bit represents the minimum amount of information possible. But a bit 
has only two states. When using logarithms for determining information content, because 
a bit has only two states, the logarithm base used is 2. The “number” in the formula 
“baselogarithm = number” is the number of system states, so that the logarithm of the number 
of system states, to the base 2, is a measure of the information content of the data set in 
bits. So 

 

 
 

 log2(system states) = information content in bits  
 
 

 

Using logarithms to the base of 2 gives the information bit measure needed to carry a 
specified number of system states. Returning to the example of data sets A and B, for 
data set A with four system states that number is log2(4) = 2 bits. For data set B with two 
system states the information content is log2(2) = 1 bit. So for four system states, 2 bits of 
information are needed, and for two system states, 1 bit is needed, which is exactly as it 
appears in the example. When adding the two data sets, the combined data set has eight 
system states, which requires log2(8) = 3 bits. 

 

 
 

 

(Note, however, that since log2(3) = 1.58, Paul Revere’s system, while still needing 
fractional bits to carry the information, seems to need a little more than just 1 bits. More on 
this shortly.) 

 

 
 

 

So far as this example goes, it is fine. But the example assumes that each of the system 
states counts equally, that is to say, each outcome is equally likely. Yet, unless a data set 
has a uniform distribution, the frequency with which each system state turns up is not 
uniform. To put it another way, unless equally distributed, not all system states are equally 
likely. Is this important? 

 

 

 

 11.2.4  Measuring Information: Surprise  
 
 

 

As already discussed above, information content of a particular signal depends to some 
extent on how unexpected, or surprising, it is. In a fixed data set, the signals correspond 
to system states. Any specific data sample contains a fixed amount of information. 
However, the various signals, or system states, in the data set do not all carry an identical 
amount of information. The least surprising, or most common, signals carry less 
information than the most surprising, or least common, signals. 

 

 
 



 

Surprise may seem like a subjective factor to measure. However, so far as signal 
information is concerned, surprise only measures the “unexpectedness” of a particular 
signal. The more likely a signal, the less surprising it is when it actually turns up. 
Contrarily, the less likely a signal, the more surprising it is. The degree of surprise, then, 
can be measured by how likely it is that a particular signal will occur. But in a data set, a 
signal is just a system state, and how likely it is that a particular system state occurs is 
measured by its joint probability, discussed in Chapter 10. Surprise can be quantified in 
terms of the relative frequency of a particular signal, or system state, in a representative 
sample. This is something that, if not always exactly easy to measure, can certainly be 
captured in principle. Surprisingness, then, turns out to be a measure of the probability of 
a particular system state in a representative sample. This, of course, is just its relative 
frequency in the data set. 

 

 
 

 

As an example, suppose that you enter a lottery. It is a very small lottery and only 10 
tickets are sold. As it happens, you bought 5 tickets. Clearly, in a fair drawing you stand a 
50% chance of winning. After the drawing, you receive a signal (message) that you have 
won. Are you very surprised? How much information does the system contain, and how 
much is contained in the signal? 

 

 
 

 

This system has two states as far as you are concerned, each 50% likely. Either you win 
or you lose. System information content: log2(2) = 1 bit of information. Each state, win or 
lose, has a probability of 1/2 = 0.5, or 50%. To discover how much information each signal 
carries, we must find how many bits of information the individual signal carries, weighted 
(multiplied) by the chance of that particular signal occurring. For this lottery the chance of 
a win is 0.5 (or 50%) and the unweighted win information is log2(0.5), so the weighted win 
information is 

 

 
 

 
chance of winning x unweighted win information in bits of winning x log2(chance of 
winning) 

 

 
 

 50% x log2(0.5)  
 
 

 50% x 1 = 0.5 bits of information  
 
 

 

This system carries half a bit of information in the win signal, and by similar reasoning, 
half a bit in the lose signal. But suppose you had only bought one ticket? Now the win 
state only occurs (for you) with a 10% probability. Obviously you have a 90% probability of 
losing. If you win under these circumstances, you should be more surprised than before 
since it is much less likely that you will win. If a win signal does arrive, it should carry more 
information for you since it is unexpected—thus more surprising. Also, the more highly 
expected lose signal carries little information, since that is the one you most expect 
anyway. But what does this do to the total amount of information in the system? 

 

 
 

 The total amount of information in this system is lower than when the outcomes were  



equally likely—adding the weighted information (shown in Table 11.6 by P log2(P)) for win 
signal (0.332) and lose signal (0.137) gives an information content for the system of 0.469 
bits. Yet the win signal, if it occurs, carries more than 0.3 bits of information—over 70% of 
the information available in the system! 

 

 

 
TABLE 11.6  Information content in the lottery system when the win/lose signals 
aren’t equal. 

 

 
 

   
 
 

   
 

 

 Win  
 

 
 

 Lose  
 

 

 

   
 
 

 Probability (P)  
 

 

 0.1  
 

 
 

 0.9  
 

 

 

 log2(P)  
 

 

 3.32  
 

 
 

 0.152  
 

 

 

 P log2(P)  
 

 

 0.332  
 

 
 

 0.137  
 

 

 

   
 

 

 11.2.5  Measuring Information: Entropy  
 
 

 

The information measure that has been developed actually measures a feature of the 
information content of a data set called entropy. Much confusion has been provoked by 
the use of this term, since it is identical to one used in physics to describe the capability of 
a system to perform work. Increased confusion is caused by the fact that the 
mathematical underpinnings of both types of entropy appear almost identical, and much 
discussion has ensued about similarities and differences between them. Data miners can 
leave this confusion aside and focus on the fact that entropy measures uncertainty in a 
system. When, for instance, the lottery had a 50/50 outcome, both the information 
measure and the uncertainty of the outcome were at their greatest for the system (1). It 
was impossible to say that any one outcome was more likely than any other—thus 
maximum uncertainty. This is a state of maximum entropy. As the system states move 
away from maximum uncertainty, so too does entropy decrease. Low entropy, as 
compared to the theoretical maximum for a system, suggests that the data set is possibly 
biased and that some system states may not be well represented. This measure of 
entropy is an important tool in general, and one that is particularly important in parts of the 
data survey. 

 

 

 

 11.2.6  Measuring Information: Dictionaries  
 
 

 Thus far in measuring the information content of a data set, looking at the data set alone  



seems sufficient. However, recall that communicated information comes in two parts—the 
signal and the dictionary. The dictionary places the signal in its context within a 
knowledge structure. It’s a fine thing to know that you have won the lottery, but winning $1 
is different from winning $1,000,000—even if the signal and its chance of occurring are 
identical. Sometimes one bit of information can carry an enormous amount of dictionary 
information. (When I say “go,” play Beethoven’s Fifth Symphony!) Creating knowledge 
structures is not yet within the realm of data mining (but see Chapter 12). 

 
 

 

Measuring total information content requires evaluating the significance of the signal in 
context—and that is beyond the scope of the data survey! However, it is important to the 
miner since the data survey measures and uses the information content of the data set in 
many different ways. It still remains entirely up to the miner and domain experts to decide 
on significance, and that requires access to the system dictionaries. That may range 
(typically) from difficult to impossible. What this means for the miner is that while there are 
some objective measures that can be applied to the data set, and while valid 
measurements about the signal information content of the data set can be made, no blind 
reliance can be placed on these measures. As ever, they require care and interpretation. 

 

 
 

 

To see the effect of changing even a simple dictionary, return to the example of the 
10-ticket lottery. Previously we examined it from your point of view as a potential winner. 
We assumed that your only concern was for your personal win outcome. But suppose that 
you knew the other entrants and cared about the outcomes for them. This changes your 
dictionary, that is, the context in which you place the messages. Suppose that, as in the 
original case, you bought five of the 10 tickets. You still have a 50% chance of winning. 
But now five of your family members (say) each bought one of the other five tickets: Anne, 
Bill, Catherine, David, and Liz. Obviously they each have a 10% chance of winning. Does 
this change the information content of the system as far as you are concerned? 

 

 
 

 

There are now six outcomes of concern to you, as shown in Table 11.7. Well, the 
information in the “you win” signal hasn’t changed, but the information content of the other 
five signals now totals 1.66. When previously you didn’t care who else won, the signals 
totaled 0.5. As expected, when you care about the other signals, and place them in a 
more meaningful framework of reference, their information content changes—for you. 

 

 

 

 TABLE 11.7  Information content in the signals when outcome meaning changes.  
 
 

   
 
 

 Winner  
 

 

 You  
 

 
 

 Anne 
 

 
 

 Bill  
 

 
 

 Catherine 
 

 
 

 David  
 

 
 

 Liz  
 

 

 

   
 
 

 Probability (P)  
 

 

 0.5  
 

 
 

 0.1  
 

 
 

 0.1  
 

 
 

 0.1  
 

 
 

 0.1  
 

 
 

 0.1  
 

 

             



 log2(P)  
 

 1.0  
 

 3.32  
 

 3.32  
 

 3.32  
 

 3.32  
 

 3.32  
 

 

 P log2(P)  
 

 

 0.5  
 

 
 

 0.332  
 

 
 

 0.332  
 

 
 

 0.332  
 

 
 

 0.332  
 

 
 

 0.332  
 

 

 

   
 
 

 

You might observe that in the previous example, there were in any case five other 
outcomes. It was just that the example lumped them all together for convenience. 
Suddenly, saying that the extra outcomes have meaning is “cheating.” What changed, 
however, is your knowledge of what the outcomes mean. It is this change in your state of 
knowledge of the signals’ meaning—in your dictionary—that is the crux of the matter. The 
knowledge you bring can materially affect the information content of the system. 
Outcomes and probabilities are unaffected, but information content may be dramatically 
affected. 

 

 
 

 

As already pointed out, access to the dictionary may be impossible. So far as surveying 
data is concerned, it means that signal information enfolded into a data set can be 
assessed, but it may—probably will—be impossible to fully evaluate the information 
available. Fortunately, using entropic and other information measures on the signal 
information can be immensely useful. It is always important for the miner to keep in mind 
that, as powerful a tool as information analysis is, there is no point-and-shoot method of 
definitively capturing the information enfolded into a data set. The dictionary, or at least 
large parts of it, will almost always be unavailable and its content unknown. 

 

 
 

 

However, what this example does show clearly is that knowledge of meaningful outcomes 
can materially change the information carried in a data set. It is well worth the miner’s time 
and effort to try to establish what constitutes meaningful outcomes for a particular project.

 

 
 

 

For instance, consider the by now almost classic example of Barbie dolls and chocolate 
bars. Allegedly, a major retailer discovered in a large data set that Barbie dolls and chocolate 
bars sell together. Assume, for the sake of the example, that this is indeed true. What can be 
done with the information? What, in other words, does it mean? The answer is, Not much! 
Consider the possibilities. Does the information indicate that Barbie dolls made out of 
chocolate would sell particularly well? Does it mean that Barbie dolls should be placed on 
the display shelf next to chocolate bars? Does it mean that a chocolate bar should be 
packaged with a Barbie doll? And what implications do these possibilities have for targeting 
the promotion? What, in short, can usefully be done with this signal? The signal carries 
essentially meaningless information. There is no way to act on the insight, to actually use the 
information communicated in context. The signal carries measurable information, but the 
dictionary translates it as not meaningful. The difference between system states and 
meaningful system states lies in the dictionary. 

 

 
11.3  Mapping Using Entropy  
 
 



 

Entropic measurements are the foundation for evaluating and comparing information 
content in various aspects of a data set. Recall that entropy measures levels of certainty 
and uncertainty. Every data set has some theoretical maximum entropy when it is in a 
state of maximum uncertainty. That is when all of the meaningful outcomes are equally 
likely. The survey uses this measure to examine several aspects of the data set. 

 

 
 

 

As an example of what entropy measurements can tell the miner about a data set, the 
following discussion uses two data sets similar to those first described in Chapter 6 as an 
example. Chapter 6 discussed, in part, relationships that were, and those that were not, 
describable by a function. Two data sets were illustrated (Figures 6.1 and 6.2). The 
graphs in these two figures show similar manifolds except that, due to their orientation, 
one can be described by a function and the other cannot. Almost all real-world data sets 
are noisy, so the example data sets used here comprise noisy data approximating the two 
curves. Data set F (functional) contains the data for the curve that can be described by a 
function, and data set NF (nonfunctional) contains data for the curve not describable by a 
function. 

 

 
 

 

While simplified for the example, both of these data sets contain all the elements of 
real-world data sets and illustrate what entropy can tell the miner. The example data is 
both simplified and small. In practice, the mined data sets are too complex or too large to 
image graphically, but the entropic measures yield the same useful information for large 
data sets as for small ones. Given a large data set, the miner must, in part, detect any 
areas in the data that have problems similar to those in data set NF—and, if possible, 
determine the scale and limits of the problem area. There are many modeling techniques 
for building robust models of nonfunctionally describable relationships—but only if the 
miner knows to use them! Very briefly, the essential problem presented in data set NF is 
that of the “one-to-many problem” in which one value (signal or system state) of the input 
variable (x) is associated validly with several, or many, output (y) values (signals or 
system states) that are not caused by noise. 

 

 
 

 

Figure 11.1 illustrates data set F and shows the predicted values of a function fitted to the 
noisy data. The function fits the data quite well. Figure 11.2 shows data set NF. This figure 
shows three things. First, the squares plot the noisy data. Second, the continuous line 
shows the modeled function, which fits the data very badly. Third, the circles show the 
underlying x-y relationship. 

 

 

 



 

 

 

 
 

 

Figure 11.1  A noisy data set for which the underlying relationship can be 
described by a function. The x values are input and the y values are to be 
predicted. The continuous line shows a modeled estimate of the underlying 
function. 

 

   
 

 

 

 

 

 
 

 

Figure 11.2  This illustrates data set NF. The squares plot the data set, and the 
continuous line shows the values of a modeled function to fit the data, which it 
does very poorly. The circles plot the actual underlying x-y relationship. 

 

   
 
 

 

The following discussion uses six different information measures. Since the actual values 
vary from data set to data set, the values are normalized across the range 0–1 for 
convenience. The actual values for this data set, along with their normalized values, are 
shown in Table 11.8. 

 

 

 

 TABLE 11.8  Information measure values for the example data set NF.  
 
 

   
 
     



 Measure  
 

 Actual  
 

 Norm  
 

 

   
 
 

 Max entropy  
 

 

 3.459  
 

 
 

   
 

 

 

 Entropy X  
 

 

 3.347  
 

 
 

 0.968  
 

 

 

 Entropy Y  
 

 

 3.044  
 

 
 

 0.880  
 

 

 

 Entropy (Y|X)  
 

 

 1.975  
 

 
 

 0.649  
 

 

 

 Entropy (X|Y)  
 

 

 2.278  
 

 
 

 0.681  
 

 

 

 Mutual info (X;Y)  
 

 

 1.069  
 

 
 

 0.351  
 

 

 

   
 

  
 
 

 

The Supplemental Material section at the end of this chapter further explains the meaning 
and interpretation of these measures and their values. And because information 
measures are very important to the data survey, you’ll also find information on deriving 
these measures from the data in the same section. 

 

 

 

 11.3.1  Whole Data Set Entropy  
 
 

 

An ideal data set for modeling has an entropy that is close to the theoretical maximum. 
Since the modeling data set should represent all of its meaningful states, entropy will be 
high in such a data set. For modeling, the higher, the better. But a single data set for 
modeling usually comes in two pieces—the “input” and the “output.” The input piece 
comprises all of the variables that, statistically, are described as the independent 
variables. These are the variables that contain the “evidence” or information that is to be 
mapped. The output variables contain the information to be predicted, or for which, or 
about which, inferences will be extracted from the input variables. Although usually 
collected as a single entity, both input and output data subsets should be independently 
examined for their entropy levels. 

 

 
 

 

In the example, the input is a single variable, as is the output. Since both input and output 
are single variables, and have the same possible number of signals—that is, they cover 
the same range of 0–1—the maximum possible entropy for both variables x and y is 
identical. In this case, that maximum possible entropy for both variables is 3.459. This is 
the entropy measure if the variables’ signals were completely evenly balanced. 

 

 
 

 The actual measured entropy for each variable is close to the maximum, which is a  



desirable characteristic for modeling. It also means that not much can be estimated about 
the values of either x or y before modeling begins. 

 

 

 11.3.2  Conditional Entropy between Inputs and Outputs  
 
 

 

Conditional probabilities are in the form “What is the probability of B occurring, given that 
A has already happened?” For example, it is clear that the answer to “What is the chance 
of rain tomorrow?” may be very different from the answer to the question “What is the 
chance of rain tomorrow, given that it is pouring with rain today?” Having a knowledge of 
existing evidence allows a (usually) more accurate estimate of the conditional probability. 

 

 
 

 

Conditional entropy is very similar. It results in a measure of mutual information. The 
amount of mutual information is given by the answer to the question “How much 
information is gained about the output by knowing the input?” In other words, given the 
best estimate of the output before any input is known, how much better is the estimated 
output value when a specific input is known? Ideally, one specific output signal would 
have a conditional probability of 1, given a particular input. All other outputs would have a 
probability of 0. That means that as a prediction, any input signal (value) implies one 
specific output signal (value) with complete certainty. Usually the probabilities are not so 
tightly focused and are spread across several outputs. Mutual information measures 
exactly how much information is available to determine a specific output value, given an 
input value. 

 

 
 

 

Every different input/output value combination may have a different mutual information 
value. Taking the weighted sum value of all the individual mutual information values 
results in a general idea of how well the inputs (x values) predict the outputs (y values). 
The symbol used for this measure is “Entropy(Y|X)” which is read as “The entropy of the Y 
variable given the values of the X variable.” In the example the Entropy(Y|X) is 1.975. This 
means that the entropy reduces from its starting state of 3.347 to 1.975, on average, 
when the x value is specified. The level of uncertainty is reduced to 1.975/3.347 = about 
59% of what it was, or by about 41%. 

 

 
 

 

This 41% reduction in uncertainty is very important. Contrast it with the reduction in 
uncertainty in the value of x when y is known. Entropy(X|Y)/ Entropy(Y) = 75%, a 
reduction of only 25% in the uncertainty of x given the y value. This says 

 

 
 

 knowing the value of x  
 
 

 when predicting the value of y  
 
 

 reduces the amount of uncertainty by 41%  
 
 

 and  
 
 



 knowing the value of y  
 
 

 when predicting the value of x  
 
 

 reduces the amount of uncertainty by 25%.  
 
 

 

It is clear that x predicts y much better than y predicts x, so these values are clearly not 
symmetrical. This is exactly as expected given that in the example F data set, a single 
value of x is associated with a single value of y plus noise. However, the reverse is not 
true. A single value of y is associated with more than one value of x, plus noise. The 
entropy measure points out this area. It also measures the amount of noise remaining in 
the system that is not reduced by knowing an x value. This is a measure of ambient noise 
in the system that places theoretical limits on how good any model can be. 

 

 
 

 

These measures are very important to any miner. They point to potential problem areas 
and indicate how well any model will at best perform—before any model is attempted. 
They measure limits set by the nature of the data. 

 

 
 

 

As well as looking at the overall mutual information, it can be worth looking at the 
individual signal entropy plots for the input and output data. Figure 11.3 shows the entropy 
plots for the range of the input variable x predicting variable y in both data sets. The upper 
image shows the entropy for data set F, which is functionally describable. The plot shows 
the level of uncertainty in the y value, given the x value, for all given x values. This is 
important information for the miner. It shows that, in general, low values of x have more 
uncertainty than higher values, although overall the entropy is fairly low. Probably a 
reasonably good model can be constructed so long as the accuracy required of the model 
does not exceed the noise in the system. (It is quite possible to specify a required 
minimum model accuracy, and work back to the maximum allowable noise level that the 
required accuracy implies, although a description of how to do this is beyond the scope of 
this brief introduction to the data survey.) 

 

 

 

 

 

 

 
 



 
Figure 11.3  Entropy for the range of input values of x in the F data set (top) and 
in the NF data set (bottom). 

 

   
 
 

 

A glance at the lower image tells a very different story. In the NF data set, values between 
about 0.6 and 0.8 are very uncertain, not well predicted at all. A look at the data shows 
that this is exactly the range of values where the y value has multiple values for a single x
value. This may seem obvious in a small demonstration data set, but can be difficult or 
impossible to find in a real-world data set—unless found using mutual information. 

 

 

 

 11.3.3  Mutual Information  
 
 

 

In an ideal data set, input and output signals all occur with equal probability—maximum 
entropy. In practice, such a state is very unlikely. Most of the signals will occur with some 
bias such that some are more likely to occur than others. Because of this bias, before 
modeling starts, the system is already known to have preferred states (carrying less 
information) and nonpreferred states (carrying more information). The purpose of any 
model is to use the input information to indicate the appropriate output with as high a 
degree of confidence as possible—or with a very low uncertainty. But the amount of 
uncertainty about an output depends entirely on how much information the input carries 
about the output. If this information can be measured, the miner can estimate the overall 
accuracy of any model prediction of that output—without actually building the model. In 
other words, the miner can estimate if any worthwhile model of specific outputs can, even 
theoretically, be built. Mutual information provides this estimate. 

 

 
 

 

Mutual information is always balanced. The information contained in x and y is the same 
as that contained in y and x. For the data set F, the mutual information measure is 1.069, 
or has a ratio of about 0.35. The higher this number, the closer the ratio is to 1, the more 
information is available, so the better the model. In this case, there is a fair amount of 
noise in the data preventing an accurate model, as well as possible distortions that may 
be correctable. As it stands, the fairly low degree of information limits the maximum 
possible accuracy of a model based on this data set. Once again, discovering the actual 
limits is fairly straightforward, but beyond the scope of this introductory tour. 

 

 

 

 11.3.4  Other Survey Uses for Entropy and Information  
 
 

 

In general, the miner greatly benefits from the power of entropic analysis when surveying 
data. The applications discussed so far reveal a tremendous amount about any prepared 
data set. Information theory can be used to look at data sets in several ways, all of which 
reveal useful information. Also, information theory can be used to examine data as 
instances, data as variables, the data set as a whole, and various parts of a data set. 
Entropy and mutual information are used to evaluate data in many ways. Some of these 
include 

 

 
 



 To evaluate the quality and problem areas of the input data set as a whole  
 
 

  •  To evaluate the quality and problem areas of the output data set as a whole  
 
 

  
• 
 
To evaluate the quality and problem areas of other data sets (e.g., test and verification) 
as a whole 

 

 
 

  •  To evaluate the quality of individual variables over their range of values  
 
 

  
• 
 
To estimate the independence of variables (measuring the entropy between inputs) 
both on average and in different parts of their range 

 

 
 

  
• 
 
To select the input variables most independent from each other that carry maximum 
predictive or inferential information about the output(s) 

 

 
 

  
• 
 
To estimate the maximum possible quality of a model over its range of inputs and 
outputs 

 

 
 

  •  To identify problem areas, problem signals, and poorly defined areas of a model  
 

 

 11.3.5  Looking for Information  
 
 

 

Making a comprehensive calculation of all possible variable and signal combinations is 
almost always impossible. The number of combinations is usually too high as the 
combinatorial explosion defeats a comprehensive search. In practice, data surveying 
searches some portion of the possibilities at a high level, looking for potential problems. 
This is a form of what is known as attention processing—taking a high-level look at an 
area, and only looking more closely at any potentially interesting or difficult areas. 

 

 
 

 

Attention processing simply describes a familiar method of searching for information or 
problems. Readers, hunting for information in, say, an encyclopedia, usually start with a 
high-level overview such as the index. At another level, they may skim articles for features 
of interest. The actual interesting features may well be scrutinized in detail. This is 
attention processing—more attention paid to areas in proportion to their degree of 
interest. 

 

 
 

 

Detecting addresses on envelopes provides a practical computational example. Figure 
11.4 illustrates the process. The first part of the problem is to determine a ZIP code. 
Rather than building a model to scrutinize the whole surface of an envelope, which would 
be very difficult, models with various degrees of attention are used. A top-level model 
determines if there is an address at all. (If the envelope is face down, for instance, there is 
no address.) When an address is likely to be present, another model determines if it is 
right side up. When right side up, the next model identifies a likely location for the ZIP 
code. The next model focuses only on the location of the ZIP code to extract the actual 

 



digits. Finally, the extracted digits are individually identified. Of course, then the ZIP code 
itself has to be identified, and so on. By using attention processing, a large task was 
divided into smaller tasks, each of which searched for a particular feature, allowing the 
next feature to receive more detailed attention. 

 

 

 

 

 

 
 

 
Figure 11.4  Attention processing separates a task into parts and attends to 
separate parts of the task rather than trying to perform the whole task in one step. 

 

   
 
 

 

So it is with the data survey. The survey starts with the general entropic calculations. This 
results in maps of particularly troublesome input/output signal interactions and establishes 
a level of expectation for the accuracy of the model. From here, the miner can explore 
either more broadly, or more deeply, into various problem areas, or areas that seem 
particularly promising. 

 

 
 

 

The information analysis part of the survey provides a very good idea of the overall quality of 
the data set, and also identifies potential problem areas. However, while it identifies where 
the problems are, it says little about what they are. 

 

 
11.4  Identifying Problems with a Data Survey  
 
 

 
There is fundamentally one reason and three problems that can reduce or prevent mining 
tools from identifying a good relationship between input and output data sets. They are 

 

 
 

 
Reason: The data set simply does not enfold sufficient information to define the 
relationship between input and output with the accuracy required. 

 

 
 

  •  Problem 1: The relationship between input and output is very complex.  
 
 

  •  Problem 2: Part(s) of the input/output relationship are not well defined by the available  



data. 
 
 

  
• 
 
Problem 3: High variance or noise obscures the underlying relationship between input 
and output. 

 

 
 

 

Turning first to the reason: The data set simply does not contain sufficient information to 
define the relationship to the accuracy required. This is not essentially a problem with the 
data sets, input and output. It may be a problem for the miner, but if sufficient data exists 
to form a multivariably representative sample, there is nothing that can be done to “fix” 
such data. If the data on hand simply does not define the relationship as needed, the only 
possible answer is to get other data that does. A miner always needs to keep clearly in 
mind that the solution to a problem lies in the problem domain, not in the data. In other 
words, a business may need more profit, more customers, less overhead, or some other 
business solution. The business does not need a better model, except as a means to an 
end. There is no reason to think that the answer has to be wrung from the data at hand. If 
the answer isn’t there, look elsewhere. The survey helps the miner produce the best 
possible model from the data that is on hand, and to know how good a model is possible 
from that data before modeling starts. 

 

 
 

 

But perhaps there are problems with the data itself. Possible problems mainly stem from 
three sources: one, the relationship between input and output is very complex; two, data 
describing some part of the range of the relationship is sparse; three, variance is very 
high, leading to poor definition of the manifold. The information analytic part of the survey 
will point to parts of the multivariable manifold, to variables and/or subranges of variables 
where entropy (uncertainty) is high, but does not identify the exact problem in that area. 

 

 
 

 

Remedying and alleviating the three basic problems has been thoroughly discussed 
throughout the previous chapters. For example, if sparsity of some particular system state 
is a problem, Chapter 10, in part, discusses ways of multiplying or enhancing particular 
features of a data set. But unless the miner knows that some particular area of the data 
set has a problem, and that the problem is sparsity, it is impossible to fix. So in addition to 
indicating overall information content and possible problem areas, the survey needs to 
suggest the nature of the problem, if possible. 

 

 
 

 

The survey looks to identify problems within a specific framework of assumptions. It 
assumes that the miner has a multivariably representative sample of the population, to 
some acceptable level of confidence. It also assumes that in general the information 
content of the input data set is sufficient to adequately define the output. If this is not the 
case, get better data. The survey looks for local problem areas within a data set that 
overall meet the miners needs. The survey, as just described, measures the general 
information content of the data set, but it is specific, identified problems that the survey 
assesses for the possible causes. Nonetheless, in spite of these assumptions, the survey 
estimates the confidence level that the miner has sufficient data. 

 

 

 



 11.4.1  Confidence and Sufficient Data  
 
 

 

A data set may be inadequate for mining purposes simply because it does not truly 
represent the population. If a data set doesn’t represent the population from which it is 
drawn, no amount of other checking, surveying, and measuring will produce a valid 
model. Even if entropic analysis indicated that it is possible to produce a valid, robust 
model, that is still a mistake. Entropy measures what is present, and if what is present is 
not truly representative, the entropic measures cannot be relied upon either. The whole 
foundation of mining rests on an adequate data set. But what constitutes an adequate 
data set? 

 

 
 

 

Chapter 5 addressed the issue of capturing a representative sample of a variable, while 
Chapter 10 extended the discussion to the multivariable distribution and capturing a 
multivariably representative sample. Of course, any data set can only be captured to 
some degree of confidence selected by the miner. But the miner may face the problem in 
two guises, both of which are addressed by the survey. 

 

 
 

 

First, the miner may have a particular data set of a fixed size. The question then is, “Just 
how multivariably representative is this data set?” The answer determines the reliability of 
any model made, or inferences drawn, from the data set. Regardless of the entropic 
measurements, or how apparently robust the model built, if the sample data set has a 
very low confidence of being representative, so too must the model extracted, or 
inferences drawn, have a low confidence of being representative. The whole issue hinges 
on the fact that if the sample does not represent the population, nothing drawn from such 
a sample can be considered representative either. 

 

 
 

 

The second situation arises when plenty of data is available, perhaps far more than can 
possibly be mined. The question then is, “How much data captures the multivariable 
variability of the population?” The data survey looks at any existing sample of data, 
estimates its probability of capturing the multivariable variability, and also estimates how 
much more data is required to capture some specified level of confidence. This seems 
straightforward enough. With plenty of data available, get a big enough sample to meet 
some degree of confidence, whatever that turns out to be, and build models. But, strange 
as it may seem, and for all the insistence that a representative sample is completely 
essential, a full multivariable representative sample may not be needed! 

 

 
 

 

It is not that the sample need not be representative, but that perhaps all of the variables 
may not be needed. Adding variables to a data set may enormously expand the number 
of instances needed to capture the multivariable variability. This is particularly true if the 
added variable is not correlated with existing variables. It is absolutely true that to capture 
a representative sample with the additional variable, the miner needs the very large 
number of instances. But what if the additional variable is not correlated (contains little 
information about) the predictions or relationships of interest? If the variable carries little 
information of use or interest, then the size of the sample to be mined was expanded for 

 



little or no useful gain in information. So here is another very good reason for removing 
variables that are not of value. 

 
 

 

Chapter 10 described a variable reduction method that is implemented in the 
demonstration software. It works and is reasonably fast, particularly when the miner has 
not specifically segregated the input and output data sets. Information theory allows a 
different approach to removing variables. It requires identifying the input and output data 
sets, but that is needed to complete the survey anyway. The miner selects the single input 
variable that carries most of the information about the output data set. Then the miner 
selects the variable carrying the next most information about the output, such that it also 
carries the least information in common (mutual information content) with the previously 
selected variable(s). This selection continues until the information content of the derived 
input data set sufficiently defines the model with the needed confidence. Automating this 
selection is possible. Whatever variable is chosen first, or whichever variables have 
already been chosen, can enormously affect the order in which the following variables are 
chosen. Variable order can be very sensitive to initial choice, and any domain knowledge 
contributed by the miner (or domain expert) should be used where possible. 

 

 
 

 

If the miner adopts such a data reduction system, it is important to choose carefully the 
variables intended for removal. It may be that a particular variable carries, in general, little 
information about the output signals, but for some particular subrange it might be critically 
important. The data survey maps all of the individual variables’ entropy, and these entropy 
maps need to be considered before making any final discard decision. 

 

 
 

 

However, note that this data reduction activity is not properly part of the data survey. The 
survey only looks at and measures the data set presented. While it provides information 
about the data set, it does not manipulate the data in any way, exactly as a map makes no 
changes to the territory, but simply represents the relationship of the features surveyed for 
the map. When looking at multivariate distribution, the survey presents only two pieces of 
information: the estimated confidence that the multivariable variability is captured, and, if 
required, an estimate of how many instances are needed to capture some other selected 
level of confidence. The miner may thus learn, say, that the input data set captured the 
multivariable variability of the population with a 95% confidence level, and that an 
estimated 100,000 more records are needed to capture the multivariable variability to a 
98% confidence level. 

 

 

 

 11.4.2  Detecting Sparsity  
 
 

 

Overall, of course, the data points in state space (Chapter 6) vary in density from place to
place. This is not necessarily any problem in itself. Indeed, it is a positive necessity as this 
variation in density carries much of the information in the data set! A problem only arises if 
the sparsity of data points in some local area falls to such a level that it no longer carries 
sufficient information to define the relationship to the required degree. Since each area of 
state space represents a particular system state, this means only that some system states 

 



are insufficiently represented. 
 
 

 

This is the same problem discussed in several places in this book. For instance, the last 
chapter described a direct-mail effort’s very low response rate, which meant that a 
naturally representative sample had relatively very few samples of responders. The 
number of responses had to be artificially augmented—thus populating that particular 
area of state space more fully. 

 

 
 

 

However, possibly there is a different problem here too. Entropy measures, in part, how 
well some particular input state (signal or value) defines another particular output state. If 
the number of states is low, entropy too may be low, since the number of states to choose 
from is small and there is little uncertainty about which state to choose. But the number of 
states to choose from may be low simply because the sample populates state space 
sparsely in that area. So low entropy in a sparsely populated part of the output data set 
may be a warning sign in itself! This may well be indicated by the forward and reverse 
entropy measures (Entropy(X|Y) and Entropy(Y|X)), which, you will recall, are not 
necessarily the same. When different in the forward and reverse directions, it may 
indicate the “one-to-many problem,” which could be caused by a sparsely populated area 
in one data set pointing to a more densely populated area in the other data set. 

 

 
 

 

The survey makes a comprehensive map of state space density—both of the input data 
set and the output data set. This map presents generally useful information to the miner, 
some of which is covered later in this chapter in the discussion of clustering. Comparing 
density and entropy in problematic parts of state space points to possible problems if the 
map shows that the areas are sparse relative to the mean density. 

 

 

 

 11.4.3  Manifold Definition  
 
 

 

Imagine the manifold as a state space representation of the underlying structure of the 
data, less the noise. Remember that this is an imaginary construct since, among other 
ideas, it supposes that there is some “underlying mechanism” responsible for producing 
the structure. This is a sort of causal explanation that may or may not hold up in the real 
world. For the purposes of the data survey, the manifold represents the configuration of 
estimated values that a good model would produce. In other words, the best model should 
fill state space with its estimated values exactly on the manifold. What is left over—the 
difference between the manifold and the actual data points—is referred to as error or 
noise. But the character of this noise can vary from place to place on the manifold, and 
may even leave the “correct” position of the manifold in doubt. (And go back to the 
discussion in Chapter 2 about how the states map to the world to realize that any idea of a 
“correct” position of a manifold is almost certainly a convenient fiction.) All of these factors 
add up to some level of uncertainty in the prediction from place to place across the 
manifold, and it is this uncertainty that, in part, entropy measures. However, while 
measuring uncertainty, entropy does not actually characterize the exact nature of the 
uncertainty, for which there are several possible causes. This section considers problems 

 



with variance. Although this is a very large topic, and a comprehensive discussion is far 
beyond the scope of this section, a brief introduction to some of the main issues is very 
helpful in understanding limits to a model’s applicability. 

 
 

 

Much has been written elsewhere about analyzing variability. Recall that the purpose of 
the data survey is not to analyze problems. The data survey only points to possible 
problem areas, delivered by an automated sweep of the data set that quickly delivers 
clues to possible problems for a miner to investigate and analyze more fully if needed. In 
this vein, the manifold survey is intended to be quick rather than thorough, providing clues 
to where the miner might usefully focus attention. 

 

 

 

 Skewness  
 
 

 

Variance was previously considered in producing the distribution of variables (Chapter 5) 
or in the multivariable distribution of the data set as a whole (Chapter 10). In this case, the 
data survey examines the variance of the data points in state space as they surround the 
manifold. In a totally noise-free state space, the data points are all located exactly on (or 
in) the manifold. Such perfect correspondence is almost unheard of in practice, and the 
data points hover around the manifold like a swarm of bees. All of the points in state 
space affect the shape of every part of the manifold, but the effect of any particular data 
point diminishes with distance. This is analogous to the gravity of Pluto—a remote and 
small body in the solar system—that does have an effect on the Earth, but as it is so far 
away, it is almost unnoticeable. The Moon, on the other hand, although not a particularly 
massive body as solar system bodies go, is so close that it has an enormous effect (on 
the tides, for instance). 

 

 
 

 

Figure 11.5 shows a very simplified state space with 10 data points. The data points form 
two columns, and the straight line represents a manifold to fit these points. Although the 
two columns cover the same range of values, it’s easy to see that the left column’s values 
cluster around the lower values, while the right column has its values clustered around the 
higher values. The manifold fits the data in a way that is sensitive to the clustering, as is 
entirely to be expected. But the nature of the clustering has a different pattern in different 
parts of the state space. Knowing that this pattern exists, and that it varies, can be of great 
interest to a miner, particularly where entropy indicates possible problems. It is often the 
case that by knowing patterns exist, the miner can use them, since pattern implies some 
sort of order. 

 

 

 



 

 

 

 
 

 Figure 11.5  A simplified state space with 10 data points.  

   
 
 

 

The survey looks at the local data affecting the position of the manifold and maps the data 
distribution around the manifold. The survey reports the standard deviation (see 
Chapter 5 for a description of this concept) and skew of the data points around the 
manifold. Skewness measures exactly what the term seems to imply—the degree of 
asymmetry, or lopsidedness, of a distribution about its mean. In this example the number 
is the same, but the sign is different. Zero skewness indicates an evenly balanced 
distribution. Positive skew indicates that the distribution is lighter in its values on the 
positive side of the mean. Negative skew indicates that the distribution is lighter in the 
more negative values of its range. Although not shown in the figure, the survey also 
measures how close the distribution is to being multivariably normal. 

 

 
 

 

Why choose these measures? Recall that although the individual variables have been 
redistributed, the multivariable data points have not. The data set can suffer from outliers, 
clusters, and so on. All of the problems already mentioned for individual variable 
distributions are possible in multivariable data distributions too. Multivariable redistribution 
is not possible since doing so removes all of the information embedded in the data. (If the 
data is completely homogenous, there is no density variation—no way to decide how to fit 
a manifold—since regardless of how the manifold is fitted to the data, the uniform density 
of state space would make any one place and orientation as good as any other.) These 
particular measures give a good clue to the fact that, in some particular area, the data has 
an odd pattern. 

 

 

 

 Manifold Thickness  
 
 

 

So far, the description of the manifold has not addressed any implications of its thickness. 
In two or three dimensions, the manifold is an imaginary line or a sheet, neither of which 
have any thickness. Indeed, for any particular data set there is always some specific best 
way to fit a manifold to that data. There are various ways of defining how to make the 
manifold fit the data—or, in other words, what actually constitutes a best fit. But it always 

 



results in some particular way of fitting the manifold to the data. 
 
 

 

However, in spite of the fact that there is always a best fit, that does not mean that the 
manifold always represents the data over all parts of state space equally well. A glance at 
Figure 11.6 shows the problem. The manifold itself is not actually shown in this illustration, 
but the mean value of the x variable across the whole range of the y variable is 0.5. This is 
where the manifold would be fitted to this data by many best-fit metrics. What the 
illustration does show are the data points and envelopes estimating the maximum and 
minimum values across the y dimension. It is clear that where the envelope is widely 
spaced, the values of x are much less certain than where the envelope is narrower. The 
variability of x changes across the range of y. Assuming that this distribution represents 
the population, uncertainty here is not caused by a lack of data, but by an increase in 
variability. It is true that in this illustration density has fallen in the balloon part of the 
envelope. However, even if more data were added over the appropriate range of y, 
variability of x would still be high, so this is not a problem of lack of data in terms of x 
and y. 

 

 

 

 

 

 

 
 

 
Figure 11.6  State space with a nonuniform variance. This envelope represents 
uncertainty due to local variance changes across the manifold. 

 

   
 
 

 

Of course, adding data in the form of another variable might help the situation, but in 
terms of x and y the manifold’s position is hard to determine. This increase in the 
variability leaves the exact position of the manifold in the “balloon” area uncertain and ill 
defined. More data still leaves predicting values in this area uncertain as the uncertainty is 
inherent in the data—not caused by, say, lack of data. Figure 11.7 illustrates the variability 
of x across y. 

 

 

 



 

 

 

 
 

 
Figure 11.7  The variability in x is shown across the range of the variable y. 
Where variability is high, the manifold’s position and shape are less certain. 

 

   
 
 

 

The caveat with these illustrations is that in multidimensional state space, the situation is 
much more complex indeed than can be illustrated in two dimensions. It may be, and in 
practice it usually is, that some restricted part of state space has particular problems. In 
any case, recall that the individual variable values have been carefully redistributed and 
normalized, so that state space is filled in a very different way than illustrated in these 
examples. It is this difficulty in visualizing problem areas that, in part, makes the data 
survey so useful. A computer has no difficulty in making the multidimensional survey and 
pointing to problem areas. The computer can easily, if sometimes seemingly slowly, 
perform the enormous number of calculations required to identify which variables, and 
over which parts of their ranges, potential problems lurk. “Eyeballing” the data would be 
more effective at detecting the problems—if it were possible to look at all of the possible 
combinations. Humans are the most formidable pattern detectors known. However, for 
just one large data set, eyeballing all of the combinations might take longer than a long 
lifetime. It’s certainly quicker, if not as thorough, to let the computer crunch the numbers to 
make the survey. 

 

 

 

 Very Complex Relationships  
 
 

 

Relationships between input and output can be complex in a number of different ways. 
Recall that the relationship described here is represented by a manifold. The required 
values that the model will ideally predict fall exactly on the manifold. This means that 
describing the shape of the manifold necessarily has implications for a predictive model 
that has to re-create the shape of the manifold later. So, for the sake of discussion, it is 
easy to consider the problem as being with the shape of the manifold. This is simpler for 
descriptive purposes than looking at the underlying model. In fact, the problem is for the 
model to capture the shape of the manifold. 

 

 
 

 Where the manifold has sharp creases, or where it changes direction abruptly, many  



modeling tools have great difficulty in accurately following the change in contour. There 
are a number of reasons for this, but essentially, abrupt change is difficult to follow. This 
phenomenon is encountered even in everyday life—when things are changing rapidly, 
and going off in a different direction, it is hard to follow along, let alone predict what is 
going to happen next! Modeling tools suffer from exactly this problem too. 

 
 

 

The problem is easy to show—dealing with it is somewhat harder! Figure 11.8 shows a 
manifold that is noise free and well defined, together with one modeling tool’s estimate of 
the manifold shape. It is easy to see that the “point” at the top of the manifold is not well 
modeled at all. The modeled function simply smoothes the point into a rounded hump. As 
it happens, the “sides” of the manifold are slightly concave too—that is, they are curves 
bending in toward the center. Because of this concavity, which is in the opposite direction 
to the flexure of the point, the modeled manifold misses the actual manifold too. Learning 
this function requires a more complex model than might be first imagined. 

 

 

 

 

 

 

 
 

 
Figure 11.8  The solid arch defines the data points of the actual manifold and the 
dotted line represents one model’s best attempt to represent the actual manifold. 

 

   
 
 

 

However, the relative complexity of the manifold in Figure 11.9 is far higher. This manifold 
has two “points” and a sudden transition in the middle of an otherwise fairly sedate curve. 
The modeled estimate does a very poor job indeed. It is the “points” and sudden 
transitions that make for complexity. If the discontinuity is important to the model, and it is 
likely to be, this mining technique needs considerable augmentation to better capture the 
actual shape of the relationship. 

 

 

 



 

 

 

 
 

 

Figure 11.9  This manifold is fairly smooth except around the middle. The model 
(dotted line) entirely misses the sharp discontinuity in the center of the 
manifold—even though the manifold is completely noise-free and well-defined. 

 

   
 
 

 

Curves such as this are more common than first glance might suggest. The curve in 
Figure 11.9, for instance, could represent the value of a box of seats during baseball 
season. For much of the season, the value of the box increases as the team keeps 
winning. Immediately before the World Series, the value rises sharply indeed since this is 
the most desirable time to have a seat. The value peaks at the beginning of the last game 
of the series. It then drops precipitously until, when the game is over, the value is low—but 
starts to rise again at the start of a new season. There are many such similar phenomena 
in many areas. But accurately modeling such transitions is difficult. 

 

 
 

 

There is plenty of information in these examples, and the manifolds for the examples are 
perfectly defined, yet still a modeling tool struggles. So complexity of the manifold 
presents the miner with a problem. What can the survey do about detecting this? 

 

 
 

 

In truth, the answer is that the survey does little. The survey is designed to make a “quick 
once over” pass of the data set looking, in this case, for obvious problem areas. Fitting a 
function to a data set—that is, estimating the shape of the manifold—is the province of 
modeling, not surveying. Determining the shape of the manifold and measuring its 
complexity are computationally intensive, and no survey technique can do this short of 
building different models. 

 

 
 

 

However, all is not completely lost. The output from a model is itself a data set, and it should 
estimate the shape of the manifold. Most modeling techniques indicate some measure of 
“goodness of fit” of the manifold to the data, but this is a general, overall measure. It is well 
worth the miner’s time to exercise the model over a representative range of inputs, thus 
deriving a data set that should describe the manifold. Surveying this derived (or predicted) 
data set will produce a survey map that looks at the predicted manifold shape and points to 
potential problem areas. Such a survey reveals exactly how much information was captured 



across the surface of the manifold. Where particularly problematic areas show up, building 
smaller models of the restricted, troublesome area very often produces better results in the 
restricted area than the general model. As a result, some models are used in some areas, 
while other models are used on other parts of the input space. But this is a modeling 
technique, rather than a surveying technique. Nonetheless, a sort of “post-survey survey” 
can point to problem areas with any model. 

 

 
11.5  Clusters  
 
 

 

Earlier, this chapter used the term “meaningful system states.” What exactly is a 
meaningful system state? The answer varies, and the question can only be answered 
within the framework of the problem domain. It might be that some sort of binning 
(described in Chapter 10) assigns continuous measurements to more meaningful labels. 
At other times, the measurements are meaningfully continuous, limited only by the 
granularity of the measurement (to the nearest penny, say, or the nearest degree). 
However, the system may inherently contain some system states that appear, from wholly 
internal evidence, to be meaningful within the system of variables. (This does not imply 
that they are necessarily meaningful in the real world.) The system “prefers” such 
internally meaningful states. 

 

 
 

 

Recall that at this stage the data set is assumed to represent the population. Chapter 6 
discussed the possibility that apparently preferred system states result from sampling bias 
preferentially sampling some system states over others. The miner needs to take care to 
eliminate such bias wherever possible. Those preferred system states that remain should 
tell something about the “natural” state of the system. But how does the miner find and 
identify any such states? 

 

 
 

 

Chapter 6 discussed the idea that density of data points across state space varies. If 
areas that are more dense than average are imagined as points lower than average, and 
less dense points imagined to be higher, the density manifold can be conceived of as 
peaks and valleys. Each peak (the locally highest point) is surrounded by lower points. 
Each valley is surrounded by peaks and ridges. The ridges surrounding a particular valley 
actually are defined by a contour running through the lowest density surrounding a 
higher-density cluster. The valley bottoms actually describe the middle of 
higher-than-the-mean density clusters. These clusters represent the preferred states of 
the system of variables describing state space. 

 

 
 

 

Such clusters, of course, represent likely system states. The survey identifies the borders 
and centers of these clusters, together with their probability. But more than that, it is often 
useful to aggregate these clusters as meaningful system states. The survey also makes 
an entropy map from all of the input clusters to all of the identified output clusters. This 
discovers if knowing which cluster an input falls into helps define an output. 

 

 
 

 For many states this is very useful information. Many models, both physical and  



behavioral, can make great use of such state models, even when precise models are not 
available. For instance, it may be enough to know for expensive and complex process 
machinery that it is “ok” or “needs maintenance” or is “about to fail.” If the output states fall 
naturally into one of these categories and the input states map well to the output states, a 
useful model may result even when precise predictions are not available from the model. 
Knowing what works allows the miner to concentrate on the borderline areas. Again, from 
behavioral data, it may be enough to map input and output states reliably to such 
categories as “unhappy customer warning,” “likely to churn,” and “candidate for cross-sell 
product X.” 

 
 

 Clustering is also useful when the miner is trying to decide if the data is biased. 
 

 
11.6  Sampling Bias  
 
 

 

Sampling bias is a major bugaboo and very hard to detect, but it’s easy to describe. When 
a sampling method repeatedly takes samples of data from a population that differ from the 
true population measures in the same way and in the same direction, then that method is 
introducing sampling bias. It is a distortion of the true values in the sample from those in 
the population that is introduced by the selection method itself, independent of other 
factors biasing the data. It is difficult to avoid since it may be quite unconsciously 
introduced. Since miners often work with data collected for purposes uncertain, by 
methods unknown, and with measurements obscure, after the fact detection of sampling 
bias may be all but impossible. Yet if the data does not reflect the real world, neither will 
any model mined, regardless of how assiduously it is checked against test and evaluation 
sample data sets. 

 

 
 

 

The best that can be had from internal evaluation of a data set are clues that perhaps the 
data is biased. The only real answer lies in comparing the data with the world! However, 
that said, what can be done? There are two main types of sampling bias: errors of 
omission and errors of commission. 

 

 
 

 

Errors of omission, of course, involve leaving out data that should be put in, whereas 
errors of commission involve putting in what should be left out. For instance, many 
interest groups seem to be able to prove a point completely at odds with the point proved 
by interest groups opposing them. Both sets of conclusions are solidly based on the data 
collected by each group, but, unconsciously or not, if the data is carefully selected to 
support desired conclusions, it can only tell a partial story. This may or may not be 
deliberately introduced bias. If an honest attempt to collect all the relevant data was 
made, but it still leads to dispute, it may be the result of sampling bias, either omission or 
commission. In spite of all the heat and argument, the only real answer is to collect all 
relevant data and look hard for possible bias. 

 

 
 

 
As an example of the problem, an automobile manufacturer wanted to model vehicle 
reliability. A lot of data was available from the dealer network service records. But here 

 



was a huge problem. Quite aside from trying to decide what constitutes “reliability,” the 
data was very troublesome. For instance, those people who regularly used the dealer for 
service tended to be those people who took care of their vehicle and thus had reliable 
vehicles. On the other hand, repair work was often done for people who had no 
maintenance record with the dealer network. Conclusion: maintenance enhances 
reliability? Perhaps. But surely some people had maintenance outside of the dealer 
network. Some, perhaps, undertook their own maintenance and minor repairs, only 
having major work done at a dealer. There are any number of other possible biasing 
factors. Regardless of the possibilities, this was a very selective sample, almost certainly 
not representative of the population. So biased was this data that it was hard to build 
models of reliability even for those people who visited dealers, let alone the population at 
large! 

 
 

 

Detecting such bias from the internal structure of the data is not possible. Any data set is 
what it is, and whether or not it accurately reflects the worldly phenomenon, it can never 
for sure be known just by looking at the data. But there might be clues. 

 

 
 

 

The input data set covers a particular area. (A reminder that the term “area” is really 
applicable to a two-dimensional state space only, but it is convenient to use this term in 
general for the n-dimensional analog of area in other than two dimensions.) The output 
data set similarly covers its area. Any space in the input area maps, or points to, some 
particular space in the output area. This is illustrated in Figure 11.10. Exactly which part of 
the input space points to which part of the output space is defined by the relationship 
between them. The relevant spaces may be patches of different sizes and shapes from 
place to place, but the input points to some part of the output space, therefore being 
identified with some particular subsample, or patch, of the output sample. 

 

 

 

 

 

 

 
 

 
Figure 11.10  At least two data sets are used when modeling: an input data set 
(left) and an output data set (right). 

 

   
 
 



 

It is often found in practice that for unbiased data sets, while the values of specific output 
variables change as the values of an input variable change, the distribution of data points 
at the different output values is fairly constant. For example, suppose, as illustrated in 
Figure 11.11, that the output patch of data points is normally distributed for some specific 
input value. As the input value changes, the output values will be expected to change (the 
patch moves through the output space), and the number of points in the output patch too 
is expected to change. However, if this assumption holds, wherever the output patch is 
located, the distribution of the points in it is expected to remain normally distributed. 

 

 

 

 

 

 

 
 

 

Figure 11.11  The output state space (made up of the x and y variables) has a 
manifold representing the input to output relationship. Any specific input value 
maps to some area in the output space, forming a “patch” (gray areas). 

 

   
 
 

 

Figure 11.12 illustrates the idea that the distribution doesn’t change as the value of a 
variable changes. The effect of changing an input variable’s value is expected to change 
the output value and the number of instances in the subsample, but other factors are 
expected to remain the same so the shape of the distribution isn’t changed. Given that 
this often is true, what does it suggest when it is not true? Figure 11.13 illustrates a 
change in distribution as the x value changes. This distribution shift indicates that 
something other than just the y value has changed about the way the data responds to a 
change in the x value. Some other factor has certainly affected the way the data behaves 
at the two x values, and it is something external to the system of variables. This change 
may be caused by sampling bias or some other bias, but whatever the cause, the miner 
should account for the otherwise unaccounted change in system behavior between the 
two x values. 

 

 

 



 

 

 

 
 

 
Figure 11.12  Distribution curves for the x values change the y values, but the 
curve remains similar in shape and not in size. 

 

   
 

 

 

 

 

 
 

 

Figure 11.13  The change in x values is accompanied by a change in distribution 
shape as well as size. The tail is longer toward the low values for an x value of 
0.75 than it is for an x value of 0.25. 

 

   
 
 

 

The data survey samples the distributions, moving the input variables across their ranges of 
values. It makes a measurement of how much the distribution of output variables changes as 
inputs are moved, which is based on changes in both variability and skew. 

 

 
11.7  Making the Data Survey  
 
 

 

The components so far discussed form the basic backbone of the data survey. The 
survey’s purpose is a quick look at the data. While modeling is a time-consuming process 
and focuses on detail, the survey deliberately focuses on the broad picture. The idea is 

 



not to resolve problems discovered, but to discover in broad terms the use and limits to 
use of the data and to be forewarned of any possible problem areas before modeling. The 
survey will not, and is not intended to, discover all of the problems that may lurk in data, 
and does little, if anything, toward fixing them. That is for the miner. But the miner can only 
fix known problems, and knowing comes from looking at the survey results. Survey 
software automatically makes these measurements so the miner can focus on problem 
areas by producing a unified numerical and graphical output. Even without such a tool, 
many statistical and data analysis tools have functions that allow the data to be surveyed 
manually. In spite of the brevity of the look at surveying in this chapter, time 
spent—manually if necessary—surveying data will repay the miner dividends. 

 
 

 Briefly, the steps for surveying data are  
 
 

  

1. 

 

Sampling confidence—estimate level of multivariable distribution capture. (This 
confidence puts all of the other measures into perspective, whatever they are. If 
you’re only 50% confident that the variability has been captured, it hardly matters what 
the other survey measurements are!) 

 

 
 

  2.  Entropic analysis (normalized ranges)  
 
 

  a. Input data set entropy—should be as high as possible  
 
 

  b. Output data set entropy—should be as high as possible  
 
 

  

c.
 

Other data set entropy—should be as high as possible, and similar among all of the 
data sets. (They should all be representative of the same population. Differences in 
these metrics mean something is fishy with the data!) 

 

 
 

  

d.

 

Conditional entropy of outputs given inputs—should be as low as possible. If it is 
high, there is a problem! Either the data is snarled in some way, or the input simply 
doesn’t contain sufficient information to predict the output. (Then try conditional 
entropy of outputs to inputs for comparison. If that’s low, suspect a problem, not lack 
of information content. If it’s high also, suspect insufficient information content.) 

 

 
 

  e. Mutual information inputs to outputs—should be as high as possible  
 
 

  f. Individual variable entropy input to output  
 
 

  
g.

 
Individual between-variable entropy of the input (measures independence—may be 
useful too for data reduction) 

 

 
 

  3.  Cluster analysis  
 
 

  a. Plot peak, valley, and contour positions (“natural” clusters—do these make sense?  



Why are they where they are? Could this be bias?) 
 
 

  
b.

 
Entropy of input clusters to output clusters—should be low. If not, there is a 
problem. 

 

 
 

  

c.
 

Cluster overlays—do input clusters map to output clusters, or do input clusters map 
across output clusters? (Overlaying each other is generally best, with small 
overlap.) 

 

 
 

  4.  Manifold (maps only potential problem areas)  
 
 

  
a.

 
Sparsity—do sparse areas map to important output states? (If they do, it’s a 
problem.) 

 

 
 

  
b.

 
Variability map (High variability will match areas of high uncertainty, but additional 
information given in distribution measures may help identify a problem.) 

 

 
 

  5.  Sampling bias  
 
 

   
a. Individual variable distribution input-driven output mapping—flag areas of high 
distribution drift. If there are many, is it sampling bias? In any case, why? 

 

 
11.8  Novelty Detection  
 
 

 

A novelty detector is not strictly part of the data survey, but is easily built from some of the 
various components that are discovered during the survey. The novelty detector is mainly 
used during the execution stage of using a model. Novelty detectors address the problem 
of ensuring that the execution data continues to resemble the training and test data sets. 

 

 
 

 

Given a data set, it is moderately easy to survey it, or even to simply take basic statistics 
about the individual variables and the joint distribution, and from them to determine if the 
two data sets are drawn from the same population (to some chosen degree of confidence, 
of course). A more difficult problem arises when as assembled data set is not available, 
but the data to be modeled is presented on an instance-by-instance basis. Of course, 
each of the instances can be assembled into a data set, and that data set examined for 
similarity to the training data set, but that only tells you that the data set now assembled 
was or wasn’t drawn from the same population. To use such a method requires waiting 
until sufficient instances become available to form a representative sample. It doesn’t tell 
you if the instances arriving now are from the training population or not. And knowing if the 
current instance is drawn from the same population can be very important indeed, for 
reasons discussed in several places. In any case, if the distribution is not stationary (see 
Chapter 9 for a brief discussion of stationarity), no representative sample of instances is 
going to be assembled! So with a nonstationary distribution, collecting instances to form a 
representative sample to measure against the training sample presents problems. 

 

 



 

 

Novelty detectors can also be used with enormously large data sets to help extract a more 
representative sample than the techniques alluded to in Chapter 10. Many large data sets 
contain very low-level fluctuations that are nonetheless important in a commercial sense, 
although insignificant in a statistical sense. The credit card issuer example in Chapter 12 
demonstrates just such a case. When a representative sample is taken to some degree of 
confidence, it is the low-level fluctuations that are the most likely to be underrepresented 
in the sample. It is these low-level fluctuations that fall below the confidence threshold 
most readily. Finding some way to include these low-level fluctuations without bloating the 
sample can have great business value. It is in this role that a novelty detector can also 
contribute much. 

 

 
 

 

So what exactly is a novelty detector? While there is no room here to go into the details of 
how a novelty detector is constructed, the principle is easy to see. Essentially a novelty 
detector is a device that estimates the probability that any particular instance value comes 
from the training population. The data survey has estimated the multidimensional 
distribution, and from that it is possible to estimate how likely any given instance value is 
to be drawn from that population. For a single variable, if normally distributed, such an 
estimate is provided by the standard deviation, or z value. So here, a novelty detector can 
be seen for what it really is—no more than the nonnormal-distribution, multidimensional 
equivalent of standard deviation. 

 

 
 

 

Naturally, with a multidimensional distribution, and one that is most likely multidimensionally 
nonnormal at that, constructing such a measure is not exactly straightforward, but in 
principle there is little difficulty in constructing such a measure. It is convenient to construct 
such a measure to return a value that resembles the z score (mentioned in Chapter 5), and 
such measures are sometimes called pseudo-z scores (pz). It is convenient to embed a 
novelty detector generating a pz score into the PIE-I, although it is not a necessary part of 
the PIE as it plays no role in actually preparing data for the model. However, with such a pz 
score available from the PIE-I, it is relatively easy to monitor any “drift” in the execution 
values that might indicate that, at the least, some recalibration of the model is needed. 

 

 
11.9  Other Directions  
 
 

 

This whistle-stop tour of the territory covered by the data survey has only touched briefly 
on a number of useful topics. A survey does much more, providing the miner with a 
considerable amount of information prior to mining. The survey looks at data sets from 
several other perspectives. 

 

 
 

 

For instance, individual variable distributions are mapped and compared. Recall from 
Chapter 7 that much useful information can be discovered from the actual shape of the 
distribution—some idea of underlying generating processes or biases. The survey maps 
similarities and differences. Sensitivity analysis is another area surveyed—areas where 
the manifold is most sensitive to changes in the data. 

 

 



 

 

The survey also uses three metaphors for examining data. Two have been used in the 
chapters on data preparation—“manifolds” and “shapes.” A manifold is a flexible structure 
fitted in some way to the data set. The metaphor of a shape regards all of the data points 
as “corners” and regards the data set as creating some multidimensional structure. 

 

 
 

 

The other useful metaphor used in the survey is that of a tensegrity structure. Tensegrity 
structures are sometimes seen as sculpture. The tensegrity structure is made of beams 
and wires. The beams are rigid and resist compression. The wires are in tension. This 
“string and poles” structure, as a sculpture, forms a three-dimensional object that is 
self-supporting. The compression in the beams is offset by the tension in the wires. (As a 
matter of interest, tensegrity structures occur naturally as, for instance, the internal 
“scaffolding” of body cells.) A data set can be imagined as a structure of points being 
pulled toward each other by some forces, and pushed apart by others, so that it reaches 
some equilibrium state. This is a sort of multidimensional tensegrity data structure. The 
data survey uses techniques to estimate the strength of the tension and compression 
forces, the “natural” shape of the data set, how much “energy” it contains, and how much 
“effort” it takes to move the shape into some other configuration. All of these measures 
relate to real-world phenomena and prove very useful in assessing reliability and 
applicability of models. It is also a useful analogy for finding “missing” variables. For 
instance, if the tensegrity structure is in some way distorted (not in equlibrium), there must 
be some missing part of the structure that, if present, holds the tensegrity shape in 
balance. Knowing what the missing information looks like can sometimes give a clue as to 
what additional data is needed to balance the structure. On the other hand, it might 
indicate sampling bias. 

 

 
 

 

Being very careful not to confuse correlation with causality, the survey also looks at the 
“direction” of the influencing forces between variables and variable groupings. This uses 
techniques that measures the “friction” between variables or states. As one variable or 
state moves (changes state or value), so others move, but there is some loss (friction) or 
gain (amplification) in the interaction between all of the components of the variable 
system. Measuring this gives “directional” information about which component is “driving” 
which. There is much that can be done with such information, which is sometimes also 
called “influence.” 

 

 
 

 

Other, new methods of looking at data are coming to the fore that offer, or promise to 
offer, useful survey information. The problem with many of them is that they are 
computationally intensive—which defeats the whole purpose of surveying. The whole idea 
is a quick once-over, searching deeper only where it looks like there might be particular 
problems. But new techniques from such fields as fractal analysis, chaos theory, and 
complexity theory hold much promise. 

 

 
 

 
Fractals use a measurement of self-similarity. So far we have assumed that a modeler is 
looking at a relationship in data to model. The model pushes and pulls (usually 

 



mathematically) at the manifold in order to best fit it to the data set. Essentially, the 
manifold is a simple thing, manipulated into a complex shape. The model is complex; the 
manifold is simple. Fractals take a different approach. They assume that many areas of 
the manifold are indeed complex in shape, but similar to each other. It may then be 
enough to simply model a little bit of the complex manifold, and for the rest, simply point to 
where it fits, and how big it is in that location. Fractals, then, take a complex manifold and 
fit it together in simple ways, stretching and shrinking the shape as necessary. With 
fractals, the manifold is complex; the model is simple. 

 
 

 

When it works, this is an enormously powerful technique. If a manifold does exhibit 
self-similarity, that alone is powerful knowledge. A couple of particularly useful fractal 
measures are the cluster correlation dimension and the Korack patchiness exponent. The 
problem with these techniques is, especially for high dimensionalities, they become 
computationally intensive—too much so, very often, for the data survey. 

 

 
 

 

Chaos theory allows a search for attractors—system states that never exactly repeat, but 
around which the system orbits. Looking in data sets for attractors can be very useful, but 
again, these tend to be too computationally expensive for the survey, at least at present. 
However, computers are becoming faster and faster. (Indeed, as I write, there is 
commentary in the computer press that modern microprocessors are “too” fast and that their 
power is not needed by modern software! Use it for better surveying and mining!) Additional 
speed is making it possible to use these new techniques for modeling and surveying. Indeed, 
the gains in speed allow the automated directed search that modern surveying 
accomplishes. Very soon, as computer power increases survey techniques, new areas will 
provide practical and useful results. 

 

 
Supplemental Material  
 

 

 Entropic Analysis—Example  
 
 

 

After determining the confidence that the multivariable variability of a data set is captured, 
entropic analysis forms the main tool for surveying data. The other tools are useful, but 
used largely for exploring only where entropic or information analysis points to potential 
problems. Since entropic analysis is so important to the survey, this section shows the 
way in which the entropy measures were derived for the example in this chapter. Working 
through this section is not necessary to understand the topics covered here. 

 

 

 

 Calculating Basic Entropy  
 
 

 

The example used two variables: the input variable and the output variable. The full range 
of calculations for forward and reverse entropy, signal entropy and mutual information, 
even for this simplified example, are quite extensive. For instance, determining the 
entropy of each of these two variables requires a fair number of calculations. 

 

 
 



 

All probability-based statistics is based on counting the frequency of occurrence of values 
and joint combinations of values. Where truly continuously valued variables are used, this 
requires limiting the number of discrete values in the continuous range in some way, 
perhaps by binning the values. Bins are used in this example. Figure 11.14 has a reprise 
of Figure 11.1 in the upper image for comparison with the lower image. The upper image 
shows the original data set together with the manifold of a fitted function. The lower image 
shows the binned values for this data set. For comparison, a modeled manifold has been 
fitted to the binned data too, and although not identical in shape to that for the unbinned 
data, it is very similar. 

 

 

 

 

 

 

 
 

 

Figure 11.14  Test data set together with a manifold fitted by a modeling tool 
(top). The effect of binning the data (bottom); the circles show the center of the 
“full” bin positions. 

 

   
 
 

 

Binning divides the state space into equally sized areas. If a data point falls into the area 
of the bin, that bin is denoted as “full.” In an area with no data points, the appropriate bin is 
denoted as “empty.” A circle shown on the lower image indicates a full bin. For simplicity, 
every bin is considered equally significant regardless of how many data points fall into it. 
This slightly simplifies the calculations and is reasonably valid so long as the bins are 
relatively small and each contains approximately the same number of points. (There are 
several other ways of binning such data. A more accurate method might weight the bins 
according to the number of data points in each. Another method might use the local 
density in each bin, rather than a count weighting.) 

 

 
 

 

To make the calculation, first determine the frequency of the bins for X and Y. Simply 
count how many bins there are for each binned value of X, and then of Y, as shown in 
Table 11.9. 

 

 

 

 TABLE 11.9  Bin frequencies.  
 



 

   
 
 

 Bin  
 

 

 0.0 
 

 
 

 0.1 
 

 
 

 0.2 
 

 
 

 0.3 
 

 
 

 0.4 
 

 
 

 0.5 
 

 
 

 0.6 
 

 
 

 0.7  
 

 
 

 0.8  
 

 
 

 0.9  
 

 
 

 1.0  
 

 

 

   
 
 

 X  
 

 

 5  
 

 
 

 5  
 

 
 

 6  
 

 
 

 3  
 

 
 

 3  
 

 
 

 4  
 

 
 

 4  
 

 
 

 4  
 

 
 

 3  
 

 
 

 2  
 

 
 

 1  
 

 

 

 Y  
 

 

 1  
 

 
 

 2  
 

 
 

 3  
 

 
 

 1  
 

 
 

 1  
 

 
 

 4  
 

 
 

 7  
 

 
 

 10  
 

 
 

 6  
 

 
 

 4  
 

 
 

 1  
 

 

 

   
 
 

 
This table indicates, for instance, that for the X value of 0, there are five bins. To discover 
this, look at the X value of 0, and count the bins stacked above that value. 

 

 
 

 

From this, determine the relative frequency. (For instance, there are 40 bins altogether. 
For X bin value 0.0, there are five occurrences, and 5/40 = 0.125, which is the relative 
frequency.) This gives a relative frequency for the example data shown in Table 11.10. 

 

 

 

 TABLE 11.10  Bin relative frequencies.  
 
 

   
 
 

 Bin 
 

 

 0.0 
 

 
 

 0.1 
 

 
 

 0.2 
 

 
 

 0.3 
 

 
 

 0.4 
 

 
 

 0.5 
 

 
 

 0.6 
 

 
 

 0.7  
 

 
 

 0.8 
 

 
 

 0.9  
 

 
 

 1.0  
 

 

 

   
 
 

 X  
 

 

 0.125  
 

 
 

 0.125  
 

 
 

 0.150  
 

 
 

 0.075  
 

 
 

 0.075  
 

 
 

 0.100  
 

 
 

 0.100  
 

 
 

 0.100  
 

 
 

 0.075  
 

 
 

 0.050  
 

 
 

 0.025  
 

 

 

 Y  
 

 

 0.025  
 

 
 

 0.050  
 

 
 

 0.075  
 

 
 

 0.025  
 

 
 

 0.025  
 

 
 

 0.100  
 

 
 

 0.175  
 

 
 

 0.250  
 

 
 

 0.150  
 

 
 

 0.100  
 

 
 

 0.025  
 

 

 

   
 
 

 

The reasoning behind the entropy calculations is already covered in the early part of this 
chapter and is not reiterated here. The relative frequency represents the probability of 
occurrence that directly allows the entropy determination as shown in Table 11.11. 

 

 

 

 TABLE 11.11 Entropy determination.  
 
 

   
 
 

 Log2(Px)  
 

 

 3.00 
 

 
 

 3.00 
 

 
 

 2.74 
 

 
 

 3.74 
 

 
 

 3.74 
 

 
 

 3.32 
 

 
 

 3.32 
 

 
 

 3.32 
 

 
 

 3.74 
 

 
 

 4.32 
 

 
 

 5.32  
 

 

 



   
 
 

 Log2(Py) 
 

 

 5.32 
 

 
 

 4.32 
 

 
 

 3.74 
 

 
 

 5.32 
 

 
 

 5.32 
 

 
 

 3.32 
 

 
 

 2.52 
 

 
 

 2.00 
 

 
 

 2.74 
 

 
 

 3.32 
 

 
 

 5.32  
 

 

 

 
P 
log2(Px)

 

 

 

 0.38 
 

 

 

 0.38 
 

 

 

 0.41 
 

 

 

 0.28 
 

 

 

 0.28 
 

 

 

 0.33 
 

 

 

 0.33 
 

 

 

 0.33 
 

 

 

 0.28 
 

 

 

 0.22 
 

 

 

 0.13  
 

 

 

 
P 
log2(Py)

 

 

 

 0.13 
 

 

 

 0.22 
 

 

 

 0.28 
 

 

 

 0.13 
 

 

 

 0.13 
 

 

 

 0.33 
 

 

 

 0.44 
 

 

 

 0.50 
 

 

 

 0.41 
 

 

 

 0.33 
 

 

 

 0.13  
 

 

 

   
 
 

 

The theoretical maximum entropy is P log2(40), since there are 40 bins. The calculated 
entropy in this data set is, for X, <F128P9.5M%6>SP log2(Px), and for Y, 
<F128P9.5M%6>SP log2(Py): 

 

 
 

 Maximum entropy  
 

 

 3.459  
 

 

 

 Entropy X  
 

 

 3.347  
 

 

 

 Entropy Y  
 

 

 3.044  
 

 

 

 

Clearly, there is not much to be estimated from simply knowing the values of X or Y as the 
entropy values are near to the maximum. Obviously, absolute entropy values will change 
with the number of bins. However, entropy can never be less than 0, not greater than the 
maximum entropy, so it is always possible to normalize these values across the range of 
0–1. 

 

 

 

 Information-Driven Binning Strategies  
 
 

 

Since bin count changes entropy measurements, some bin counts result in better or 
worse information measures than others. For any data set there is some optimum number 
of bins that best preserves the data set’s information content. Discovering this optimum 
bin size/count requires a search across several to many bin sizes. Any binning strategy 
loses some information, but some modeling tools require binning and others are 
enormously faster with binned data rather than continuous data. The performance and 
training trade-offs versus the information lost (usually small, particularly if an optimal 
binning strategy is used) frequently favor binning as a worthwhile practical strategy. When 
the optimal bin count is used, it is described as least information loss binning. 

 

 
 

 

To complicate matters further, it is possible to use different bin sizes to best preserve 
information content. This is called information-retentive adaptive binning since the bin size 
adapts to optimize the information structure in the data. 

 

 
 



 
Although the data survey derives these information-driven binning optimums, space 
constraints prevent a fuller discussion of the topic here. 

 

 

 

 Conditional Entropy and Mutual Information  
 
 

 

Recall that mutual information between two data sets (individual variables in this example) 
is the entropy of one variable, less the entropy of the second, given the first. The first step 
is to find the entropy of all values of “the entropy of the second, given the first” for each 
discrete value of the first. This produces measures of conditional entropy for all values of 
one variable. Since both forward and reverse conditional entropy are surveyed, we must 
find both the conditional entropy of X given Y, and of Y given X for all values of X and Y. 

 

 
 

 

Figure 11.15 shows the results of all the entropy calculations. The upper box labeled 
“Bins” reproduces in the pattern of ones the layout of bins shown in the lower part of 
Figure 11.14. For reference, to the left and immediately below the pattern of ones are 
shown the appropriate bin values to which each one corresponds. On the extreme right 
are the Y value bin counts, while on the extreme bottom are shown the X value bin 
counts. So, for instance, looking at the X value of 0, there are 5 ones in the vertical 
column above the X = 0 value, and so the bin count, shown below the X = 0 value, is 5. 
Similarly, for Y = 0.7 the horizontal bin count contains 10 ones, so the bin count is 10, as 
shown on the right. 

 

 

 

 

 

 

 
 

 Figure 11.15  Calculating mutual entropy.  

   
 
 

 

The two boxes “X Bin values” and “Y Bin values” maintain the same pattern, but show the 
entropy values for each state and bin. As an example, continue to look at the X bins for 
the value X = 0. There are five bins that match X = 0. These bins correspond to valid 
system states, or signals, and in this example we assume that they are each equally 
likely. Each of these five states has a probability of 1/5, or 0.2. The P log2(P) for each of 

 



these five equally likely states is therefore 0.46. Thus the ones in the “Bins” box in the 
figure are replaced with 0.46s in the “X Bin values” box for the value of X = 0. This 
replacement is continued for all of the X and Y bin values in the appropriate boxes and 
with the appropriate values for each. 

 
 

 

For all of the X bins, their values are summed and shown below the appropriate column. 
Thus, continuing to look at the X = 0 bins in the “X Bin values” box, the sum of these five 
values of 0.46 is 2.32, which is shown immediately below the bin column. (Rounding 
errors to two decimal places means that the figures shown seem slightly off. In fact, of 
course, the P log2(P) is slightly greater than 0.46, so that five of them sum to 2.32, not 
2.30!) For the Y bins the sum is shown to the immediate right of the bin pattern in the “Y 
Bin values” box, as these are summarized horizontally. 

 

 
 

 

Recall that altogether there are 40 signals (bins). For the value of X = 0, the probability of 
the 5 bins occurring is 5/40 = 0.125. So the value X = 0 occurs with probability 0.125. This 
0.125 is the probability weighting for the system state X = 0 and is applied to the total bin 
sum of 2.32, giving an entropy measure for X = 0 of 0.29, shown on the lowest line below 
the X = 0 value in the “X Bin values” box. Similarly, the corresponding entropy values for 
all of the Y values are shown on the extreme right of the “Y Bin values” box. Summing the 
totals produces the measures shown in Table 11.12. Mapping the entropy values 
calculated here has already been shown in Figure 11.3. 

 

 

 

 TABLE 11.12  Example data set entropies.  
 
 

   
 
 

 Measure  
 

 

 Actual  
 

 
 

 Norm  
 

 

 

   
 
 

 Maximum entropy  
 

 

 3.459  
 

 
  

  
 

 

 

 Entropy X  
 

 

 3.347  
 

 
 

 0.968  
 

 

 

 Entropy Y  
 

 

 3.044  
 

 
 

 0.880  
 

 

 

 Entropy (Y|X)  
 

 

 1.975  
 

 
 

 0.649  
 

 

 

 Entropy (X|Y)  
 

 

 2.278  
 

 
 

 0.681  
 

 

 

 Mutual info (X;Y)  
 

 

 1.069  
 

 
 

 0.351  
 

 

 

   
 

 



 Surveying Data Sets  
 
 

 

As with so much else in life, there is a gap between theory and practical application with 
entropic analysis. Three sample data sets are included on the accompanying CD-ROM: 
CARS, SHOE, and CREDIT. This section looks at what useful insights the entropic 
analysis part of the data survey discovers before modeling this data. Just as there is not 
enough space in the chapter to make more than a brief introduction to some elements of 
the data survey, so too there is not space to look at, and discuss, more than a small 
portion of the entropic analysis of the data sets, let alone a full data survey. This section 
limits its attention to a small part of what the survey shows about the example data sets, 
specifically how entropic analysis can discover information about a data set, and how the 
miner can use the discovered information. 

 

 

 

 Introductory Note: Sequential Natural Clustering  
 
 

 

Before looking at extracts of surveys of these data sets, the explanation needs a couple of 
introductory notes to give some perspective as to what these survey extracts reveal. 
Information analysis bases its measurements on features of system states. This means 
that some way of identifying system states has to be used to make the survey. There are 
many possible ways of identifying system states: several have to be included in any 
surveying software suite since different methods are appropriate for different 
circumstances. The method used in the following examples is that of sequential natural 
clustering. 

 

 
 

 

Natural clusters form in the state space constructed from a representative sample. A 
group of points forms a natural cluster when a low-density boundary around the group 
separates those points inside the boundary from those points outside. The mean location 
of the center of such a cluster can itself be used as a representative point for the whole 
cluster. When this is done, it is possible then to move to another stage and cluster these 
representative points—a sort of cluster of clusters. Continuing this as far as possible 
eventually ends with a single cluster, usually centered in state space. However, since the 
clusters begin as very small aggregations, which lead to larger but still small 
aggregations, there can be many steps from start to finish. Each step has fewer clusters 
than the preceding step. At each step of clustering, the group of clusters that exist at that 
step are called a layer. Every input point maps into just one cluster at each layer. Each 
layer in the sequence is built from a natural clustering of the points at the previous 
layer—thus the name “sequential natural clustering.” 

 

 
 

 

Both the input states and the output states are clustered. In the examples that follow, the 
output is limited to the states of a single variable. There is no reason to limit the output to 
a single variable save that it makes the explanation of these examples easier. In practice, 
miners often find that however large the input data set, the output states are represented 
by the states of a single variable. Sticking to a single variable as output for the examples 
here is not unrealistic. However, the tools used to make the survey are not limited to using 

 



only a single variable as output. 
 
 

 

Sequential natural clustering has several advantages, one of which is that it allows the 
survey to estimate the complexity of the model required to explicate the information 
enfolded into the data set. There is no room here to look at the underlying explanation for 
why this is so, but since it is of particular interest to miners, it is shown in the survey 
extracts discussed. 

 

 
 

 

A full survey digests a vast amount of metadata (data about the data set) and makes 
available an enormous amount of information about the entropic relationships between all 
of the variables, and between all of the layers. Unfortunately, a full discussion of a single 
survey is beyond the scope intended for this overview. Rather, we briefly examine the 
main points of what the entropic measures in a survey show, and why and how it is useful 
in practice to a miner. 

 

 

 

 The Survey Extract  
 
 

 

The survey extracts used in the following examples report several measures. Each of the 
measures reveals useful information. However, before looking at what is reported about 
the data sets, here is a brief summary of the features and what they reveal. 

 

 
 

 

Input layer 0 to output layer 0 In these extracts, the survey directly reports the input and 
output layer 0’s entropic information. Layer 0 uses unclustered signals so that the 
entropies reported are of the raw input and output signal states. Using input layer 0 and 
output layer 0 measures the maximum possible information about the input and output. 
Thus, the layer 0 measures indicate the information content under the best possible 
circumstances—with the maximum amount of information exposed. It is possible, likely 
even, that modeling tools used to build the actual mined models cannot use all of the 
information that is exposed. As discussed in the examples, a miner may not even want to 
use all of this information. However, the layer 0 measures indicate the best that could 
possibly be done using a perfect modeling tool and using only the analyzed data set. 

 

 
 

 

Any number of factors can intrude into the modeling process that prevent maximum 
information utilization, which is not necessarily a negative since trade-offs for modeling 
speed, say, may be preferable to maximum information extraction. For example, using a 
less complex neural network than is needed for maximum information extraction may train 
tens or hundreds of times faster than one that extracts almost all of the information. If the 
model is good enough for practical application, having it tens or hundreds of times earlier 
than otherwise may be more important than wringing all of the information out of a data 
set. This is always a decision for the miner, based, of course, on the business needs of 
the required model. However, the reason the extracts here show only the entropy 
measures for layer 0 is that this is the theoretical maximum that cannot be exceeded 
given the data at hand. 

 

 
 



 
The complexity graph, mentioned below, uses information from other layers, as does the 
measurement of noise in the data set. 

 

 
 

 

Signal H(X) Entropy can evaluate the relationship between input signals and output 
signals. However, it can also be used to evaluate the signals in a single variable. Recall 
that when the signals are evenly distributed, entropy is 1. The usual symbol for entropy is 
“H.” “X” symbolizes the input. Signal H(X) is evaluating the entropy of the input signal. 
These signals originate not from a single variable but from the whole input data set. 
(Recall that “signal” is definitely not synonymous with “variable.”) The measure indicates 
how much entropy there is in the data set input signal without regard to the output signal. 
It measures, among other things, how well “balanced” the input signal states are. An ideal 
data set needs each of the input signals to be equally represented, therefore equally 
uncertain. Thus Signal H(X) should be as high as possible, measured against the 
maximum possible entropy for the number of signal states. The ratio measurement makes 
this comparison of actual entropy against maximum possible entropy, and ideally it should 
be as close to 1 as possible. 

 

 
 

 The ratio is calculated as Signal H(X):log2(ninput states).  
 
 

 

Signal H(Y) Whereas “X” indicates the input states, “Y” indicates the output states. Signal 
H(Y) measures the entropy of the output signal states, and again, its ratio should be as 
high as possible. In other respects it is similar to Signal H(X) in that it too measures the 
entropy of the output states without regard to the input states. 

 

 
 

 The ratio is Signal H(Y):log2(noutput states).  
 
 

 

Channel H(X) The channel measurements are all taken about the data set as a whole. In 
all of the channel measurements the relationship between the input signals and the output 
signals is of paramount importance. It is called “channel entropy” because these 
measures regard the data set as a communication channel and they all indicate 
something about the fidelity of the communication channel—how well the input signals 
communicate information about the output, how much of all the information enfolded into 
the data set is used to specify the output, and how much information is lost in the 
communication process. 

 

 
 

 

Channel H(X) is usually similar in its entropic measure to Signal H(X). The difference is 
that Signal H(X) measures the average information content in the signal without reference 
to anything else. Channel H(X) measures the average information per signal at the input 
of the communication channel. The output signals may interact with the input when the 
channel is considered. If, for instance, some of the discrete input signals all mean the 
same thing at the output, the information content of the input is reduced. (For instance, 
the words “yes,” “aye,” “positive,” “affirmative,” and “roger” may seem to be discrete 
signals. In some particular communication channel where all these signals indicate 
agreement and are completely synonymous with each other, they actually map to 

 



effectively the same input state. For these signals, signal entropy is based on four signals, 
whereas channel entropy is based on only one composite signal. For a more practical 
example, look back to Chapter 4 where “M-Benz,” “Merc,” and so on are all different 
signals for Signal H(X), but comprise a single signal for Channel H(X).) 

 
 

 

Channel H(X) gives a measure of how well the input channel signals are balanced. If 
Signal H(X) and Channel H(X) differ considerably, it may be well worth the miner’s time to 
reconfigure the data to make them more similar. Channel H(X) is almost always less than 
Signal H(X). If Channel H(X) is much less, it implies that the model may have to be far 
more complex than if the two entropy measures are more nearly equal. Once again, the 
ratio measure should be as large as possible. 

 

 
 

 The ratio is Channel H(X):log2(ninput states).  
 
 

 

Note: In order to differentiate Channel H(X) and SignalH(X), and other entropy measures 
where confusion may occur, the symbols are preceded by “s” or “c” as appropriate to 
indicate signal or channel measures. Thus sH(X) refers to a signal measure, and cH(X) 
refers to a channel measure. 

 

 
 

 

Channel H(Y) Channel H(Y) is like cH(X) except, of course, that the “Y” indicates 
measures about the output states. Another difference from the input is that any reduction 
in entropy from signal to channel indicates a potential problem since it means that some 
of the output states simply cannot be distinguished from each other as separate states. 
Ratio measures should be as close to 1 as possible. 

 

 
 

 The ratio is cH(Y):log2(noutput states).  
 
 

 

Channel H(X|Y) Although listed first in the survey report, cH(X|Y) represents reverse 
entropy—the entropy of the input given the output. If it is less than the forward 
entropy—cH(Y|X)—then the problem may well be ill formed. (The example shown in the 
first part of this section shows an ill-formed relationship.) If this is the case, the miner will 
need to take corrective action, or get additional data to fix the problem. Channel H(X|Y) 
measures how much information is known about the input, given that a specific output has 
occurred. 

 

 
 

 The ratio is cH(X|Y):log2(ninput states).  
 
 

 

Channel H(Y|X) This is a measure of the forward entropy, that is, how much information 
is known about the state of the output, given that a particular input has occurred. The ratio 
of this number needs to be as near to 0 as possible. Remember that entropy is a measure 
of uncertainty, and ideally there should be no uncertainty on average about the state of 
the output signal given the input signals. When the ratio of this measure is high (close to 
1), very little is known about the state of the output given the state of the input. 

 

 
 



 The ratio is cH(Y|X):log2(noutput states).  
 
 

 

Channel H(X,Y) (Note the comma, not a vertical bar.) Channel H(X,Y) measures the 
average information for every pair of input and output signals and the average uncertainty 
over the data set as a whole. In a sense, it measures how efficiently the data set enfolds 
(carries or represents) its information content. Perhaps another way of thinking of it is as 
yielding a measure of how much information in the data set isn’t being used to define the 
output signals. (See cI(X;Y) below.) 

 

 
 

 The ratio is cH(X,Y):cH(X) + cH(Y).  
 
 

 

Channel I(X;Y) This measures the mutual information between input and output (also 
between output and input since mutual information is a completely reciprocal measure). 
When the output signals are perfectly predicted by the input signals, ratio cI(X;Y) = 1. 
Note also that when the data set perfectly transfers all of its information, then 
cI(X;Y) = cH(X,Y). 

 

 
 

 The ratio is cI(X;Y):cH(Y).  
 
 

 

Variable entropy and information measures Following the data set entropy and 
information measures are ratio measures for the individual variables. Due to space 
limitations, these examples do not always show all of the variables in a data set. Each 
variable has four separate measures: 

 

 
 

 H(X)—signal entropy for the individual variable  
 
 

  
• 
 
H(Y|X)—showing how much information each variable individually carries about the 
output states 

 

 
 

  •  I(X;Y)—the mutual information content for each individual variable with the output  
 
 

  
• 
 
Importance—an overall estimate of the uniqueness of the information contributed by 
each variable 

 

 

 

 The CARS Data Set  
 
 

 

The CARS data set is fairly small, and although it is not likely to have to be mined to glean 
an understanding of what it contains, that property makes it a useful example! The data is 
intuitively understandable, making it easy to relate what the survey reveals about the 
relationships back to the data. For that reason, the examples here examine the CARS 
data set more extensively than is otherwise warranted. The meanings of the variable 
names are fairly self-evident, which makes interpretation straightforward. Also, this data 
set is close to actually being the population! Although the measure of possible sampling 
error (not shown) indicates the possible presence of sampling error, and although the 

 



“sample” is “small,” the miner can establish that details of most of the car models available 
in the U.S. for the period covered are actually in the data set. 

 

 

 Predicting Origin  
 
 

 

Information metrics Figure 11.16 shows an extract of the information provided by the 
survey. The cars in the data set may originate from Europe, Japan, or the U.S. Predicting 
the cars’ origins should be relatively easy, particularly given the brand of each car. But 
what does the survey have to say about this data set for predicting a car’s origin? 

 

 

 

 

 

 

 
 

 
Figure 11.16  Extract of the data survey report for the CARS data set when 
predicting the cars ORIGIN. Cars may originate from Japan, the U.S., or Europe. 

 

   
 
 

 

First of all, sH(X) and sH(Y) are both fairly close to 1, showing that there is a reasonably 
good spread of signals in the input and output. The sH(Y) ratio is somewhat less than 1, 
and looking at the data itself will easily show that the numbers of cars from each of the 
originating areas is not exactly balanced. But it is very hard indeed for a miner to look at 
the actual input states to see if they are balanced—whereas the sH(X) entropy shows 
clearly that they are. This is a piece of very useful information that is not easily discovered 
by inspecting the data itself. 

 

 
 

 

Looking at the channel measures is very instructive. The signal and channel H(X) are 
identical, and signal and channel H(Y) are close. All of the information present in the 
input, and most of the information present in the output, is actually applied across the 
channel. 

 

 
 

 

cH(X|Y) is high, so that the output information poorly defines the state of the input, but that 
is of no moment. More importantly, cH(X|Y) is greater than cH(Y|X)—much greater in this 
case—so that this is not an ill-defined problem. Fine so far, but what does cH(Y|X) = 0 
mean? That there is no uncertainty about the output signal given the input signal. No 

 



uncertainty is exactly what is needed! The input perfectly defines the output. Right here 
we immediately know that it is at least theoretically possible to perfectly predict the origin 
of a car, given the information in this data set. 

 
 

 

Moving ahead to cI(X;Y) = 1 for a moment, this too indicates that the task is learnable, 
and that the information inside the channel (data set) is sufficient to completely define the 
output. cH(X;Y) shows that not all of the information in the data set is needed to define the 
output. 

 

 
 

 

Let us turn now to the variables. (All the numbers shown for variables are ratios only.) 
These are listed with the most important first, and BRAND tells a story in itself! Its 
cH(Y|X) = 0 shows that simply knowing the brand of a vehicle is sufficient to determine its 
origin. The cH(Y|X) says that there is no uncertainty about the output given only brand as 
an input. Its cI(X;Y) tells the same story—the 1 means perfect mutual information. (This 
conclusion is not at all surprising in this case, but it’s welcome to have the analysis 
confirm it!) It’s not surprising also that its importance is 1. It’s clear too that the other 
variables don’t seem to have much to say individually about the origin of a car. 

 

 
 

 

This illustrates a phenomenon described as coupling. Simply expressed, coupling 
measures how well information used by a particular set of output signals connects to the 
data set as a whole. If the coupling is poor, regardless of how well or badly the output is 
defined by the input signals, very little of the total amount of information enfolded in the 
data set is used. The higher the coupling, the more the information contained in the data 
set is used. 

 

 
 

 

Here the output signals seem only moderately coupled to the data set. Although a 
coupling ratio is not shown on this abbreviated survey, the idea can be seen here. The 
prediction of the states of ORIGIN depends very extensively on states of BRAND. The 
other variables do not seem to produce signal states that well define ORIGIN. So, 
superficially it seems that the prediction of ORIGIN requires the variable BRAND, and if 
that were removed, all might be lost. But what is not immediately apparent here (but is 
shown in the next example to some extent) is that BRAND couples to the data set as a 
whole quite well. (That is, BRAND is well integrated into the overall information system 
represented by the variables.) If BRAND information were removed, much of the 
information carried by this variable can be recovered from the signals created by the other 
variables. So while ORIGIN seems coupled only to BRAND, BRAND couples quite 
strongly to the information system as a whole. ORIGIN, then, is actually more closely 
coupled to this data set than simply looking at individual variables may indicate. Glancing 
at the variable’s metrics may not show how well—or poorly—signal states are in fact 
coupled to a data set. The survey looks quite deeply into the information system to 
discover coupling ratios. In a full survey this coupling ratio can be very important, as is 
shown in a later example. 

 

 
 

 When thinking about coupling, it is important to remember that the variables defining the  



manifold in a state space are all interrelated. This is what is meant by the variables being 
part of a system of variables. Losing, or removing, any single variable usually does not 
remove all of the information carried by that variable since much, perhaps all, of the 
information carried by the variable may be duplicated by the other variables. In a sense, 
coupling measures the degree of the total interaction between the output signal states 
and all of the information enfolded in the data set, regardless of where it is carried. 

 
 

 

Complexity map A complexity map (Figure 11.17) indicates highest complexity on the 
left, with lower complexity levels progressively further to the right. Information recovery 
indicates the amount of information a model could recover from the data set about the 
output signals: 1 means all of it, 0 means none of it. This one shows perfect predictability 
(information recovery = 1) for the most complex level (complexity level 1). The curve 
trends gently downward at first as complexity decreases, eventually flattening out and 
remaining almost constant as complexity reduces to a minimum. 

 

 

 

 

 

 

 
 

 

Figure 11.17  Complexity map for the CARS data set when predicting ORIGIN. 
Highest complexity is on the left, lowest complexity is on the right. (Higher 
numbers mean less complexity.) 

 

   
 
 

 

In this case the data set represents the population. Also, a predictive model is not likely to 
be needed since any car can be looked up in the data. The chances are that a miner is 
looking to understand relationships that exist in this data. In this unusual situation where 
the whole population is present, noise is not really an issue. There may certainly be 
erroneous entries and other errors that constitute noise. The object is not to generalize 
relationships from this data that are then to be applied to other similar data. Whatever can 
be discovered in this data is sufficient, since it works in this data set, and there is no other 
data set to apply it to. 

 

 
 

 

The shallow curve shows that the difficulty of recovering information increases little with 
increased complexity. Even the simplest models can recover most of the information. This 
complexity map promises that a fairly simple model will produce robust and effective 
predictions of origin using this data. (Hardly stunning news in this simple case!) 

 

 
 



 

State entropy map A state entropy map (Figure 11.18) can be one of the most useful 
maps produced by the survey. This map shows how much information there is in the data 
set to define each state. Put another way, it shows how accurately, or confidently, each 
output state is defined (or can be predicted). There are three output signals shown, 
indicated as “1,” “2,” and “3” along the bottom of the map. These correspond to the output 
signal states, in this case “U.S.,” “Japan,” and “Europe.” For this brief look, the actual list 
of which number applies to which signal is not shown. The map shows a horizontal line 
that represents the average entropy of all of the outputs. The entropy of each output 
signal is shown by the curve. In this case the curve is very close to the average, although 
signal 1 has slightly less entropy than signal 2. Even though the output signals are 
perfectly identified by the input signals, there is still more uncertainty about the state of 
output signal 2 than of either signal 1 or signal 3. 

 

 

 

 

 

 

 
 

 

Figure 11.18  State entropy map for the CARS data set when predicting ORIGIN. 
The three states of ORIGIN are shown along the bottom of the graph (U.S., 
Japan, and Europe). 

 

   
 
 

 

Summary No really startling conclusions jump out of the survey when investigating 
country of origin for American cars! Nevertheless, the entropic analysis confirmed a 
number of intuitions about the CARS data that would be difficult to obtain by any other 
means, particularly including building models. 

 

 
 

 

This is an easy task, and only a simple model using a single-input variable, BRAND, is 
needed to make perfect predictions. However, no surprises were expected in this easy 
introduction to some small parts of the survey. 

 

 

 

 Predicting Brand  
 
 

 

Information metrics Since predicting ORIGIN only needed information about the 
BRAND, what if we predict the BRAND? Would you expect the relationship to be 
reciprocal and have ORIGIN perfectly predict BRAND? (Hardly. There are only three 
sources of origin, but there are many brands.) Figure 11.19 shows the survey extract 
using the CARS data set to predict the BRAND. 

 

 



 

 

 

 

 
 

 
Figure 11.19  Part of the survey report for the CARS data set with output signals 
defined by the variable BRAND. 

 

   
 
 

 

A quick glance shows that the input and output signals are reasonably well distributed 
(H(X) and H(Y)), the problem is not ill formed (H(X|Y) and H(Y|X)), and good but not 
perfect predictions of the brand of car can be made from this data (H(Y|X) and I(X;Y)). 

 

 
 

 

BRAND is fairly well coupled to this data set with weight and cubic inch size of the engine 
carrying much information. ORIGIN appears third in the list with a cI(X;Y) = 1, which goes 
to show the shortcoming of relying on this as a measure of predictability! This is a 
completely reciprocal measure. It indicates complete information in one direction or the 
other, but without specifying direction, so which predicts what cannot be determined. 
Looking at the individual cH(Y|X)s for the variables, it seems that it carries less 
information than horsepower (HPWR), the next variable down the list. 

 

 
 

 

Complexity map The diagonal line is a fairly common type of complexity map (Figure 
11.20). Although the curve appears to reach 1, the cI(X;Y), for instance, shows that it 
must fall a minute amount short, since the prediction is not perfect, even with a highest 
degree of complexity model. There is simply insufficient information to completely define 
the output signals from the information enfolded into the data set. 

 

 

 



 

 

 

 
 

 
Figure 11.20  Complexity map for the CARS data set using output signals from 
the variable BRAND. 

 

   
 
 

 

Once again, noise and sample size limitations can be ignored as the entire population is 
present. This type of map indicates that a complex model, capturing most of the 
complexity in the information, will be needed to build the model. 

 

 
 

 

State entropy map Perhaps the most interesting feature of this survey is the state 
entropy map (Figure 11.21). The variable BRAND, of course, is a categorical variable. 
Prior to the survey it was numerated, and the survey uses the numerated information. 
Interestingly, since the survey looks at signals extracted from state space, the actual 
values assigned to BRAND are not important here, but the ordering reflected out of the 
data set is important. The selected ordering reflected from the data set shown here is 
clearly not a random choice, but has been somehow arranged in what turns out to be 
approximately increasing levels of certainty. In this example, the exact labels that apply to 
each of the output signals is not important, although they will be very interesting (maybe 
critically important, or may at least lend a considerable insight) in a practical project! 

 

 

 

 

 

 

 
 

 

Figure 11.21  State entropy map for the CARS data set and BRAND output 
signals. The signals corresponding to positions on the left are less defined (have a 
higher entropy) than those on the right. 

 

   
 
 



 

Once again, the horizontal line shows the mean level of entropy for all of the output 
signals. The entropy levels plotted for each of the output signals form the wavy curve. The 
numeration has ordered the vehicle brands so that those least well determined—that is, 
those with the highest level of entropy—are on the left of this map, while the best defined 
are on the right. From this map, not only can we find a definitive level of the exact 
confidence with which each particular brand can be predicted, but it is clear that there is 
some underlying phenomenon to be explained. Why is there this difference? What are the 
driving factors? How does this relate to other parts of the data set? Is it important? Is it 
meaningful? 

 

 
 

 

This important point, although already noted, is worth repeating, since it forms a 
particularly useful part of the survey. The map indicates that there are about 30 different 
brands present in the data set. The information enfolded in the data set does, in general, a 
pretty good job of uniquely identifying a vehicle’s brand. That is measured by the cH(Y|X). 
This measurement can be turned into a precise number specifying exactly how well—in 
general—it identifies a brand. However, much more can be gleaned from the survey. It is 
also possible to specify, for each individual brand, how well the information in the data 
specifies that a car is or is not that brand. That is what the state entropy map shows. It 
might, for instance, be possible to say that a prediction of “Ford” will be correct 999 times 
in 1000 (99.9% of the time), but “Toyota” can only be counted on to be correct 75 times in 
100 (75% of the time). 

 

 
 

 

Not shown, but also of considerable importance in many applications, it is possible to say 
which signals are likely to be confused with each other when they are not correctly 
specified. For example, perhaps when “Toyota” is incorrectly predicted, the true signal is 
far more likely to be “Honda” than “Nissan”—and whatever it is, it is very unlikely to be 
“Ford.” Exact confidence levels can be found for confusion levels of all of the output 
signals. This is very useful and sometimes crucial information. 

 

 
 

 

Recall also that this information is all coming out of the survey before any models have 
been built! The survey is not a model as it can make no predictions, nor actually identify 
the nature of the relationships to be discovered. The survey only points out 
potential—possibilities and limitations. 

 

 
 

 

Summary Modeling vehicle brand requires a complex model to extract the maximum 
information from the data set. Brand cannot be predicted with complete certainty, but 
limits to accuracy for each brand, and confidence levels about confusion between brands,
can be determined. The output states are fairly well coupled into the data set, so that any 
models are likely to be robust as this set of output signals is itself embedded and 
intertwined in the complexity of the system of variables as a whole. Predictions are not 
unduly influenced only by some limited part of the information enfolded in the data set. 

 

 
 

 
There is clearly some phenomenon affecting the level of certainty across the ordering of 
brands that needs to be investigated. It may be spurious, evidence of bias, or a significant 

 



insight, but it should be explained, or at least examined. When a model is built, precise 
levels of certainty for the prediction of each specific brand are known, and precise 
estimates of which output signals are likely to be confused with which other output signals 
are also known. 

 

 

 Predicting Weight  
 
 

 

Information metrics There seem to be no notable problems predicting vehicle weight 
(WT_LBS). In Figure 11.22, cH(X|Y) seems low—the input is well predicted by the 
output—but as we will see, that is because almost every vehicle has a unique weight. The 
output signals seem well coupled into the data set. 

 

 

 

 

 

 

 
 

 
Figure 11.22  Survey extract for the CARS data set predicting vehicle weight 
(WT_LBS). 

 

   
 
 

 

There is a clue here in cH(Y|X) and cH(X|Y) that the data is overly specific, and that if 
generalized predictions were needed, a model built from this data set might well benefit 
from the use of a smoothing technique. In this case, but only because the whole 
population is present, that is not the case. This discussion continues with the explanation 
of the state entropy map for this data set and output. 

 

 
 

 
Complexity map Figure 11.23 shows the complexity map. Once again, a diagonal line 
shows that a more complex model gives a better result. 

 

 

 



 

 

 

 
 

 Figure 11.23  Complexity map for the CARS data set predicting vehicle weight.  

   
 
 

 

State entropy map This state entropy map (Figure 11.24) shows many discrete values. 
In fact, as already noted, almost every vehicle has a unique weight. Since the map shows 
spikes—in spite of the generally low level of entropy of the output, which indicates that the 
output is generally well defined—the many spikes show that several, if not many, vehicles 
are not well defined by the information enfolded into the data set. There is no clear pattern 
revealed here, but it might still be interesting to ask why certain vehicles are 
(anomalously?) not well specified. It might also be interesting to turn the question around 
and ask what it is that allows certainty in some cases and not others. A complete survey 
provides the tools to explore such questions. 

 

 

 

 

 

 

 
 

 

Figure 11.24  State entropy map for the CARS data set with output vehicle 
weight. The large number of output states reflects that almost every vehicle in the 
data set weighs a different amount than any of the other vehicles. 

 

   
 
 

 

In this case, essentially the entire population is present. But if some generalization were 
needed for making predictions in other data sets, the spikes and high number of discrete 
values indicate that the data needs to be modified to improve the generalization. Perhaps 
least information loss binning, either contiguously or noncontiguously, might help. The 
clue that this data might benefit from some sort of generalization is that both cH(Y|X) and 
cH(X|Y) are so low. This can happen when, as in this case, there are a large number of 

 



discrete inputs and outputs. Each of the discrete inputs maps to a discrete output. 
 
 

 

The problem for a model is that with such a high number of discrete values mapping 
almost directly one to the other, the model becomes little more than a lookup table. This 
works well only when every possible combination of inputs to outputs is included in the 
training data set—normally a rare occurrence. In this case, the rare occurrence has 
turned up and all possible combinations are in fact present. This is due entirely to the fact 
that this data set represents the population, rather than a sample. So here, it is perfectly 
valid to use the lookup table approach. 

 

 
 

 

If this were instead a small but representative sample of a much larger data set, it is highly 
unlikely that all combinations of inputs and outputs would be present in the sample. As 
soon as a lookup-type model (known also as a particularized model) sees an input from a 
combination that was not in the training sample, it has no reference or mechanism for 
generalizing to the appropriate output. For such a case, a useful model generalizes rather 
than particularizes. There are many modeling techniques for building such generalized 
models, but they can only be used if the miner knows that such models are needed. That 
is not usually hard to tell. What is hard to tell (without a survey) is what level of 
generalization is appropriate. 

 

 
 

 

Having established from the survey that a generalizing model is needed, what is the 
appropriate level of generalization? Answering that question in detail is beyond the scope 
of this introduction to a survey. However, the survey does provide an unambiguous 
answer to the appropriate level of generalization that results in least information loss for 
any specific required resolution in the output (or prediction). 

 

 
 

 

Summary Apart from the information discussed in the previous examples, looking at 
vehicle weight shows that some form of generalized model has to be built for the model to 
be useful in other data sets. A complete survey provides the miner with the needed 
information to be able to construct a generalized model and specifies the accuracy and 
confidence of the model’s predictions for any selected level of generalization. Before 
modeling begins, the miner knows exactly what the trade-offs are between accuracy and 
generalization, and can determine if a suitable model can be built from the data on hand. 

 

 

 

 The CREDIT Data Set  
 
 

 

The CREDIT data set represents a real-world data set, somewhat cleaned (it was 
assembled from several disparate sources) and now ready for preparation. The objective 
was to build an effective credit card solicitation program. This is data captured from a 
previous program that was not particularly successful (just under a 1% response rate) but 
yielded the data with which to model customer response. The next solicitation program, 
run using a model built from this data, generated a better than 3% response rate. 

 

 
 

 This data is slightly modified from the actual data. It is completely anonymized and, since  



the original file comprised 5 million records, it is highly reduced in size! 
 
 

 

Information metrics Figure 11.25 shows the information metrics. The data set signals 
seem well distributed, sH(X) and cH(X), but there is something very odd about sH(Y) and 
cH(Y)—they are so very low. Since entropy measures, among other things, the level of 
uncertainty in the signals, there seems to be very little uncertainty about these signals, 
even before modeling starts! The whole purpose of predictive models is to reduce the 
level of uncertainty about the output signal given an input signal, but there isn’t much 
uncertainty here to begin with! Why? 

 

 

 

 

 

 

 
 

 Figure 11.25  Information metrics for the CREDIT data set.  

   
 
 

 

The reason, it turns out, is because this is the unmodified response data set with a less 
than 1% response rate. The fact is that if you guessed the state of a randomly selected 
record, you would be right more than 99% of the time by guessing that record referred to a 
nonbuyer. Not really much uncertainty about the output at all! 

 

 
 

 

Many modeling techniques—neural networks or regression, for example—cannot deal 
with such low levels of response. In fact, very many methods have trouble with such low 
levels of response as this unless especially tuned to deal with it. However, since 
information metrics measure the nature of the manifold in state space, they are 
remarkably resistant to any distortion due to very low-density responses. Continuing to 
look at this data set, and later comparing it with a balanced version, demonstrates the 
point nicely. 

 

 
 

 

With a very large data set, such as is used here, and a very low response rate, the 
rounding to four places of decimals, as reported in the information metrics, makes the 
ratio of cH(Y|X) appear to equal 0, and cI(X;Y) appears to be equal to 1. However, the 
state entropy map shows a different picture, which we will look at in a moment. 

 

 



 

 

Complexity map This is an unusual, and really a rather nasty-looking, complexity map 
seen in Figure 11.26. The concave-shaped curve indicates that adding additional 
complexity to the model (starting with the simplest model on the right) gains little in 
predictability. It takes a really complex model, focusing closely on the details of the 
signals, to extract any meaningful determination of the output signals. 

 

 

 

 

 

 

 
 

 
Figure 11.26  Complexity map for the CREDIT data set predicting BUYER. This 
curve indicated that the data set is likely to be very difficult to learn. 

 

   
 
 

 

If this data set were the whole population, as with the CARS data set, there would be no 
problem. But here the situation is very different. As discussed in many places through the 
book (see, for example, Chapter 2), when a model becomes too complex or learns the 
structure of the data in too much detail, overtraining, or learning spurious patterns called 
noise, occurs. That is exactly the problem here. The steep curve on the left of the 
complexity map indicates that meaningful information is only captured with a high 
complexity model, and naturally, that is where the noise lies! The survey measures the 
amount of noise in a data set, and although a conceptual technical description cannot be 
covered here, it is worth looking at a noise map. 

 

 
 

 

Noise Figure 11.27 shows the information and noise map for the CREDIT data set. The 
curve beginning at the top left (identical with that in Figure 11.26) shows how much 
information is recovered for a given level of complexity and is measured against the 
vertical scale shown on the left side of the map. The curve ending at the top right shows 
how much noise is captured for a given level of complexity and is measured against the 
vertical scale shown on the right side of the map. 

 

 

 



 

 

 

 
 

 Figure 11.27  Information and noise map for the CREDIT data set.  

   
 
 

 

The information capture curve and its interpretation are described above. Maximum 
complexity captures information uniquely defining each output state, so the curve starts at 
a level of 1 shown on the left scale. The noise curve starts at 1 too, but that is shown on 
the right scale. It indicates that the most complex model captures all of the noise present 
in the data set. This is very often the case for many data sets with the highest degree of 
complexity. Maximum complexity obviously captures all of the noise and often captures 
enough information to completely define the output signals within that specific data set. 

 

 
 

 

At complexity level 2, the information capture curve has already fallen to about 0.5, 
showing that even a small step away from capturing all of the complexity in the data set 
loses much of the defining information about the output states. However, even though at 
this slightly reduced level of complexity much information about the output state is lost, 
the noise curve shows that any model still captures most of the noise! Noise capture falls 
from about 1.0 to about 0.95 (shown on the right scale). A model that captures most of the 
noise and little of the needed defining information is not going to be very accurate at 
predicting the output. 

 

 
 

 

Complexity level 3 is even worse! The amount of noise captured is almost as much as 
before, which still amounts to almost all of the noise in the data set. While the amount of 
noise captured is still high, the amount of predictive information about the output has 
continued to fall precipitously! This is truly going to be one tough data set to get any 
decent model from! 

 

 
 

 

By complexity level 4, the information capture curve shows that at this level of complexity, 
and on for all of the remaining levels too, there just isn’t much predictive information that 
can be extracted. The noise capture begins to diminish (the rising line indicates less 
noise), but even if there is less noise, there just isn’t much of the needed information that 
a relatively low-complexity model can capture. 

 

 
 



 
By complexity level 7, although the noise capture is near 0 (right scale), the amount of 
information about the output is also near 0 (left scale). 

 

 
 

 

No very accurate model is going to come of this. But if a model has to be built, what is the 
best level of complexity to use, and how good (or in this case, perhaps, bad) will that 
model be? 

 

 
 

 

Optimal information capture points Given the noise and information characteristics at 
every complexity level shown in Figure 11.27, is it possible to determine how much 
noise-free information is actually available? Clearly the amount of noise-free information 
available isn’t going to be much since the data set is so noisy. However, the curve in 
Figure 11.28 is interesting. At complexity level 1, to all intents and purposes, noise 
swamps any meaningful signal. 

 

 

 

 

 

 

 
 

 
Figure 11.28  Information capture map showing the amount of noise-free 
information captured at different levels of complexity in the CREDIT data set. 

 

   
 
 

 

Noise, of course, represents information patterns that are present in this specific data set, 
but not in any other data set or in the population. Since the noise map in the previous 
figure showed that perfect information about the output is available at level 1, for this 
specific data set the output can be perfectly learned. However, what the noise curve 
points out is that none, or essentially none, of the information relationships used to make 
these perfect predictions of the output state will be present in any other data set. So the 
noise map shows that there is almost no noise-free information available at level 1. 
(Although the graph does indeed appear to show 0 at level 1, it is in fact an infinitesimally 
small distance away from 0—so small that it is impossible to show graphically and is in 
any case of no practical use.) 

 

 
 

 

By complexity level 3, the amount of noise-free information has risen to a maximum, 
although since the scale is in ratio entropy, it turns out to be precious little information! 
After that it falls a bit and rises back to nearly its previous level as the required model 

 



becomes less complex. 
 
 

 
Unfortunately, Figure 11.28 has exaggerated the apparent amount of information capture 
by using a small scale to show the curve so that its features are more easily visible. 

 

 
 

 

The maps shown and discussed so far were presented for ease of explanation. The most 
useful information map generally used in a survey combines the various maps just 
discussed into one composite map, as shown for this data set in Figure 11.29. This map 
and the state entropy map are the pair that a miner will mainly use to get an overview of 
the high-level information relationships in a data set. At first glance, Figure 11.29 may not 
appear so different from Figure 11.27, and indeed it is mainly the same. However, along 
the bottom is a low wavy line that represents the amount of available noise-free 
information. This is exactly the same curve that was examined in the last figure. Here it is 
shown to the same scale as the other curves. Clearly, there really isn’t much noise-free 
information available in this data set! With so little information available, what should a 
miner do here? Give up? No, not at all! 

 

 

 

 

 

 

 
 

 

Figure 11.29  The information/noise/capture (INC) map is the easiest summary 
for a miner to work with. In this case it summarizes the information content, 
amount of noise captured, and noise-free information level into a single picture, 
and all at the same scale. 

 

   
 
 

 

Recall that the original objective was to improve on a less than 1% response rate. The 
model doesn’t seem to need much information to do that, and while there is little 
noise-free information available, perhaps noisy information will do. And in fact, of course, 
noisy information will do. Remember that the miner’s job is to solve a business problem, 
not to build a perfect model! Using the survey and these maps allows a miner to (among 
other things) quickly estimate the chance that a model good enough to solve the business 
problem can actually be built. It may be surprising, but this map actually indicates that it 
very likely can be done. 

 

 
 

 Without going into the details, it is possible to estimate exactly how complex a model is  



needed to yield the best response for the problem at hand. It turns out that a model of 
complexity level 5.7 (approximately) is a good trade-off between speed, noise resistance, 
and improved accuracy for this application. Without regard to any other insights gained, or 
understanding of the data set that the survey yields, it can be determined that a model 
built to about a 5.7 level of complexity will capture enough information to make improved 
predictions of BUYER possible to a sufficient degree to have economic benefit. 

 
 

 

When the model is built, it can be useful to see how much information has actually been 
captured. Surveying the modeled data after the model is built, together with the model 
predictions, can be used to measure how much information the model captured, if it has 
learned noise, and if so, how much noise—all useful information for the miner. 

 

 
 

 
Not all information/noise/capture maps look like this one does. For comparison, Figure 
11.30 shows a map for a different data set. 

 

 

 

 

 

 

 
 

 

Figure 11.30  An INC map from a different data set. Far more noise-free 
information is available in this data set, and a complexity level 4 model looks to be 
a good choice. (Depending always, of course, on the exact nature of the business 
problem!) 

 

   
 
 

 

State entropy map After having given so much attention to the complexity map, there is 
still the state entropy map for the CREDIT data set in Figure 11.31 that carries useful 
information. In spite of the apparent perfect predictions possible from the information 
enfolded in this data (shown in the information metrics I(X;Y) = 1 and cH(Y|X) = 0), the 
state entropy map tells a different tale. One of the two states has low entropy 
(uncertainty), the other high. It is only the minute proportion of uncertain states in the data 
set (less than 1%) that leads to the misleading entropic and mutual information measures 
shown in the information metrics. If the low cH(Y) isn’t warning enough, the tilt shown in 
this map is a clear warning sign that further investigation is needed. 

 

 

 



 

 

 

 
 

 Figure 11.31  State entropy map for the CREDIT data set.  

   
 
 

 

Entropy of the variables Refer back to Figure 11.25, which shows, in part, the entropy of 
the variables in the data set. Domain knowledge is really needed to produce a detailed 
interpretation of what this means, but it seems clear that the most important variables are 
those that deal with previous credit behavior. This reflects an insight, well known in the 
credit card industry, that people who already are users of credit are the most likely to take 
further credit. These variables are mainly shown for later comparison with the balanced 
data set metrics. 

 

 
 

 

Interestingly, when this modeling project was actually in process, the information here 
was looked at in many different ways. One of the most revealing ways of examining the 
data in this case, so far as the success of the project went, was to look at the signals after 
removing the signal information about credit use. This is totally different from removing 
variables about credit activity and looking at what remains. It turns out that the variables 
that seem totally concerned exclusively with credit information also, in fact, carry other 
information. The advantage of working in the survey with signal states is that the systemic 
information (information describing the behavior of the system as a whole) can be 
manipulated—even when it comes from several variables. Even when spread across 
several variables, specific information can be disregarded, thus exposing the remaining 
interrelationships more clearly. This allowed a model to be built on the systemic 
information remaining after credit use information was disregarded. One of the useful 
features of this particular submodel was that it allowed the credit card company to target 
people who were migrating from low credit use to higher credit use. It is this ability to 
extract and manipulate information, not variables, that allows such powerful and effective 
models to be built. It also allows the survey to be used as a true information mining 
tool—digging into the information content to see what is there. 

 

 
 

 

Balancing the data set Creating a balanced data set was discussed in Chapter 10. 
Figure 11.32 shows the information metrics side by side for the unbalanced (shown on the 
left) and balanced (shown on the right) data sets. The main difference appears to be only 
in sH(Y) and cH(Y), which is to be expected as that is what is being balanced. 

 

 

 



 

 

 

 
 

 

Figure 11.32  Information metrics for the unbalanced CREDIT data set on the 
left, and the balanced CREDIT data set on the right. The unbalanced data set has 
less than 1% buyers, while the balanced data set has 50% buyers. 

 

   
 
 

 

Figure 11.33 contrasts the entropy of the most important variables for the original 
unbalanced data set with a newly constructed, balanced data set. Briefly, the balanced 
data set was constructed from two data subsets, both representative in themselves, save 
only that one subset contained all buyers, the other all nonbuyers. When merged, these 
two subsets were as representative of the population as possible except that one 
contained the original density of buyers (1%) and the other was balanced to have (in this 
case) 50% buyers and 50% nonbuyers. 

 

 

 

 

 

 

 
 

 

Figure 11.33  The top 16 variables for the CREDIT data set when unbalanced 
(top) and balanced (bottom). There is little effect from the balancing on the 
information content or the ordering of these variables between the two data sets. 

 

   
 
 

 

These figures show that, while the ratio of buyers to nonbuyers in the two data sets is 
dramatically different, the channel entropy, and the information carried by the balanced 
data set about buyers, is not markedly affected. This illustrates just how resistant signal 
information analysis is to such changes as occurred between these two data sets. 

 



Remarkably, it seems that buyers and nonbuyers can still be perfectly separated in both 
data sets (cH(Y|X), I(X;Y))! 

 
 

 

Figure 11.34 contrasts the maps for the two data sets. Obviously, the state entropy map is 
totally different, since that is what was balanced in the second data set. It is so balanced 
that the two lines—average entropy and state entropy for the two states—both fall directly 
on top of each other. More unexpected, perhaps, is that the complexity curve is almost 
unaffected. In spite of the balancing, information content and complexity levels are almost 
untouched as shown by the two complexity maps. In fact, if anything, the balanced data 
set has an even more concave curve. 

 

 

 

 

 

 

 
 

 
Figure 11.34  Comparing the state entropy and complexity maps for the 
unbalanced (left) and balanced (right) CREDIT data sets. 

 

   
 
 

 

Noise level remains almost unchanged too (not actually shown here), so the information 
metrics of the data survey report that the information content is almost unchanged for the 
two data sets, even though the balance of the data is completely different between them. 
In other words, even though the balance of the data sets is changed, it is just as difficult to 
build a predictive model from either data set. This is a remarkable and powerful feature of 
the data survey. The information structure of the manifold is not unduly distorted by 
changing the balance of the data, so long as there is enough data to establish a 
representative manifold in state space in the first place. Balancing the data set, if indeed 
the modeler chooses to do so, is for the convenience of some modeling tools for which it 
makes a difference (say, neural nets). It makes little or no difference to the information 
content. 

 

 

 

 The SHOE Data Set  
 
 

 

This data set was collected by a nationally known manufacturer of running shoes about 
the behavior of buyers of their shoes in various shoe stores around the country. They had 
in place a frequent buyer program that they hoped would spur sales. From the collected 

 



data they hoped to be able to predict and target those customers who fit the profile as 
potential members in their program. This survey looks at the data from the perspective of 
discovering if the desired prediction is likely to be of value. 

 
 

 

General Comments Figure 11.35 shows many of the features discussed previously, and 
much should be recognizable. Rather than look at each item individually, a general look at 
this data set should suffice. 

 

 

 

 

 

 

 
 

 
Figure 11.35  Information metrics, state entropy map, and complexity map for the 
SHOE data set. 

 

   
 
 

 

The low, although not vanishingly low, entropy of cH(Y) is suspect. The state entropy map 
is another clue that something might be askew here. The complexity map has a very 
nasty curve. This is going to be a difficult data set from which to build a model, although 
what is required of the model depends on the business objective. Recall that although the 
CREDIT data set did not produce a good model, it generated a very high return. 

 

 
 

 

Figure 11.36 reveals a very different problem, especially when considering the previous 
metrics. One problem here is that the information being used to predict the frequent buyer 
plan response is simply not well coupled to the data set as a whole. Although the coupling 
ratio itself is not shown, the information is clearly carried in few of the variables—namely 
shoecode and storecode. (There are several dimensions of these categorical variables, 
three for shoecode and two for storecode.) The problem is that these are not well coupled 
to any of the other variables. 

 

 

 



 

 

 

 
 

 Figure 11.36  Variable information metrics for the running SHOE data set.  

   
 
 

 

In practice, when a model was built it seemed to be moderately effective for independent test 
and verification data sets. (Good “lift” was generated.) However, it simply was not applicable 
in the real world. Why? The answer is that shoecodes vary constantly because new shoe 
styles are introduced frequently. People who buy certain types of running shoes join the 
frequent buyer program, and that’s about it. As new shoecodes are introduced, the model, 
never having seen those shoe codes before, failed to make valid predictions, and so failed in 
the real world. (It is for exactly this sort of situation that a type of model known as a 
self-adaptive model should be used.) 

 

 



 

Chapter 12: Using Prepared Data  

 

 

 Overview  
 
 

 

So what’s the benefit of using prepared data to build models? You get more effective 
models faster. Most of the book so far has described the role of data preparation and how 
to properly prepare data for modeling. This chapter takes a brief look at the effects and 
benefits of using prepared data for modeling. 

 

 
 

 

Actually, to examine the preparation results a little more closely, quite often the prepared 
data models are both better and produced faster. However, sometimes the models are of 
better quality, but produced in the same time as with unprepared data. Sometimes they 
are no better but produced a lot faster. For a given data set, both the quality of the model 
and the speed of modeling depend on the algorithm used and the particular 
implementation of that algorithm. However, it is almost invariably the case that when data 
is prepared in the manner described in this book, using the prepared data results in either 
a better model, a faster model, or a better model faster than when using unprepared 
data—or than when using data inadequately or improperly prepared. Can this statement 
be justified? 

 

 
 

 

One credit card company spent more than three months building a predictive model for an 
acquisition program that generated a response rate of 0.9% over a 2,000,000-piece 
mailing. Shortly thereafter, using essentially the same modeling tools and data, the 
company launched another campaign using a model constructed from prepared data. 
Response rate in this model was 1.23%—a more than 36% response improvement. Was 
this particularly significant to the credit card company? That 36% improvement comes 
straight off the cost of acquisition. In this case, data preparation translated into 6,522 
more customers. Another way of looking at it is that in the first program, the company paid 
about $138 to acquire a new customer. Data preparation reduced this cost to about $101 
per acquisition. 

 

 
 

 

A large commercial baker servicing nearly 100 stores sought to increase profitability by 
focusing attention on under- or oversupply of products, that is, not having enough, or 
having too many, bagels, croissants, and other “morning goods” on the shelves. (Shelf life 
is the day of manufacture only.) Insufficient products mean lost sales; too many products 
means waste since they have to be discarded. The baker used both statistical models and 
data mining to estimate demand and appropriate inventory levels. Rebuilding existing 
models with prepared data produced models that were better than 8% more accurate than 
the previous models. This immediately translated into saving about $25 per store per day 
in shortage and overage losses. What seems like a tiny saving per store comes to nearly 
$1 million saved over all the stores in a year—and that was before improved models were 
built. 

 

 



 

 

A financial institution modeled trading data over many markets and combinations of 
markets, all of which produced different types of data. Each required from two to four 
weeks to build an optimized model of each market. Each successful model contributed to 
trading success during the life of the model, which could be quite short (from days to 
weeks after deployment). By using automated data preparation techniques they produced 
models of equivalent quality in hours or days, thus getting more models of more markets 
deployed more quickly. 

 

 
 

 

An industrial controls manufacturer developed a printing press color process optimizer. 
When a multicolor press starts its print run, and until the press is at operating temperature 
and speed (which can take a lot of time), the press is producing such inferior-quality print 
that it is waste. Paper and ink are very expensive, and reducing the waste is a high priority 
(and gives a high payback). The manufacturer’s control measured performance 
characteristics and implemented a model that controlled the ink flow rates, paper feed 
rate, and manipulated other press controls. The automated model, when built 
conventionally, cut the run-up time to half of what it was without the control. Using 
prepared data to build the model produced an improvement that reduced the waste run 
time by an additional 10%. 

 

 
 

 

Data preparation techniques as described in this book have been used to improve 
modeling results in traffic pattern analysis in a major U.S. city, molecular structure 
analysis in the research department of a major pharmaceutical company, and in feature 
detection for medical image processing. They have been used to enhance severe 
weather detection in meteorological data and to reduce consumable product returns in the 
confectionery industry. In every case, data preparation alone—that is, just the application 
of the techniques described in this book—has yielded from small to moderate but in all 
cases a real and significant improvement. In one stunning case (see Chapter 10), a 
brokerage data set that was essentially useless before preparation was very profitably 
modeled after preparation. 

 

 
 

 

Preparing data for mining uses techniques that produce better models faster. But the bottom 
line—the whole reason for using the best data preparation available—is that data 
preparation adds value to the business objective that the miner is addressing. 

 

 
12.1  Modeling Data  
 
 

 

Before examining the effect the data preparation techniques discussed in this book have 
on modeling, a quick look at how modeling tools operate to extract a model from data will 
provide a frame of reference. 

 

 

 

 12.1.1  Assumptions  
 
 

 Modeling of any data set is based on five key assumptions. They are worth reviewing  



since if any of them do not hold, no model will reflect the real world, except by luck! The 
key assumptions are 

 
 

  1.  Measurements of features of the world represent something real about the world.  
 
 

  
2. 

 
Some persistent relationship exists between the features measured and the 
measurements taken. 

 

 
 

  
3. 

 
Relationships between real-world features are reflected as relationships between 
measurements. 

 

 
 

  
4. 

 
Understanding relationships between measurements can be applied to understanding 
relationships between real-world features. 

 

 
 

  
5. 

 
Understanding relationships between real-world features can be used to influence 
events. 

 

 
 

 

In other words, data reflects and connects to the world so that understanding data and its 
relationships contributes to an understanding of the world. When building a model, the 
modeler must ask if, in this particular case, these assumptions hold. (In several places 
throughout the book, there are examples of failed models. In every case, if the modeling 
itself was valid, the failure was that the modeler failed to check one or all of these five 
assumptions.) 

 

 

 

 12.1.2  Models  
 
 

 

It’s fine to say that a modeler builds a model, but what actually is a model? A model, in a 
general sense, is a replica of some other object that duplicates selected features of that 
larger object, but in a more convenient form. A plastic model World War II battleship, for 
instance, models the external appearance of the original to some reduced scale and is far 
more convenient for displaying in a living room than the original! Small-scale aircraft, 
made from a material that is much too heavy to allow them to fly, are useful for studying 
airflow around the aircraft in a wind tunnel. In hydrographic research, model ships sail 
model seas, through model waves propelled by model winds. 

 

 
 

 

In some way, all models replicate some useful features of the original so that those 
features themselves, singled out from all other features, can be studied and manipulated. 
The nonphysical models that the data miner deals with are still models in the sense that 
they reflect useful features of the original objects in some more-convenient-to-manipulate 
way. These are symbolic models in which the various features are represented by 
symbols. Each symbol has a specific set of rules that indicate how the symbol can be 
manipulated with reference to other symbols. The symbolic manipulators used today are 
usually digital computers. The symbols consist of a mixture of mathematical and 
procedural structures that describe the relationships between, and operations permitted 

 



on, the symbols that comprise the model itself. 
 
 

 

Typically, data miners (and engineers, mathematicians, economists, and statisticians, 
too) construct models by using symbols and rules for manipulating those symbols. These 
models are active creations in the sense that they can be computationally manipulated to 
answer questions posed about the model’s behavior—and thus, by extension, about the 
behavior of the real world. 

 

 
 

 

But data miners and statisticians differ from economists, engineers, and scientists in the 
way that they construct their models. And indeed, statisticians and data miners differ from 
each other, too. Engineers, scientists, and economists tend to form theories about the 
behavior of objects in the world, and then use the language of symbols to express their 
appreciation of the interrelationships that they propose. Manipulating the model of the 
proposed behavior allows them to determine how well (or badly) the proposed explanation 
“works.” So far as modeling goes, data miners and statisticians tend to start with fewer 
preconceived notions of how the world works, but to start instead with data and ask what 
phenomenon or phenomena the data might describe. However, even then, statisticians 
and data miners still have different philosophical approaches to modeling from data. 

 

 

 

 12.1.3  Data Mining vs. Exploratory Data Analysis  
 
 

 

Exploratory data analysis (EDA) is a statistical practice that involves using a wide variety 
of single-variable and multivariable analysis techniques to search for the underlying 
systemic relationships between variables. Data mining shares much of the methodology 
and structure of EDA, including some EDA techniques. But EDA focuses on discovering 
the basic nature of the underlying phenomena; data mining focuses tightly on the practical 
application of results. This difference, while it may seem narrow, is actually very broad. 

 

 
 

 

Data miners are perfectly happy to accept a proven working “black box” that is known to 
work under a specified range of conditions and circumstances. The essential nature of the 
underlying phenomenon is not of particular interest to a miner, so long as the results are 
reliable, robust, and applicable in the real world to solve an identified problem. 
Statisticians, using EDA, want to be able to “explain” the data (and the world). How does 
this difference in approach turn out in practice? 

 

 
 

 

A major credit card issuer had a large staff of statistical modelers. Their job was to 
investigate data and build models to discover “interesting” interactions in the data. Their 
approach was to take statistically meaningful samples from the credit card issuer’s 
voluminous data set and look for proposed interesting interactions between the variables 
in the data set. Some of the proposed interactions were found to be statistically justified, 
and were further proposed for possible marketing action. Other interactions were found to 
be statistically insignificant, and no further action was taken on these. 

 

 
 

 The models produced by the statisticians were working well, but the vice president of  



marketing wanted to try data mining, a new discipline to her, but one that had received 
good reviews in the business press. How did the data mining project differ from the 
statistical approach? 

 
 

 

Data mining did not start with a sample of the data. It also did not start with proposed 
interactions that might or might not be supported by the data. Instead miners started with 
the business problem by identifying areas that the marketing VP defined as strategically 
important for the company. 

 

 
 

 

Next, miners selected data from the credit card company’s resources that seemed most 
likely to address issues of strategic importance, guided in this by the marketers as domain 
experts. The mining tools surveyed all of the selected data available, which amounted to 
many gigabytes, including many hundreds of variables. One data set was built from credit 
card transaction records that were fully assayed, reverse pivoted, and transformed into 
consumer activity by account. A data survey revealed many possibly interesting areas for 
exploration. 

 

 
 

 

Instead of approaching the data with ideas to test, the miners used the data survey to 
extract from the data a moderately comprehensive set of all the interactions that the data 
could possibly support. Many of these interactions were, naturally, noise-level 
interactions, only fit to be discarded. However, a key point here is that the miners asked 
the data for a comprehensive list of interactions that could possibly be supported by that 
data. The statisticians asked the data what level of support was available for one, or a 
few, predefined ideas that they had developed. 

 

 
 

 

With a list of candidate interactions generated, the miners reviewed the list with the 
domain experts (marketers) to determine which might, if they proved successful, be the 
best and most effective possibilities. 

 

 
 

 

Given the reverse pivot, both the statistical staff and the data miners attacked the data set 
with their respective tools. The statisticians cut off their samples and identified broad 
market segments that differentiated credit card usage. The data miners set their tools to 
mining all the data, extracting both broad and narrow fluctuations. The main search 
criteria for the data miners was to find the “drivers” for particularly profitable groups and 
subgroups in the data (inferential modeling); they then had to design models that would 
predict who those people were (predictive modeling). 

 

 
 

 

The statistical analysts built regression models mainly, carefully examining the “beta 
weights” for linear and nonlinear regressions; analyzing residuals, confidence intervals, 
and many other items in the models; and translating them back into English to explain 
what was happening in the data. Because they were working with samples, they were 
able to build only high-level models of general trends. 

 

 
 

 The data miners used several techniques, the three principal ones being rule induction,  



decision trees, and neural networks. The decision tree proved to be the most useful on 
this occasion. It has the ability, with or without guidance, to automatically find the gross 
structure in the data and extract increasingly finer structure as more and more data is 
examined. In this case, several very valuable insights were waiting in the fine structure. 

 
 

 

As is so often the case, one insight was fairly obvious with hindsight. It turned out that 
0.1% of the accounts showed a pattern of exceptionally high profitability. This 
subsegment was identified as about 30% of all people buying ski equipment valued at 
$3000 in a 30-day period. These people also went on to buy travel packages, presumably 
to ski resorts, well in excess of an additional $3000. High profitability indeed. 

 

 
 

 

The insight was used to build a marketing offer rolling ski equipment purchases, travel 
packages, and other benefits and services into a discounted package that was triggered 
by any purchase of ski equipment of appropriate value. A separate program was also built 
on the same insight: a “lifestyle” credit card offering the cardholder permanent packages 
and point accumulation toward ski vacations. 

 

 
 

 

When appropriately targeted, this structured offer produced spectacular returns. The 
figures look like this: the identified segment was 0.1% of 2.5 million people’s accounts 
generated from the reverse pivot, or about 2500 people. These 2500 people were about 
30% of the subpopulation, so the whole subpopulation was about 8300 people. Roughly 
40% of the remaining subpopulation responded to the marketing offer. Forty percent of 
8300 people—that is, 3300 additional people—purchased travel packages worth $3000 or 
more. These 3300 customers, by increasing their indebtedness by $3000 each, produced 
an increase in loan inventory of about $10 million! 

 

 
 

 

A significant point: in the example, a fluctuation of about 0.1% would almost certainly be 
missed by statistical sampling techniques. This figure is technically “statistically insignificant” 
when considered as a fluctuation in a population. But it is far from insignificant in a 
commercial sense. Thus it is that the philosophical approach taken by EDA and data miners 
is quite different. 

 

 
12.2  Characterizing Data  
 
 

 

Before looking at the effect of data preparation on modeling, we need to look at what 
modeling itself actually does with and to data. So far, modeling was described as finding 
relationships in data, and making predictions about unknown outcomes from data 
describing the situation at hand. The fundamental methods used by data miners are 
easily outlined, although the actual implementation of these simple outlines may require 
powerful, sophisticated, and complex algorithms to make them work effectively in 
practice. 

 

 
 

 
The general idea of most data mining algorithms is to separate the instance values in 
state space into areas that share features in common. What does this look like? Figure 

 



12.1 shows a sample two-dimensional state space containing a few instance values. 
Simply looking at the illustrated state space seems to reveal patterns. This is hardly 
surprising, as one of the most formidably powerful pattern recognition devices known is 
the human brain. So powerful is the brain that it tends to find patterns even where 
objectively none are known to exist. Thus, just looking at the illustration of state space 
seems to reveal groups of points representing the instance values in the state space. A 
modeling tool has the task of separating and grouping these points in meaningful ways. 
Each modeling algorithm takes a slightly different approach. With a pencil, or in some 
other way, you could quite easily mark what seem to be “natural” groups, clumps, or 
clusters. But how do data mining algorithms, which cannot look at state space, go about 
finding the associations and related points? 

 

 

 

 

 

 
 

 

Figure 12.1  Instance values filling part of state space. Some patterns may be 
intuitively evident in the way the instance values fill the space. The axes show the 
range of values for each input variable. 

 

   
 

 

 12.2.1  Decision Trees  
 
 

 

Decision trees partition state space such that the points in each separated partition have 
the maximum difference in some selected feature. Partitioning proceeds by selecting a 
partitioning point in the values of a single variable. Each of the partitions is then 
separately partitioned on the most appropriate partitioning variable and point for that 
partition. It continues until some stopping criterion is reached, or until each partition 
contains only a single point, or when it is no longer possible to separate the points. 

 

 
 

 

The partition criteria can be expressed in the form of rules. In Figure 12.2, the partition 
shown in the upper-right partition is covered (explained) by a rule like “IF X > 0.5 AND Y > 
0.51 THEN . . . .” The figure shows that the result of the partitioning is to create 
boundaries that are parallel to the dimensions of the space. Each axis is treated 
separately, resulting in a mosaic of boxes, each including some part of state space. Each 
partition covers some part of the whole space, and the whole of the space is covered by 
some partition. This comprehensive coverage is an important point. 

 

 

 



 

 

 

 
 

 Figure 12.2  State space divided by a decision tree.  

   
 

 

 12.2.2  Clusters  
 
 

 

Clustering also partitions state space, separating areas that have points sharing a 
common feature. This sounds similar to decision trees; however, there are marked 
differences. There are many different methods of clustering, but the end result of a 
clustering algorithm can be thought of as producing “clouds” in state space. The clouds, 
as shown in Figure 12.3, have marked differences from decision trees. One major 
difference is that they don’t have linear boundaries parallel to the axes! The nonlinearity 
makes it very difficult to extract seemingly simple rules from clusters. However, 
expressing what clusters have in common—their ranges on various axes—can produce 
meaningful statements about the clusters. 

 

 

 

 

 

 

 
 

 

Figure 12.3  A clustering algorithm identifies groups, or clusters, of points that are 
associated in some way. The cluster areas cover all of the points in space, but do 
not necessarily cover the whole of the state space. 

 

   
 
 

 

Another difference is that quite clearly the clustering algorithm used to produce the 
clusters shown does not cover the whole of state space. If the model is applied to a 
prediction data set that happens to have instance values defining a point outside a cluster 
boundary, the best that can be done is to estimate the nearest cluster. With such methods 
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of clustering, the area outside the defined clusters is not itself a cluster, but more like 
undefined space. Other clustering methods, such as sequential natural clustering (briefly 
mentioned in Chapter 11), do produce clusters that have some cluster membership for 
every point in state space. In all cases, however, the clusters have irregular boundaries. 

 

 

 12.2.3  Nearest Neighbor  
 
 

 

The way that nearest neighbors are used to describe interactions in state space is 
described in detail in Chapter 6. Very briefly, nearest-neighbor methods select some 
specific number of neighbors, and for every point use that number of nearest neighbors. 
Some averaging of the state of the neighbors for that point represents the point whose 
features are to be inferred or predicted. Figure 12.4 illustrates how neighbors might be 
selected. The figure illustrates the use of four nearest neighbors in any direction. For each 
of the selected points L, M, and N, the four closest points are used to estimate the 
characteristics of the selected point. Points L and M are characterized by four 
asymmetrically distributed points, which may not actually be the most representative 
points to choose. 

 

 

 

 

 

 

 
 

 Figure 12.4  Principles of nearest-neighbor methods.  

   
 
 

 

Nearest-neighbor methods have strengths and weaknesses. In the figure, some of the 
points use relatively distant nearest neighbors while others use closer neighbors. Another 
possible problem occurs when the nearest neighbors are not representatively 
distributed—points L and M in the figure show neighbors asymmetrically distributed. 
There are various methods for tuning nearest-neighbor algorithms to optimize for 
particular requirements, some of which are mentioned in Chapter 6. 

 

 

 

 12.2.4  Neural Networks and Regression  
 
 

 

Figure 12.5 shows how manifold fitting methods characterize data. Neural networks, and 
how they characterize data, are discussed in Chapter 10. Linear regression (a basic 
statistical technique) fits a stiff, flat manifold to the data in some “best fit” way. In two 
dimensions a flat, stiff manifold is a straight line. 

 

 



 

 

 

 

 
 

 

Figure 12.5  Fitting manifolds—either inflexible (linear regression) or flexible 
(neural network)—to the sample data results in a manifold that in some sense 
“best fits” the data. 

 

   
 
 

 

These methods work by creating a mathematical expression that characterizes the state of 
the fitted line at any point along the line. Studying the nature of the manifold leads to 
inferences about the data. When predicting values for some particular point, linear 
regression uses the closest point on the manifold to the particular point to be predicted. The 
characteristics (value of the feature to predict) of the nearby point on the manifold are used 
as the desired prediction. 

 

 
12.3  Prepared Data and Modeling Algorithms  
 
 

 

These capsule descriptions review how some of the main modeling algorithms deal with 
data. The exact problems that working with unprepared data presents for modeling tools 
will not be reiterated here as they are covered extensively in almost every chapter in this 
book. The small, example data set has no missing values—if it had, they could not have 
been plotted. But how does data preparation change the nature of the data? 

 

 
 

 

The whole idea, of course, is to give the modeling tools as easy a time as possible when 
working with the data. When the data is easy to model, better models come out faster, 
which is the technical purpose of data preparation. How does data preparation make the 
data easier to work with? Essentially, data preparation removes many of the problems. 
This brief look is not intended to catalog all of the features and benefits of correct data 
preparation, but to give a feel for how it affects modeling. 

 

 
 

 

Consider the neural network—for example, as shown in Figure 12.5—fitting a flexible 
manifold to data. One of the problems is that the data points are closer together (higher 
density) in the lower-left part of illustrated state space, and far less dense in the upper 
right. Not only must a curve be fitted, but the flexibility of the manifold needs to be different 
in each part of the space. Or again, clustering has to fit cluster boundaries through the 
higher density, possibly being forced by proximity and the stiffness of the boundary, to 

 



include points that should otherwise be excluded. Or again, in the nearest-neighbor 
methods, neighborhoods were unbalanced. 

 
 

 

How does preparation help? Figure 12.6 shows the data range normalized in state space 
on the left. The data with both range and distribution normalized is shown on the right. 
The range-normalized and redistributed space is a “toy” representation of what full data 
preparation accomplishes. This data is much easier to characterize—manifolds are more 
easily fitted, cluster boundaries are more easily found, neighbors are more neighborly. 
The data is simply easier to access and work with. But what real difference does it make?

 

 

 

 

 

 

 
 

 
Figure 12.6  Some of the effects of data preparation: normalization of data range 
(left), and normalization and redistribution of data set (right). 

 

   
 

 

 12.3.1  Neural Networks and the CREDIT Data Set  
 
 

 

The CREDIT data set is a derived extract from a real-world data set. Full data preparation 
and surveying enable the miner to build reasonable models—reasonable in terms of 
addressing the business objective. But what does data preparation alone achieve in this 
data set? In order to demonstrate that, we will look at two models of the data—one on 
prepared data, and the other on unprepared data. 

 

 
 

 

Any difficulty in showing the effect of preparation alone is due to the fact that with 
ingenuity, much better models can be built with the prepared data in many circumstances 
than with the data unprepared. All this demonstrates, however, is the ingenuity of the 
miner! To try to “level the playing field,” as it were, for this example the neural network 
models will use all of the inputs, have the same number of nodes in the hidden layer, and 
will use no extracted features. There is no change in network architecture for the prepared 
and unprepared data sets. Thus, this uses no knowledge gleaned from the either the data 
assay or the data survey. Much, if not most, of the useful information discovered about the 
data set, and how to build better models, is simply discarded so that the effect of the 
automated techniques is most easily seen. The difference between the “unprepared” and 
“prepared” data sets is, as nearly as can be, only that provided by the automated 
preparation—accomplished by the demonstration code. 

 

 
 

 Now, it is true that a neural network cannot take the data from the CREDIT data set in its  



raw form, so some preparation must be done. Strictly speaking, then, there is no such 
thing—for a neural network—as modeling unprepared data. What then is a fair 
preparation method to compare with the method outlined in this book? 

 
 

 

StatSoft is a leading maker of statistical analysis software. Their tools reflect statistical 
state-of-the art techniques. In addition to a statistical analysis package, StatSoft makes a 
neural network tool that uses statistical techniques to prepare data for the neural network. 
Their data preparation is automated and invisible to the modeler using their neural 
network package. So the “unprepared” data in this comparison is actually prepared by the 
statistical preparation techniques implemented by StatSoft. The “prepared” data set is 
prepared using the techniques discussed in this book. Naturally, a miner using all of the 
knowledge and insights gleaned from the data using the techniques described in the 
preceding chapters should—using either preparation technique—be able to make a far 
better model than that produced by this na‹ve approach. The object is to attempt a direct 
fair comparison to see the value of the automated data preparation techniques described 
here, if any. 

 

 
 

 

As shown in Figure 12.7, the neural network architecture selected takes all of the inputs, 
passes them to six nodes in the hidden layer, and has one output to predict—BUYER. 
Both networks were trained for 250 epochs. Because this is a neural network, the data set 
was balanced to be a 50/50 mix of buyers and nonbuyers. 

 

 

 

 

 

 

 
 

 

Figure 12.7  Architecture of the neural network used in modeling both the 
prepared and unprepared versions of the CREDIT data set predicting BUYER. It is 
an all-input, six-hidden-node, one-output, standard back-propagation neural 
network. 

 

   
 
 

 

Figure 12.8 shows the result of training on the unprepared data. The figure shows a 
number of interesting features. To facilitate training, the instances were separated into 
training and verification (test) data sets. The network was trained on the training data set, 

 



and errors in both the training and verification data sets are shown in the “Training Error 
Graph” window. This graph shows the prediction errors made in the training set on which 
the network learned, and also shows the prediction errors made in the verification data 
set, which the network was not looking at, except to make this prediction. The lower, fairly 
smooth line is the training set error, while the upper jagged line shows the verification set 
error. 

 

 

 

 

 

 
 

 

Figure 12.8  Errors in the training and verification data sets for 250 epochs of 
training on the unprepared CREDIT data set predicting BUYER. Before the 
network has learned anything, the error in the verification set is near its lowest at 
2, while the error in the training set is at its highest. After about 45 epochs of 
training, the error in the training set is low and the error in the verification set is at 
its lowest—about 50% error—at 1. 

 

   
 
 

 

As the training set was better learned, so the error rate in the training set declined. At first, 
the underlying relationship was truly being learned, so the error rate in the verification 
data set declined too. At some point, overtraining began, and the error in the training data 
set continued to decline but the error in the verification data set increased. At that point, 
the network was learning noise. 

 

 
 

 

In this particular example, in the very early epochs—long before the network actually 
learned anything—the lowest error rate in the verification data set was discovered! This is 
happenstance due to the random nature of the network weights. At the same time, the 
error rate in the training set was at its highest, so nothing of value was learned by then. 
Looking at the graph shows that as learning continued, after some initial jumping about, 
the relationship in the verification data set was at its lowest after about 45 epochs. The 
error rate at that point was about 0.5. This is really a very poor performance, since 50% is 
exactly the same as random guessing! Recall that the balanced data set has 50% of 
buyers and nonbuyers, so flipping a fair coin provides a 50% accuracy rate. It is also 
notable that the error rate in the training data set continued to fall so that the network 
continued to learn noise. So much then for training on the “unprepared” data set. 

 

 
 

 The story shown for the prepared data set in Figure 12.9 is very different! Notice that the  



highest error level shown on the error graph here is about 0.55, or 55%. In the previous 
figure, the highest error shown was about 90%. (The StatSoft window scales 
automatically to accommodate the range of the graph.) In this graph, three things are very 
notable. First, the training and verification errors declined together at first, and are by no 
means as far separated as they were before. Second, error in the verification declined for 
more epochs than before, so learning of the underlying relationship continued longer. 
Third, the prediction error in the verification data set fell much lower than in the 
unprepared data set. After about 95 epochs, the verification error fell to 0.38, or a 38% 
error rate. In other words, with a 38% error rate, the network made a correct prediction 
62% of the time, far better than random guessing! 

 

 

 

 

 

 
 

 
Figure 12.9  Training errors in the prepared data set for identical conditions as 
before. Minimum error is shown at 1. 

 

   
 
 

 

Using the same network, on the same data set, and training under the same conditions, 
data prepared using the techniques described here performed 25% better than either 
random guessing or a network trained on data prepared using the StatSoft-provided, 
statistically based preparation techniques. A very considerable improvement! 

 

 
 

 

Also of note in comparing the performance of the two data sets is that the training set 
error in the prepared data did not fall as low as in the unprepared data. In fact, from the 
slope and level of the training set error graphs, it is easy to see that the network training in 
the prepared data resisted learning noise to a greater degree than in the unprepared data 
set. 

 

 

 

 12.3.2  Decision Trees and the CREDIT Data Set  
 
 

 

Exposing the information content seems to be effective for a neural network. But a 
decision tree uses a very different algorithm. It not only slices state space, rather than 
fitting a function, but it also handles the data in a very different way. A tree can digest 
unprepared data, and also is not as sensitive to balancing of the data set as a network. 
Does data preparation help improve performance for a decision tree? Once again, rather 
than extracting features or using any insights gleaned from the data survey, and taking 

 



the CREDIT data set as it comes, how does a decision tree perform? 
 
 

 

Two trees were built on the CREDIT data set, one on prepared data, and one on 
unprepared data. The tree used was KnowledgeSEEKER from Angoss Software. All of 
the defaults were used in both trees, and no attempt was made to optimize either the 
model or the data. In both cases the trees were constructed automatically. Results? 

 

 
 

 

The data was again divided into training and test partitions, and again BUYER was the 
prediction variable. The trees were built on the training partitions and tested on the test 
partitions. Figure 12.10 shows the results. The upper image shows the Error Profile 
window from KnowledgeSEEKER for the unprepared data set. In this case the accuracy 
of the model built on unprepared data is 81.8182%. With prepared data the accuracy rises 
to 85.8283%. This represents approximately a 5% improvement in accuracy. However, 
the misclassification rate improves from 0.181818 to 0.141717, which is an improvement 
of better than 20%. For decision trees, at least in this case, the quality of the model 
produced improves simply by preparing the data so that the information content is best 
exposed. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12.10  Training a tree with Angoss KnowledgeSEEKER on unprepared data 
shows an 81.8182% accuracy on the test data set (top) and an 85.8283% accuracy 
in the test data for the prepared data set (bottom). 

 

 
12.4  Practical Use of Data Preparation and Prepared Data  
 
 

 
How does a miner use data preparation in practice? There are three separate issues to 
address. The first part of data preparation is the assay, described in Chapter 4. Assaying 

 



the data to evaluate its suitability and quality usually reveals an enormous amount about 
the data. All of this knowledge and insight needs to be applied by the miner when 
constructing the model. The assay is an essential and inextricable part of the data 
preparation process for any miner. Although there are automated tools available to help 
reveal what is in the data (some of which are provided in the demonstration code), the 
assay requires a miner to apply insight and understanding, tempered with experience. 

 
 

 

Modeling requires the selection of a tool appropriate for the job, based on the nature of 
the data available. If in doubt, try several! Fortunately, the prepared data is easy to work 
with and does not require any modification to the usual modeling techniques. 

 

 
 

 

When applying constructed models, if an inferential model is needed, data extracts for 
training, test, and evaluation data sets can be prepared and models built on those data 
sets. For any continuously operating model, the Prepared Information Environment Input 
and Output (PIE-I and PIE-O) modules must be constructed to “envelop” the model so 
that live data is dynamically prepared, and the predicted results are converted back into 
real-world values. 

 

 
 

 

All of these briefly touched-on points have been more fully discussed in earlier chapters. 
There are a wealth of practical modeling techniques available to any miner—far more than 
the number of tools available. Even a brief review of the main techniques for building 
effective models is beyond the scope of the present book. Fortunately, unlike data 
preparation and data surveying, much has been written about practical data modeling and 
model building. However, there are some interesting points to note about the state of current 
modeling tools. 

 

 
12.5  Looking at Present Modeling Tools and Future 
Directions 

 

 
 

 

In every case, modern data mining modeling tools are designed to attempt two tasks. The 
first is to extract interesting relationships from a data set. The second is to present the 
results in a form understandable to humans. Most tools are essentially extensions of 
statistical techniques. The underlying assumption is that it is sufficient to learn to 
characterize the joint frequencies of occurrence between variables. Given some 
characterization of the joint frequency of occurrence, it is possible to examine a 
multivariable input and estimate the probability of any particular output. Since full, 
multivariable joint frequency predictors are often large, unwieldy, and slow, the modeling 
tool provides some more compact, faster, or otherwise modified method for estimating the 
probability of an output. When it works, which is quite often, this is an effective method for 
producing predictions, and also for exploring the nature of the relationships between 
variables. However, no such methods directly try to characterize the underlying 
relationship driving the “process” that produces the values themselves. 

 

 
 

 For instance, consider a string of values produced from sequential calls to a  



pseudo-random number generator. There are many algorithms for producing 
pseudo-random numbers, some more effective at passing tests of randomness than 
others. However, no method of characterizing the joint frequency of the “next” number 
from the “previous” numbers in the pseudo-random series is going to do much toward 
producing worthwhile predictions of “next” values. If the pseudo-random number 
generator is doing its job, the “next” number is essentially unpredictable from a study of 
any amount of “previous” values. But since the “next” number is, in fact, being generated 
by a precisely determined algorithm, there is present a completely defined relationship 
between any “previous” number and the “next.” It is in this sense that joint frequency 
estimators are not looking for the underlying relationships. The best that they can 
accomplish is to characterize the results of some underlying process. 

 
 

 

There are tools, although few commercially available, that actually seek to characterize 
the underlying relationships and that can actually make a start at estimating, for instance, 
a pseudo-random number generation function. However, this is a very difficult problem, 
and most of the recent results from such tools are little different in practical application 
than the results of the joint frequency estimators. However, tools that attempt to explore 
the actual underlying nature of the relationships, rather than to just predict their effects, 
hold much promise for deeper insights. 

 

 
 

 

Another new direction for modeling tools is that of knowledge schema. Chapter 11 
discussed the difference between the information embedded in a data set alone, and that 
embodied in the associated dictionary. A knowledge schema is a method of representing 
the dictionary information extracted and inferred from one or more data sets. Such 
knowledge schema represent a form of “understanding” of the data. Simple knowledge 
schema are currently being built from information extracted from data sets and offer 
powerful new insights into data—considerably beyond that of a mining or modeling tool 
that does not extract and apply such schema. 

 

 
 

 

As powerful as they are, presently available modeling tools are at a first-generation level. 
Tools exploring and characterizing underlying relationships, and those building 
knowledge schema, for instance, represent the growth to a second generation of tools as 
astoundingly more powerful and capable as modern tools are than the statistical methods 
that preceded them. Data preparation too is at a first-generation level. The tools and 
techniques presented in this book for data preparation represent the best that can be 
done today with automated general-purpose data preparation and represent advanced 
first-generation tools. Just as there are exciting new directions and tremendous advances 
in modeling tools on the horizon, so too there are new advances and techniques on the 
horizon for automated data preparation. Such future directions will lead to powerful new 
insights and understanding of data—and ultimately will enhance our understanding of, 
and enable us to develop, practically applicable insights into the world. 

 

 

 

 12.5.1  Near Future  
 
 



 

Data preparation looked at here has dealt with data in the form collected in mainly 
corporate databases. Clearly this is where the focus is today, and it is also the sort of data 
on which data mining tools and data modeling tools focus. 

 

 
 

 

The near future will see the development of automated data preparation tools for series 
data. Approaches for automated series data preparation are already moving ahead and 
could even be available shortly after this book reaches publication. 

 

 
 

 

Continuous text is a form of data that is not dealt with in this book and presents very 
different types of problems to those discussed here. Text can be characterized in various 
ways. There is writing of all types, from business plans to Shakespeare’s plays. 
Preparation of text in general is well beyond the near future, but mining of one particular 
type of text, and preparation of that type of text for mining, is close. This is the type of text 
that can be described as thematic, discursive text. 

 

 
 

 

Thematic means that it has a consistent thread to the subject matter that it addresses. 
Discursive means that it passes from premises to conclusions. Text is discursive as 
opposed to intuitive. This book is an example of thematic, discursive text, as are sales 
reports, crime reports, meeting summaries, many memoranda and e-mail messages, 
even newspaper and news magazine articles. Such text addresses a limited domain and 
presents facts, interpretations of facts, deductions from facts, and the relationships and 
inferences between facts. It also may express a knowledge structure. Looking at data of 
this sort in text form is called text mining. Much work is being done to prepare and mine 
such data, and there are already embryonic text mining tools available. Clearly, there is a 
huge range of types of even thematic, discursive text, and not all of it will soon be 
amenable to preparation and mining! But there are already tools, techniques, and 
approaches that promise success and are awaiting only the arrival of more computer 
power to become effective. 

 

 
 

 

The near future for data preparation includes fully automated information exposure for the 
types of data discussed in this book, including series data, and adding thematic, 
discursive text preparation. 

 

 

 

 12.5.2  Farther Out  
 
 

 

The Internet and World Wide Web present formidable challenges. So far there isn’t even 
any beginning to classifying the types of data available on the Internet, let alone devising 
strategies for mining it! The Internet is not just a collection of text pages. It includes such a 
wealth and variety of information forms that they are almost impossible to list, let alone 
characterize—sound, audio-visual, HTML, ActiveX objects, and on and on. All of these 
represent a form of information communication. Computers “understand” them enough to 
represent them in human-understandable form—and humans can extract sense and 
meaning from them. 

 

 
 



 

Automating the mining of such data presents a formidable challenge. Yet we will surely 
begin the attempt. A truly vast amount of information is enfolded in the Internet. It is 
arguably the repository for what we have learned about the nature of the world as well as 
a forum, meeting place, library, and market. It may turn out to be a development as 
revolutionary in terms of human development as the invention of agriculture. It is a new 
form of enterprise in human experience, and it is clearly beyond the scope of 
understanding by any individual human being. Automated discovery, cognition, and 
understanding are obviously going to be applied to this enormous resource. Already terms 
such as “web farming” are in current use as we try to come to grips with the problem. 

 

 
 

 

There are many other forms of data that will benefit from automated “understanding” and so 
will need preparation to best expose its information content. These range from continuous 
speech to CAT (computerized axial tomography) scans. Just as the tools of the industrial 
revolution represent tools to enhance and extend our physical capabilities, so computers 
represent the beginnings of tools to extend the reach of our understanding. Whatever sort of 
data it is that we seem to understand, correct preparation of that data, as well as preparation 
of the miner, will always pay huge dividends. 

 

 



 

Appendix A: Using the Demonstration Code 

on the CD-ROM 

 

 

 

 Data Format  
 
 

 

The data must be in a comma-delimited ASCII file. The first line of the file contains the 
comma-delimited variable names. DP will automatically type the variables as numerical if 
the first value contains a number or categorical if the first value starts with an alphabetic 
character. 

 

 
 

 
Various control flags can be added after the variable name in the form VarName<F>. The 
available flags are 

 

 
 

 N  
 

 

 
Treat the variable as numerical. Values containing nonnumeric 
characters will be treated as nulls. 

 

 

 

 

 C  
 

 

 Treat the variable as categorical.  
 

 

 

 P  
 

 

 Treat the variable as the dependent or prediction variable.  
 

 

 

 X  
 

 

 Exclude the variable from analysis.  
 

 

 

 K  
 

 

 Key variable—exclude the variable from analysis but copy to the output file.
 

 
Control Variables  
 
 

 

The operation of the DP program is controlled by an ASCII file containing names of 
control variables and their values: one control value per line separated by spaces from the 
value. Comments can be included by preceding them with a double slash (//). 

 

 
 

 IPFileName  
 

 

 Input file name  
 

 

 

 OPFileName  
 

 

 Output file name  
 

 

 

 ConfLevelSmpl  
 

 

 Confidence level to stop sampling  
 

 

 

 ConfLevelDrop  
 

 

 Confidence level to drop a variable  
 

 

 

 ConfLevelNum  
 

 

 Confidence level for numerating categoricals  
 

 

 

 CatCntDrop  
 

 

 Categorical count to Sample count drop ratio. That is, if  
 



CatCntDrop = 0.6, then if the number of unique categories in 
a variable is greater than 0.6 x number of sample rows, the 
variable will be dropped from further processing. 

 
 

 ReplaceMissing  
 

 

 1 if replace missing values  
 

 

 

 MaxNumDimension  
 

 

 Maximum dimension to use when numerating categoricals  
 

 

 

 MaxNumEstimates  
 

 

 
Maximum number of numerical variables to use when 
numerating categoricals 

 

 

 

 

 OutputType  
 

 

 0 – raw, 1 – scaled, 2 – rank  
 

 

 

 Compress  
 

 

 1 if build compression model  
 

 

 

 ConfLevelCmp  
 

 

 
Confidence level to use when searching for the compression 
model 

 

 

 

 

 ConnectPcnt  
 

 

 

The percentage of paths to include when computing either 
the best compression model or the importance. Generally 
10–20% works well. 

 

 

 

 

 Importance  
 

 

 1 if compute the neural network importance of the variables  
 

 

 

 ImportCnt  
 

 

 
The number of complete cycles to use when computing 
importance 

 

 
Usage  
 
 

 

Suppose that the executable is located in c:\dos; and the control file, data file is located in 
c:\data; and the control file, ctrl, is also in the c:\data. To run dp10, make the c:\data 
directory the current directory and enter 

 

 
 

 c:\dos\dp10.exe ctrl  
 
 

 Appendix: Using the Demonstration Code on the CD-ROM 
 

 
Sample Control File  
 
 

 Actual control file comments in Letter Gothic font  
 
 

 Comments that are not included in italics  
 
 

 IPFileName  
 

 

 cars.dat 
 

 
 

   
 

 



 

 OPFileName  
 

 

 carDP 
 

 
 

   
 

 

 

 ConfLevelSmpl  
 

 

 .95  
 

 
 

 Confidence level for sampling  
 

 

 

 ConfLevelDrop  
 

 

 .70  
 

 
 

 Confidence level for dropping variables  
 

 

 

 ConfLevelNum  
 

 

 .95  
 

 
 

 Confidence level for numerating  
 

 

 

 CatCntDrop  
 

 

 0.8  
 

 
 

 If > n x NoInstances drop categorical variable 
 

 

 

 ReplaceMissing  
 

 

 1  
 

 

 

 
1 = Replace missing 
0 = Don’t replace missing 

 

 

 

 

 MaxNumDimension  
 

 

 3  
 

 

 

 
Max dimensions when representing 
categoricals 

 

 

 

 

 MaxNumEstimates  
 

 

 6  
 

 

 

 
Max start var count for numerating 
categoricals 

 

 

 

 

 OutputType  
 

 

 2  
  

 

 

0 = Only numerate categoricals 
1 = Numerate cat & norm all 
2 = Numerate, normalize, redistibute 

 

 

 

 

 Compress   
 

 

 0  
 

 

 

 
1 = Compress this file 
0 = Don’t compress 

 

 

 

 

   
 

 

   
 

 
 

 Then if compressing:  
 

 

 

 ConnectPcnt  
 

 

 50  
 

 
 

 Connection percent  
 

 

 

 HiddenNodes  
 

 

 0  
 

 

 

 
0 = Search 
n = Use this number 

 

 

 

 

 ConfLevelCmp  
 

 

 .95  
 

 
 

   
 

 

 

 Importance  
 

 

 1  
 

 

 

 
0 = No importance measures 
1 = Measure variable importance 

 

 

 

 

 ImportCnt  
 

 

 10  
 

 
 

 Number of test cycles 
 

 



 

Appendix B: Further Reading  

 
 

  
• 
 
Abelson, Robert P. Statistics as Principled Argument. Hillsdale, NJ: Lawrence Erlbaum 
Associates, 1995. 

 

 
 

 

This book is about how to think about interpreting the results of investigations into data. 
It is statistically based, but the discussions apply equally well to the results of data 
mining. There is little mathematics in the discussion. 

 

 
 

 Useful to business managers, analysts, modelers, and miners.  
 
 

  
• 
 
Berry, Michael J. A., and Gordon Linoff. Data Mining Techniques: For ~Marketing, 
Sales, and Customer Support. New York: John Wiley & Sons, 1997. 

 

 
 

 

This book provides a conceptual overview of various data mining techniques, looking at 
how each actually works at a conceptual level. This is an almost entirely 
nonmathematical treatment. The examples discussed are mainly business oriented. 

 

 
 

  •  Deming, William E. Statistical Adjustment of Data. New York: Dover Publications, 1984. 
 
 

 Deming, William E. Some Theory of Sampling. New York: Dover Publications, 1984.  
 
 

 

These two books were originally written in 1938 and 1950, respectively. William 
Edwards Deming gave a great deal of thought to the problems of collecting data from, 
and using data in, the real world. These books are mathematical in their treatment of the 
problem and are statistically based. Many issues and problems are raised in these 
works that are not yet amenable to automated solutions. 

 

 
 

 Useful to advanced modelers and technically oriented miners.  
 
 

  
• 
 
Gleason, A. (translator). Transnational College of LEX. Who is Fourier?: A 
Mathematical Adventure. Cambridge, MA: Blackwell Science, 1995. 

 

 
 

 

A simply wonderful book explaining Fourier series. Although mathematical, the 
introduction to the concepts is so gentle that the mathematics is almost unnoticeable, 
even though it necessarily deals with trigonometry and elementary calculus. 

 

 
 

 Useful to analysts, modelers, and miners.  
 
 

  
• 
 
Grouse, Donald C., and Gerald M. Weinberg. Exploring Requirements: Quality Before 
Design. New York: Dorset House, 1989. 

 

 
 



 

This is a book about exploring requirements for products and systems. Much of what 
they have to say is easily applicable to exploring requirements for business problems 
and solutions. Almost all of the points they raise, and the solutions and methods they 
propose to address those points, are applicable to general problem solving. 

 

 
 

 Useful to business managers, analysts, modelers, and miners.  
 
 

  
• 
 
Jones, Morgan D. The Thinker’s Toolkit; Fourteen Skills for Making Smarter Decisions 
in Business and in Life. New York: Times Business Books, 1995. 

 

 
 

 

The jacket description for this book introduces it as “. . . a unique collection of proven, 
practical methods for simplifying any problem and making faster, better decisions every 
time.” All of these decision-making methods are applicable to problem and solution 
space exploration. 

 

 
 

 Useful to business managers, analysts, modelers, and miners.  
 
 

  
• 
 
Moore, David S. Statistics: Concepts and Controversies. New York: W. H. Freeman and 
Co., 1996. 

 

 
 

 

This is a nonmathematical treatment of an approach to thinking about the problems, 
use, and applicability of understanding information enfolded in data. It is not so much 
about statistics as about introducing the issues in thinking about how to understand 
data. Almost all of the issues raised and discussed are applicable to mining and 
modeling. 

 

 
 

 Useful to business managers, analysts, modelers, and miners.  
 
 

  
• 
 
Shannon, Claude E., and Warren Weaver. The Mathematical Theory of 
Communication. Urbana/Chicago: University of Illinois Press, 1998. 

 

 
 

 

This seminal work on communication (information) theory was originally published as a 
paper in 1948 and as a book in 1949. Dr. Warren Weaver’s introduction is very 
readable. Claude Shannon’s paper, although mathematical, is a model of clarity. A huge 
number of books have been written in the intervening 50 years, and the theory has been 
much extended, but this book still holds its own. 
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Smith, Murray. Neural Networks for Statistical Modeling. New York: Van Nostrand 
Reinhold, 1993. 

 

 
 

 

A clear introduction to the concepts, construction, and operation of neural networks. It 
includes code in BASIC. Although it does not discuss sparsely connected networks or 
autoassociative neural networks, the general structure of back-propagation neural 
networks is well presented. The demonstration code for data preparation, while not 

 



based on the code discussed in the book, uses the same constant and parameter 
names, and some of the same structure as the network in this book, so that the 
transition into further exploration of neural networks will be eased. The treatment is 
modestly mathematical. 

 
 

 Useful to modelers and technically oriented miners. 
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